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Abstract

Current antivirals can control but not eliminate hepatitis-B-virus (HBV), because HBV establishes 

a stable nuclear cccDNA. Interferon-α treatment can clear HBV but is limited by systemic side 

effects. Here we describe how interferon-α can induce specific degradation of the nuclear viral 

DNA without hepatotoxicity and propose lymphotoxin-β-receptor activation as a therapeutic 

alternative. Interferon-α and lymphotoxin-β-receptor activation up-regulated APOBEC3A and 3B 

cytidinedeaminases, respectively, in HBV-infected cells, primary hepatocytes and human liver-

needle biopsies. HBV-core protein mediated the interaction with nuclear cccDNA resulting in 

cytidine-deamination, apurinic/apyrimidinic site formation and finally cccDNA degradation that 

prevented HBV-reactivation. Genomic DNA was not affected. Thus, inducing nuclear deaminases 
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- e.g., by lymphotoxin-β-receptor activation - allows development of new therapeutics that 

combined with existing antivirals may cure hepatitis B.

Hepatitis B virus (HBV) infection remains a major public health threat with more than 350 

million humans chronically infected worldwide at risk of developing end-stage liver disease 

and hepatocellular carcinoma. Each year, more than 600,000 humans die from consequences 

of chronic HBV infection. A prophylactic vaccine has been available for hepatitis B for 

almost thirty years, but the overall number of chronic infections remains high.

HBV is a small, enveloped DNA virus replicating via an RNA intermediate. The 

encapsidated viral genome consists of a 3.2 kb partially double-stranded relaxed circular 

DNA (rcDNA) molecule. The virus has optimized its life-cycle for long-term persistence in 

the liver (1). Upon translocation to the nucleus, the rcDNA genome is converted into a 

covalently closed circular DNA (cccDNA), which serves as the template for viral 

transcription and secures HBV persistence. Nucleos(t)ide analogs are efficient antivirals but 

only control and do not cure HBV infection owing to the persistence of HBV cccDNA. 

Therefore, long-term treatment is required, which is expensive and may lead to concomitant 

resistance (2). Interferon (IFN)-α is licensed for hepatitis B therapy and treatment with this 

cytokine can result in virus clearance in a proportion of patients; however, its efficacy is 

limited and high doses are not tolerated (3). Thus, efficient and nontoxic elimination of 

cccDNA in hepatocytes is a major goal of HBV research.

Using animal models, it has been shown that HBV replication, and in particular the cccDNA 

content of the liver, can be affected by noncytopathic mechanisms involving cytokines such 

as interferons and tumor necrosis factor (TNF), which influence RNA and capsid stability 

(4–7). Here, we describe an antiviral mechanism that interferes with cccDNA stability and is 

distinct from influences of antiviral cytokines on cccDNA activity (8).

High-Dose IFN-α Leads to cccDNA Degradation in HBV-Infected 

Hepatocytes

IFN-α is known to exert transcriptional, post-transcriptional and epigenetic antiviral effects 

on HBV (8–12). To study the effect of IFN-α on HBV cccDNA, we used HBV-infected, 

differentiated HepaRG (dHepaRG) cells and primary human hepatocytes (PHH). These are 

human cell types susceptible to HBV infection (13, 14) and responsive to IFN-α treatment 

in vitro (fig. S1A). IFN-α treatment did not lead to detectable hepatotoxicity, even at very 

high doses (fig. S1B). Treating dHepaRG cells with 500 or 1000 IU/ml IFN-α controlled 

HBV-DNA synthesis as efficiently as 0.5 μM (5-fold EC50) of the nucleoside analog 

lamivudine (LAM). IFN-α, however, unlike LAM also significantly reduced expression of 

HBV-RNA and hepatitis B surface (HBsAg) and e (HBeAg) antigens (Fig. 1A and fig. S1C).

In patients, interruption of LAM treatment results in a rebound of HBV replication (2). 

