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Harnessing the fundamental machinery of the immune system provides an opportunity to 

cure cancer, and this has led oncologists to turn their attention to the interface between 

therapeutic strategies, cancer cell death and the immunological consequences. In their recent 

Review article (Immunogenic cell death in cancer and infectious disease. Nat. Rev. 

Immunol. 17, 97–111 (2017))1, Galluzzi et al. discussed the molecular mechanisms 

underlying immune activation in response to dying cells in the context of cancer and 

infection, which was termed immunogenic cell death. This immunogenic outcome provides 

the ideal basis to treat malignant cancers with conventional therapeutics — such as 

chemotherapy and radiotherapy — that induce cancer cell death. However, accumulating 

clinical and experimental data have revealed that dying cancer cells can also have 

immunosuppressive effects.

Upon oxidative stress, nutrient deprivation or therapy-induced events, cancer cell death is 

often necrotic, leading to rapid membrane destruction and the release of damage-associated 

molecular patterns (DAMPs). Cancer cell necrosis has been shown to be associated with the 

development of advanced cancer and a poor prognosis2. One of the most well-known 

DAMPs, interleukin-1α (IL-1α), can be released rapidly by necrotic cells and may promote 

malignant cell transformation and proliferation3. IL-1α is also involved in cancer 

angiogenesis and metastasis through its interaction with platelets4. Importantly, IL-1α 
release also leads to the production of IL-6 by other cell types, which typically links 

inflammation to cancer progression. Accordingly, a therapeutic monoclonal antibody 

targeting IL-1α has been generated to treat patients with metastatic cancer4 and is currently 

being evaluated in phase III clinical trials (see ClinicalTrials.gov identifiers NCT02138422 

and NCT01767857). The canonical DAMP high-mobility group protein B1 (HMGB1) and 

downstream Toll-like receptor (TLR) signalling are generally considered to be required for 
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the anticancer effects of immunogenic cell death, but there is also evidence that this 

signalling pathway can promote (not inhibit) cancer5,6. Furthermore, S100 family proteins 

released by necrotic cells contribute to myeloid cell migration and cancer metastasis7,8. In 

addition, cancer cell death contributes to a local ionic imbalance, as exemplified by 

increased potassium concentrations. Elevated extracellular potassium levels impair T cell 

receptor signalling and therefore may limit effector T cell responses against the cancer9.

With regard to treatment-associated immunity, there are several lines of evidence that 

conflict with this Review. First, chemotherapeutics have been shown to induce the secretion 

of CXC-chemokine ligand 1 (CXCL1) by some cancer cells, in addition to the induction of 

CXCL10 described by Galluzzi and co-workers. CXCL1 attracts CD11b+GR1+ myeloid 

cells, which promote chemoresistance and meta stasis10,11. Second, the drug gemcitabine 

can trigger necrosome formation, resulting in immunosuppression via the production of 

CXCL1 and SIN3-associated polypeptide p130 (SAP130)12. Third, different thera peutic 

approaches can trigger the recruitment of immunosuppressive cell types: oxaliplatin can 

induce tumour infiltration by immunosuppressive plasma cells13; ionizing irradiation can 

stimulate the accumulation of regulatory T cells in malignant lesions14; and, remarkably, 

even immunotherapy such as checkpoint blockade can fail owing to the presence of 

immunosuppressive myeloid cells — only when these cells are eliminated or inhibited are 

cytotoxic T cells susceptible to checkpoint blockade15.

Given that various therapeutic strategies suffer clinical failure or resistance, appropriate 

animal models or clinical validation are needed to re-examine the immuno logical 

consequences described above. Despite the induction of opposing functions and mechanisms 

by tumour cell necrosis, the consensus in the field could be shifted in favour of improving 

the efficiency of anticancer therapeutics. To this end, we need a better understanding of how 

tumour cell necrosis influences the immune system, which depends not only on intracellular 

signals and constituents but also on the extra cellular context and systemic crosstalk. 

Therefore, precision or combination therapies should be considered for refractory cancer.
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