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Abstract

In some clinical applications, prior normal-dose CT (NdCT) images are available, and the valuable 

textures and structure features in them may be used to promote follow-up low-dose CT (LdCT) 

reconstruction. This study aims to learn texture information from the NdCT images and leverage it 

for follow-up LdCT image reconstruction to preserve textures and structure features. Specifically, 

the proposed reconstruction method first learns the texture information from those patches with 

similar structures in NdCT image, and the similar patches can be clustered by searching context 

features efficiently from the surroundings of the current patch. Then it utilizes redundant texture 

information from the similar patches as a priori knowledge to describe specific regions in the 

LdCT image. The advanced region-aware texture preserving prior is termed as ‘RATP’. The main 

advantage of the PATP prior is that it can properly learn the texture features from available NdCT 

images and adaptively characterize the region-specific structures in the LdCT image. The 

experiments using patient data were performed to evaluate the performance of the proposed 

method. The proposed RATP method demonstrated superior performance in LdCT imaging 

compared to the filtered back projection (FBP) and statistical iterative reconstruction (SIR) 

methods using Gaussian regularization, Huber regularization and the original texture preserving 

regularization.
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1. Introduction

Computed tomography (CT) has been widely used in various clinical applications (Pouliot et 
al 2005, Schmidbauer et al 2008, Aberle et al 2011, Campbell et al 2015). However, 

concerns regarding high radiation dose in CT imaging are growing, especially for those 

patients undergoing repetitive CT scans. For instance, in the case of image-guided lung 

nodule biopsy, a patient may undergo multiple scans and the cumulative radiation dose is 

very significant. One simple way to reduce the radiation dose is to lower x-ray tube current 

and/or shorten exposure time during the scans. The downside of this is that image 

reconstructed by conventional filtered back projection (FBP) method is degraded 

dramatically due to the excessive quantum noise.

In the past decade, various reconstruction methods have been proposed to improve the low-

dose CT (LdCT) image quality (Li et al 2004, Zeng et al 2013, Chen et al 2014, Gao et al 
2014, Zhang et al 2014d, Karimi and Ward 2016a, 2016b, Zeng et al 2016c, Chen et al 2017, 

Liu et al 2017, Xie et al 2017, Li et al 2018). Among them, statistical iterative reconstruction 

(SIR) methods have shown great potential to reconstruct high quality CT image from the 

acquired low-dose data. The SIR methods incorporate the statistical noise properties of the 

measurements and the image priors into the reconstruction. In the SIR reconstruction 

framework, the image prior in the cost function plays an important role in successful image 

reconstruction (Wang et al 2006, Chen et al 2008, Sidky and Pan 2008, Wang et al 2009, 

Huang et al 2011, Tian et al 2011, Xu et al 2012, Zhang et al 2013, Liu et al 2014, Niu et al 
2014, Geyer et al 2015, Sun et al 2015, Harms et al 2016, Zeng et al 2016a, Zhang et al 
2016b, 2016c, 2017c, 2018, Wu et al 2017, Zeng et al 2017). Meanwhile, it is difficult to 

find appropriate priors for the whole image (Zoran and Weiss 2011). Alternatively, many 

methods resort to utilizing local neighboring pixels or the patches from the image as the 

priors to find the optimal solution. The Markov random field (MRF) (Li 2009) theory 

provides a convenient and consistent way to model the local image characteristics, such as 

the edges and the structure features. For instance, two popular MRF priors, including the 

Gaussian regularization and Huber regularization, have been widely applied in LdCT SIR 

reconstruction procedures. These generic MRF priors encourage regional smoothness and 

edge sharpness, but some structures and textures in the desired image could be 

compromised, which could affect the following tasks, i.e. computer-aided detection/

diagnosis (Wang et al 2010, Han et al 2015) and radiomics analysis (Lambin et al 2012, 

Thawani et al 2017).

With the development of CT imaging techniques, a large number of CT images for clinical 

diagnosis are available. For example, in the biopsy guidance for lung cancer detection with a 

sequence of CT acquisition, some high-quality normal-dose CT (NdCT) images are 

available, which have similar anatomical structures with the following-up LdCT images. 