Using IFN-α, we observed only a partial or no rebound in HBV-infected dHepaRG cells 

after treatment cessation (Fig. 1A). Because dHepaRG don’t allow virus spread, reduction of 

HBeAg and lacking rebound indicated an effect of IFN-α on the established HBV cccDNA 

transcription template besides the known antiviral effects on viral replication (14). By 
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cccDNA-specific qPCR, we determined an 80% reduction of cccDNA after 10 days of 

treatment (Fig. 1B). Reduction of cccDNA was confirmed by Southern blot analysis (fig. 

S1D) and was dose dependent (fig. S1E). cccDNA reduction could be induced at any time 

point (Fig. 1C) and persisted over time (Fig. 1, A and C). The effect was corroborated in 

HBV-infected primary human hepatocytes (PHH) (Fig. 1D). In contrast to IFN-α, LAM and 

even more potent nucleoside analog entecavir (ETV) at very high doses (0.5 μM, 1000-fold 

IC-50) only inhibited reverse transcription and thus HBV replication, but not viral 

persistence (Fig. 1E). Pretreatment with ETV did not enhance the effect of IFN-α (Fig. 1F) 

indicating that IFN-α induces the decay of established HBV cccDNA. Since the doses of 

IFN-α used to achieve this effect were high, we screened for other cytokines showing 

similar antiviral effects at moderate doses.

LTβR Activation Controls HBV and Leads to cccDNA Degradation in HBV-

Infected Cells

IFN-γ and TNF-α are known to control HBV in a noncytopathic fashion (4, 7), but cannot 

be used as therapeutics because they cause severe side effects. We tested the effect of 

lymphotoxin (LT) β receptor (LTβR) activation as an alternative therapeutic option. TNF 

superfamily members LTα, LTβ and CD258 are the physiological ligands for LTβR and 

activate several inflammatory, anti-inflammatory, pro- and anti-survival pathways (15). Like 

hepatocytes (16), dHepaRG (14) and HepG2-H1.3 cells permit HBV replication (17) and 

express the LTβR (fig. S2, A and B). To activate LTβR, we used a super-agonistic tetravalent 

bispecific antibody (BS1) and a bivalent anti-LTβR monoclonal antibody (CBE11) (18, 19). 

As expected, LTβR agonists activated canonical (20) and noncanonical nuclear factor kappa-

light-chain-enhancer of activated B cells (NF-κB) pathways to trigger p100 cleavage (fig. 

S2C), RelA phosphorylation (fig. S2D), nuclear RelB and RelA translocation (fig. S2, E and 

F), and up-regulation of known target genes (fig. S2G) without causing any detectable 

hepatocytotoxicity (fig. S2H).

To test the effect of LTβR-activation on HBV infection, dHepaRG cells were treated with 

BS1 for 12 days starting 24 hours prior to HBV infection. LTβR-activation decreased levels 

of all HBV-markers, including cccDNA by approximately 90% without toxicity (Fig. 2A). 

The antiviral effect was highly potent with an EC5O of approximately 0.01 μg/mL (fig. 

S3A). Inhibition of apoptosis did not alter antiviral activity (fig. S4). Neither IFN-β nor 

classic IFN-stimulated genes were upregulated upon BS1-treatment (fig. S2G) and antiviral 

activity was independent of IFN-induction (fig. S5).

In vivo, activation of the murine LTβR by systemic application of an agonistic antibody 

(ACH6) induced RelA and RelB nuclear translocation in hepatocytes of HBV-transgenic 

mice (fig. S6A), reduced HBV viremia (fig. S6B), HBV RNA (fig. S6C) and HBV core 

(HBc) protein expression in the liver (fig. S6, D and E). Neither signs of hepatocyte 

apoptosis (fig. S6F) nor elevation of aminotransferases (ALT) (fig. S6G, right panel) were 

observed indicating good in vivo tolerability of LTβRactivation. Since HBV-transgenic mice 

do not establish HBV cccDNA, this indicated additional antiviral effects of LTβR-activation 
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on HBV RNA transcription or stability. Accordingly, discontinuation of LTβRactivation 

induced an immediate, strong rebound of HBV replication (fig. S6G).

To investigate whether LTβR-activation would affect established HBV cccDNA in the 

context of a persistent infection and prevent HBV reactivation, dHepaRG cells were treated 

with LTβR agonists BS1 or CBE11 when a stable, nuclear cccDNA pool had established. 

All HBV markers, including HBV cccDNA, were reduced upon LTβR-activation in HBV-

infected dHepaRG cells (Fig. 2, B and C, and fig. S3) as well as in stably transfected 

HepG2H1.3 cells containing high levels of cccDNA (Fig. 2C). In HBV-infected primary 

human hepatocytes (PHH), LTβR agonisation reduced HBV cccDNA, HBeAg secretion and 

even more pronounced HBV-DNA replication (Fig. 2D). cccDNA degradation was more 

effective (up to 95%) when treatment was prolonged (fig. S3, C and D). Treatment 

interruption for 10 days was almost as efficient as continuous treatment (fig. S3C) indicating 

that LTβR agonists induce a persistent antiviral effect. In contrast to LAM treatment, no 

rebound of HBV-replication was observed when BS1 treatment stopped (Fig. 2E). Hence, 

LTβR activation not only suppressed HBV replication but also caused nuclear cccDNA 

degradation, needed to achieve virus elimination.

LTβR Activation and IFN-α Treatment Induce Deamination and Apurinic/

Apyrimidinic (AP) Site Formation in cccDNA

To investigate if cccDNA degradation upon LTβR-activation or IFN-α treatment was a result 

of DNA damage, we examined cccDNA deamination by differential DNA denaturation PCR 

(3D-PCR) (21). Low denaturing temperatures were sufficient for cccDNA amplification 

from HBV-infected dHepaRG cells and for PHH treated with IFN-α or BS1, compared with 

untreated, LAM- or ETV-treated cells (Fig. 3A and fig. S7, C and D). Using a cocktail of 

recombinant proteins containing all enzymes necessary for DNA repair (preCR mix), we 

could reverse the denaturation of cccDNA (Fig. 3A, lower panels). The fact, that 

denaturation temperatures of mock, LAM and ETV treated cells also shifted, indicated that 

this modification of HBV cccDNA existed even without exposure to exogenous drugs. 

Deamination of cccDNA (Fig. 3A, right panel) and a drop in cccDNA levels after treatment 

with CBE11 (table S1) was confirmed in vivo in human liver chimeric uPA-SCID mice 

infected with HBV. Sequencing analyses showed G/A transitions occurred under treatment 

(Fig. 3B and fig. S7, A and B) indicating deamination of cytidines to uridine in the HBV 

cccDNA minus strand. At lower denaturation temperatures G/A transitions became more 

obvious (Fig. 3C and fig. S7A). These data showed that both LTβR-activation and IFN-α 
treatment led to cccDNA deamination in vitro and in vivo, and help to explain the G/A 

hypermutation observed in patient samples (21).

Importantly, neither deamination nor mutations of genomic DNA were observed by 3D-PCR 

(fig. S8A) or by deep sequencing of selected housekeeping or IFN- and LTβR-target genes 

(fig. S8B). This indicated that DNA modifications were specifically targeted to viral 

cccDNA.

After cytidine deamination, DNA-glycosylases recognize the damaged DNA and cleave N-

glycosidic bonds to release the base and create an accessible AP site that can then be cleaved 
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by endonucleases (22). These AP sites can either be repaired, can lead to mutations upon 

DNA replication or can induce DNA degradation (23). We quantified AP sites created by 

LTβR-activation or IFN-α treatment. However, no increase of AP sites in total DNA extracts 

from dHepaRG cells or PHH treated with IFN-α or LTβR-agonists (fig. S8C) was found, 

reassuring that our treatments did not lead to detectable damage in genomic DNA. Because 

AP sites in the small (3.2 kb) cccDNA are very likely to be missed by this analysis, we 

digested total DNA extracts with an AP-endonuclease (APE1) and then amplified cccDNA 

by qPCR. APE digestion further decreased cccDNA extracted from dHepaRG cells and PHH 

treated with IFN-α or LTβR-agonists but not with LAM (Fig. 3D). Taken together, our data 

indicate that both, LTβR-activation or IFN-α treatment induced deamination and AP-site 

formation in HBV cccDNA leading to its degradation, but did not affect genomic DNA.