Based on this observation, many methods have been proposed to construct priors learned 
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from the previous NdCT image (Chen et al 2008, Yu et al 2009, Xu et al 2012, 2013, Yu et al 
2016, Zhang et al 2014a, 2014c, 2016a, 2017d). Ma et al derived the prior image based on 

the normal-dose induced nonlocal means filter (ndiNLM) (Ma et al 2011) for the LdCT 

image reconstruction (Ma et al 2012b). Chen et al proposed a prior image constrained 

compressed sensing (PICCS) method by integrating the prior image into the reconstruction 

procedure (Chen et al 2012). Stayman et al proposed a prior image registration penalized-

likelihood estimation (PIRPLE) method by performing a joint registration of the prior image 

and a reconstruction of the low-dose data (Stayman et al 2013). Zhang et al proposed a prior 

image induced nonlocal (PINL) prior to exploit the nonlocal similarity between the current 

LdCT image and previous NdCT image (Zhang et al 2014b, Zhang et al 2017a). These 

priors can characterize the local structures of the desired image via learning NdCT 

information, but registration between the NdCT and LdCT images is usually needed, which 

is the major limitation for these methods.

Recently, Zhang et al proposed a texture preserving prior for the LdCT image reconstruction 

via learning texture information from the segmented NdCT images (Zhang et al 2016a). For 

the chest CT image, the derived a priori information is varied for the four segmented 

regions, e.g. lung, fat, muscle and bone. Nevertheless, there are various details in the chest 

CT images, especially in the lung area, and it might be inadequate to characterize these 

different structures with the same a priori information. For example, in figure 1, the 

structures are different for the patches indicated by the red and green boxes in the different 

lung areas. Additionally, the accuracy of image segmentation has a direct influence on the 

reconstruction performance. Inspired by the texture preserving prior (Zhang et al 2016a), we 

propose a region-aware texture preserving (RATP) prior for the LdCT image reconstruction. 

Specifically, the proposed RATP method first learns the texture information from those 

patches with similar structures in NdCT image. Instead of the original patch itself, a context 

patch (con-patch) method (Romano and Elad 2016) is adopted for clustering, which 

incorporates the patch’s large surroundings into the patch by the context features. The 

context features can represent the patch’s surroundings in a compact manner and they can be 

obtained by measuring the similarity of the central patch to its neighborhood patches. 

Therefore, the con-patch can lead to a better matching for the similar patches because of 

these extra context features. Then the proposed RATP method utilizes the redundant texture 

information from these similar patches as a priori knowledge in the LdCT SIR procedure. 

The advantages of the proposed RATP prior are two-fold. First, compared to Zhang’s 

method (Zhang et al 2016a), the proposed method can extract more texture information from 

the NdCT image to characterize the local structures adaptively and preserve more details in 

the results. Second, neither segmentation nor registration operations is needed in the 

proposed RATP method, which can reduce the reconstruction bias resulting from the 

segmentation and mitigates the mismatch between the LdCT and NdCT images. The 

proposed RATP method was tested by using the patient data, and compared to reconstruction 

methods like the FBP and regularized SIR methods using Gaussian regularization, Huber 

regularization, and the original texture preserving regularization. The experiments 

demonstrate the proposed RATP method can achieve better performance in terms of noise 

suppression and texture preservation.
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The remainder of this paper is organized as follows: In section 2, the penalized weighted 

least-squares (PWLS) model is briefly reviewed and the proposed RATP method is 

described. Section 3 presents the experimental results. Finally, the conclusions and 

discussions are given in section 4.

2. Methods

2.1. Brief review of PWLS CT reconstruction

Given the acquired sinogram data y = [y1,y2,...yI]T, x-ray CT imaging is to reconstruct 

attenuation coefficients μ = [μ1,μ2,...μJ]T from y. Here, I is the number of the detector bins, J 
is the number of the image voxels, and T denotes the transpose operation. According to the 

MAP estimator, μ can be derived by minimizing the following PWLS problem:

μ* = arg min
μ ⩾ 0

(y − Aμ)TΣ−1(y − Aμ) + βU(μ) (1)

where A is a projection matrix with size I × J, and its element Aij is the length of intersection 

of projection ray i and voxel j, and Σ is a weighting matrix (Ma et al 2012a). U(μ) is the 

regularization term and the hyper-parameter β balances the strength of the fidelity term and 

the regularization term.

One common choice of the regularization term is based on the MRF model (Li 2009), and it 

can be expressed as follows:

U(μ) = ∑
j

∑
m ∈ Ω j

w jmφ μ j − μm (2)

where index j runs over all voxels in the image domain, Ωj denotes the set of neighbors of 

voxel j, wjm is the interaction degree between the center voxel j and its neighboring voxel m. 