LTβR Activation and IFN-α Treatment Up-Regulate Expression of Nuclear 

APOBEC3 Deaminases

IFN-α is known to induce several cytidine deaminases (23, 24). We performed genome-wide 

expression profiling of HBV-infected dHepaRG cells after LTβR-activation (fig. S9A) and 

classified regulated genes according to their activity and properties (fig. S9B). Hereby, 

APOBEC3B (A3B) was identified to be the most up-regulated gene with nucleic acid 

binding properties (fig. S9C).

Analysis of all APOBEC3 family members showed that LTβRactivation leads to strong up-

regulation of A3B and to minor extent A3G in HBV-infected dHepaRG and PHH, and after 

systemic application in human liver chimeric uPA-SCID mice (fig. S10A). A3B expression 

was induces by LTβR-activation in a dose-dependent manner and expression levels steadily 

increased during continuous treatment (fig. S11) correlating with a concomitant increase in 

treatment efficacy over time (fig. S3C). Treatment of PHH isolated from different donors 

with LTβRagonist BS1 resulted in cccDNA degradation at different levels (Fig. 3E and fig. 

S10B), which could neither be explained by the level of A3B upregulation (Fig. 3E) nor by 

detection of a previously described (25) genomic deletion of the A3B allele, which seems to 

correlate with HBV persistence in infected patients (fig. S10, B and C).

In contrast to LTβR-activation, IFN-α treatment induced mainly A3A, but also A3F and 

A3G expression in HBV-infected dHepaRG cells and PHH (fig. S12A), and A3D expression 

in isolated PHH. By systemic IFN treatment of chimpanzees (26), A3A was strongly 

upregulated in liver needle biopsies (fig. S12B). Activation of A3A, A3F and A3G after 

IFN-α treatment was dose- and time-dependent, and decreased after an initial peak despite 

continuous treatment indicating that cells become refractory to IFN-α (fig. S13). In patients 

treated with subcutaneous pegylated IFN-α, needle biopsies obtained at different time points 

confirmed a rapid, strong upregulation of A3A and to a lower extend of A3G in the liver 

peaking at 16 hours post treatment (fig. S12C). Expression levels declined after this time 

point and remained low until day 6 post treatment confirming a fast but only transient 

induction of A3A by IFN-α treatment. Interestingly, the level of A3B or A3A induction in 

BS-1 and IFN-α treated PHH, respectively, did not directly correlate with the level of 

cccDNA degradation (Fig. 3E). The fact that IFN-α only induces a transient A3A induction 
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and cells rapidly become refractory to IFN-α may account for the limited effect of IFN-α 
treatment in HBV-infected patients (3).

APOBEC3A or APOBEC3B Activity Is Essential to Induce cccDNA

Degradation

Among the APOBEC3 family members up-regulated in our experiments, only A3A and 

A3B located to the nucleus (fig. S14) where they can gain access to cccDNA. To verify that 

they are indeed responsible for the induction of cccDNA degradation, we overexpressed the 

HIV-Vif protein (known to promote the degradation of all APOBEC3 proteins except A3B 

(27, 28)) in dHepaRG cells in a tetracycline-regulated fashion. Expression of HIV-Vif 

reduced A3A, A3F and A3G expression (fig. S15A), reverted IFN-α-induced cccDNA 

deamination and prevented cccDNA degradation induced by IFN-α treatment (Fig. 4A). 

However, expression of HIV-Vif did not alter A3B levels (fig. S15B) and had no impact on 

cccDNA degradation by LTβR-activation (fig. S15C). To specifically address the role of 

A3A or A3B in cccDNA degradation we further knocked down A3A and A3B in dHepaRG 

cells under IFN-α or LTβR-agonist treatment, respectively, and observed reduced cccDNA 

deamination (Fig. 4, B and C, left panels). A3A as well as A3B knock-down completely 

reverted cccDNA degradation, but could not rescue the additional effect of IFN-α or LTβR-

activation on HBV replication (Fig. 4, B and C, right panels).

To confirm the impact of A3A and A3B on cccDNA deamination, we overexpressed A3A 

and A3B, respectively, in HBV-replicating HepG2-H1.3 (Fig. 4, D and E). Cytidine-

deamination of nuclear cccDNA by A3A and A3B is in accordance with other studies 

showing that both localize to the nucleus (29) and may be involved in the elimination of 

foreign DNA (23).

APOBEC3A Interacts with the HBV Core Protein and Binds to cccDNA

APOBECs have evolved to restrict retroviral replication (30) as well as DNA transfer into 

cells. They are able to clear foreign nuclear DNA (23, 31), but it remains unclear how HBV 

cccDNA DNA was recognized and whether it was specifically targeted in our experiments. 

To assess specificity, we generated cell lines replicating a mammalian replicon plasmid pEpi 

containing a linear HBV 1.3-fold overlength sequence. From the linear HBV-genome, HBV 

replication was initiated and in addition to the pEpi-H1.3 replicon HBV cccDNA was 

established in the nucleus. Treatment with either IFN-α or LTβR-agonist BS1 inhibited 

HBV replication and resulted in deamination and degradation of HBV cccDNA, but not of 

the HBV-sequence containing replicon (fig. S16). This indicated that deamination and 

subsequent degradation induced by both treatments is HBV cccDNA specific.

HBV core protein associates with A3G (32) and HBV cccDNA (33) and thus was a 

candidate to mediate the targeting of A3 deaminases to HBV cccDNA. Confocal microscopy 

indicated a co-localization of A3A and A3B with HBV core in different cell lines and PHH 

(Fig. 5 and fig. S17). Chromatin immunoprecipitation (ChIP) experiments using stably (fig. 

S18A) or transiently transfected HepG2H1.3 cells or HBV-infected and IFN-α treated 

dHepaRG cells, showed that HBV core protein and A3A both bind to the cccDNA 
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minichromosome (Fig. 6A). Supporting the possibility that a guardian protein prevents A3A 

direct binding to DNA (34), we could not detect A3A binding to genomic DNA (fig. S18B) 

even in the presence of HBV core, which has been reported to also bind to cellular DNA 

(35).

HBV core protein co-immunoprecipitated A3A in HepG2H1.3 cells and transfected HuH7 

cells indicating physical interaction with A3A (fig. S19). Direct interaction of HBV core 

expressed after HBV infection and A3A induced by IFN-α was confirmed by proximity 

ligation assay (PLA) (Fig. 6B and fig. S20) and fluorescence resonance energy transfer 

(FRET) analysis (Fig. 6C). By deletion analysis, we determined that the central region of 

HBc (aa 77 to 149) is involved in the interaction with A3A (Fig. 6C and fig. S21).

These data suggest that A3A is targeted to cccDNA by interaction with HBV core. No such 

targeting to genomic DNA has been described so far. Since APOBEC3 deaminases are 

thought to act on single stranded DNA (36), one possibility is that A3A and A3B act on 

cccDNA when it is transiently rendered single-stranded by RNA polymerase II before 

transcription initiation.

We suggest, therefore, the following mechanism of APOBECdependent degradation of HBV 

cccDNA (Fig. 6D). High dose IFN-α treatment or LTβR-activation up-regulate the 

expression of A3A and A3B, respectively, which subsequently co-localize or directly 

interact with HBV core in infected hepatocytes, translocate to the nucleus, where they are 

brought into close contact with cccDNA by HBV core. Now, APOBECs can deaminate 

cccDNA that is transiently rendered singlestranded during transcription. Uracils in HBV 

cccDNA are recognized and excised by cellular DNA glycosylases leading to formation of 

AP sites, which are then recognized by cellular AP endonculeases (23) leading to cccDNA 

digestion. Why cccDNA is degraded instead of being repaired by the cellular DNA repair 

machinery remains elusive so far. Using a mixture of various enzymes, we were able to 

repair deaminated cccDNA in tubo (Fig. 3A) suggesting induction of an additional factor 

promoting DNA degradation or an impaired function of the repair machinery rather than a 

lack of recognition by the repair machinery. Thus, we can only speculate that either the 

number of AP sites introduced after treatment is too high and exceeds the capacity of the 

cellular repair machinery or that IFN-α treatment or LTβR-activation or even HBV itself 

(37) modulate the repair machinery. This may shift the equilibrium from cccDNA repair (38) 

to degradation.

Ideally, a cure for HBV infection needs to eliminate cccDNA. Therefore, cytokines or 

cytokine-receptor agonists that can trigger HBV cccDNA deamination and its degradation 

are interesting antiviral candidates. Antivirals that induce A3A/B activity should be 

combined with nucleos(t)ide analogs to avoid the replenishment of nuclear cccDNA after 

degradation. LTβR-agonists were active at low doses and we did not observe any toxicity in 

vitro or in vivo nor did we detect any modification of genomic DNA. Constitutive 

overexpression of LTα/β for more than one year has been associated with inflammatory liver 

disease and hepatocellular carcinoma (16). As antivirals, however, LTβR-agonists would 

only be used for a limited period of time minimizing the risk of side effects. Moreover, 

LTβR-activation was already explored as a cancer treatment (18).
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A recent study has shown a significantly higher frequency of an A3B deletion allele in 

persistent HBV carriers and hepatocellular carcinoma patients compared with healthy 

controls (25). This finding was further supported by the moderate deamination of cccDNA 

even in absence of treatment, and by the observation that knockdown of A3B in the absence 

of any treatment increased cccDNA levels. Although deregulated expression of A3A and 

A3B has been shown to correlate with genomic DNA mutations (39, 40), we did not detect 

any alterations of genomic DNA using analyses of AP sites, 3D-PCR analysis and deep 

sequencing of a set of human genes.

Our data indicate that cccDNA degradation is possible and can be induced without side-

effects on the infected host cell. An important task will be testing of combinations of 

nucleos(t)ide analogs with novel antiviral strategies (e.g., LTβR agonists or adoptive T-cell 

therapy (41)) to activate A3A or A3B to cure hepatitis B.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Degradation of cccDNA in IFN-α treated HepaRG cells and primary human hepatocytes.
(A, B, C, E, and F) HBV-infected dHepaRG were treated with IFN-α at day 10 post-

infection (dpi). Different regimens of treatment were applied as indicated. (D) HBVinfected 

primary human hepatocyte (PHH) were treated with IFN-α at dpi 3 for 13 days. Levels of 

HBeAg, total intracellular DNA and cccDNA are given relative to mock treated cells. LAM: 

lamivudine; ETV: entecavir. Mean values +/− standard deviation of replicates from 

independent experiments are given; data were analyzed by t test. * p < 0.05, ** p < 0.01 and 

*** p < 0.001.
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Fig. 2. LTβR-activation inhibits HBV infection and leads to cccDNA degradation in HepaRG 
cells and PHH.
(A and B) HBV-infected dHepaRG were treated with BS1, CBE11, hu-IgG control or 

lamivudine (LAM). (A) Treatment started 24h before infection for 12 days or (B) at 18 dpi 

for 10 days. Levels of the indicated HBV markers as well as cell viability are given relative 

to untreated controls (mock). (C) cccDNA levels were analyzed after 14 days of BS1 

treatment by Southern blot in HBV-infected dHepaRG and HBV-replicating HepG2H1.3 

cells. Supercoiled cccDNA bands were identified by their expected size and linearization 

upon EcoRI digestion (3,2 kb). (D) PHH were infected with HBV and treated with BS1 at 7 

dpi for 10 days. Levels of the indicated HBV markers were compared to untreated PHH of 
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the same donor (donor 3) (mock). (E) HBV-infected dHepaRG were treated with BS1, hu-

IgG control or LAM. Intracellular HBV-DNA was analyzed 8 and 14 days after treatment 

cessation. Mean values +/− standard deviation of replicates from independent experiments 

are given; data were analyzed by t test. * p < 0.05, *** p < 0.001.
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Fig. 3. Deamination and AP-site formation in cccDNA upon IFN-α treatment and LTβR-
activation.
(A) dHepaRG (left) and PHH (middle panel) were infected with HBV and treated with IFN-

α, BS1 or LAM. Human chimeric uPA/SCID mice were treated with CBE11 or hu-IgG 

control (right panel). 3D-PCR analyses were performed on cccDNA left either untreated 

(upper panels) or treated with a PreCR mix (lower panels). (B and C) 3D-PCR products 

from HBV-infected dHepaRG cells treated as indicated (IFN-α, BS1 or mock) were cloned 

and sequenced and mutations were analyzed. (D) Total DNA extracts from HBV-infected 

cells treated as indicated were digested with APE1, and cccDNA content was compared to 

mock-treated cells. In (B), (C), and (D), mean values +/− standard deviation of biological 
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triplicates from two independent experiments are given; data were analyzed by t test. * p < 

0.05, ** p < 0.01. (E) PHH were infected with HBV and treated with BS1 or IFN-α at 7 dpi 

for 10 days. Levels of the indicated cccDNA as well as A3A and A3B mRNA expression 

were compared to untreated PHH (mock) of the same donor.
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Fig. 4. Analysis of cccDNA deamination and degradation.
(A to C) cccDNA denaturation was analyzed by 3D-PCR (left panels); levels of HBeAg, 

total intracellular DNA and cccDNA are given relative to mock treated cells (right panels). 

(A) dHepaRG-tA-Vif cells treated with IFN-α for 10 days with and without doxycycline 

(dox)-induced HIV-Vif expression. HBV-infected dHepaRG cells treated with (B) IFN-α or 

(C) BS1 transfected with siRNA against A3A or A3B, respectively, or sequence nonspecific 

siRNA (sicontrol). Mean values +/− standard deviation of independent replicates and 

experiments are given; data were analyzed by t test. * p < 0.05, ** p < 0.01 and *** p < 
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0.001. (D) cccDNA denaturation analysis by 3D-PCR in HepG2-H1.3 cells overexpressing 

A3A or (E) A3B from lentiviral vector plasmid pLenti6.3 or pTR600, respectively, for 5 

days.
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Fig. 5. Co-localization of A3A and A3B with HBV core protein (HBc).
(A) HuH7 cells were co-transfected with an HBV1.1-fold genome and A3A-Flag or A3B-

Flag expressing plasmids and stained using DAPI, anti-HBc and anti-FLAG antibodies. (B) 

HBV-infected dHepaRG and PHH were treated with IFN-α at day 7 post infection for 3 

days. A3A and HBc were analyzed by immunofluorescence staining. Right panels indicate z 

stacks taken at the dotted lines.
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Fig. 6. Interaction of A3A, HBV core protein (HBc) and cccDNA.
(A) Chromatin immunoprecipitation (ChIP) was performed using lysates of HepG2H1.3 

cells transfected with A3Aexpressing plasmid, or HBV-infected dHepaRG cells treated with 

IFN-α for 3 days. IPs using antibodies against histone H3, A3A, HBc and control rabbit IgG 

(RIgG) were analyzed by qPCR for cccDNA. (B) Interaction between HBc and A3A was 

assessed by proximity ligation assay (PLA) in HBV-infected, IFN-α treated dHepaRG. 

PLA-spots were quantified in single cells by software-based spot-counting. Data were 

analyzed by one-way ANOVA. ** p < 0.01 and *** p < 0.001. (C) Serial HBV core-deletion 
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mutants (left panel) were fused to CFP and interaction with A3A-YFP was assessed by 

FACS-FRET in HuH7.5 hepatoma cells (right panel). Cells cotransfected with CFP and YFP 

served as controls to exclude false positive FRET and subtract background signals. A CFP-

YFP fusion construct was used as positive control. Mean values ± standard deviation of 

FRET-positive cells from 3–4 independent experiments are given. Black boxes indicate 

shared regions of HBc mutants giving a FRET signal. (D) Model of cccDNA degradation 

induced by IFN-α treatment or LTβR-activation.
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