φ(·) denotes the potential function.

2.2. Region-aware texture preserving prior

Let P be a patch operator that extracts a patch from the image μ, and Pjμ denotes the jth 

patch centered at pixel j and its size is p × p. Therefore, equation (2) with the quadratic 

potential function ((t) = t2) can be written as follows:

U(μ) = ∑
j

μ jI − P jμ
Tdiag w j μ jI − P jμ (3)

where I is a vector of all ones and has the same size with P jμ . w j = w jm m ∈ Ω j
 is the jth 

coefficient vector, diag(wj) converts wj to a diagonal matrix. Generally, wj represents the 
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relationship between voxel μj and patch Pjμ, and it can be viewed as the a priori information 

about the patch Pjμ.

In the repeated CT scans, the previous NdCT image can be used to promote the LdCT image 

reconstruction performance. Because the NdCT image and LdCT image share the similar 

information (i.e. structures and edges), and the high-quality information in the NdCT can be 

used to characterize the corresponding region-specific structures in the desired LdCT image. 

Therefore, in this work, a region-aware texture preserving (RATP) prior learning the a priori 
information from the NdCT images is developed, and it can be defined as follows:

U(μ) = ∑
k = 1

K
∑

P jμ ∈ R(k)
μ jI − P jμ

Tdiag wk
nd μ jI − P jμ (4)

where R(k) denotes the kth region and K is the total number of the regions. wk
nd is the a 

priori knowledge for the patches in R(k) and is determined by the previous NdCT image. nd 

is the abbreviation for normal-dose. wk
nd can be obtained by a least square regression (Wang 

et al 2012):

wk
nd = arg min

wk
∑

P jμ
nd ∈ R(k)

μ j
nd − wk

TP jμ
nd 2

= ∑
P jμ

nd ∈ R(k)
P jμ

nd P jμ
nd T

−1

∑
P jμ

nd ∈ R(k)
μ j

ndP jμ
nd

(5)

where μnd is the NdCT image. The expression ∑P jμ ∈ C(k)P jμ
nd P jμ

nd T
 is the sample auto-

correlation matrix, and ∑P jμ ∈ C(k) μ j
ndP jμ

nd is the sample cross-correlation vector. The 

flowchart of the proposed RATP method is illustrated in figure 1. There are two stages in the 

proposed RATP method. The first stage is to derive the texture information from the NdCT 

image. The con-patches, which will be detailed in the following section, are extracted from 

the NdCT image firstly, and then they are divided into different clusters. The coefficients for 

each cluster can be derived based on equation (5). The second stage is to apply the derived 

information to LdCT image reconstruction. The con-patches from the LdCT image are 

divided into different clusters in the same way, and the pre-learned coefficients are chosen as 

a priori knowledge for the patches in each cluster. Based on the cluster results and the 

derived coefficients, the LdCT image can be reconstructed with equations (1) and (4). In 

figure 1, three typical structures are taken as examples and the corresponding coefficient sets 

are displayed by pseudo-color images. Figure 2 shows the Fourier transform of these three 

coefficient sets by setting the central coefficient to 1. It can be seen that they exhibit spectral 

patterns corresponding to different image structures. For the patches with similar structures, 
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the corresponding coefficients represent the strong frequency component in them, and the 

frequency component in the reconstructed image will be emphasized by using these 

coefficients. Therefore, based on the coefficients pre-learned from NdCT image, the similar 

structures in LdCT image will be preserved.

2.3. Con-patch for clustering

To effectively learn the region-aware information from the previous NdCT images, the 

images should be first partitioned into different regions. In this paper, we cluster the patches 

into different clusters based on the Gaussian mixture model (GMM) model (Zoran and 

Weiss 2011, Zhang et al 2016b). It is noted that the structures in the image are various, and 

therefore the image should be partitioned into as many small regions as possible so that the 

extracted a priori information can adaptively characterize the local structures. One major 

advantage of this strategy is that it is much more robust than the segmentation strategy 

(Zhang et al 2016a), because it mitigates the mismatch of the segmented regions in the 

NdCT and LdCT images. For the patch-based methods, such as the image restoration, large 

patches can yield better restoration performance (Levin and Nadler 2011, Levin et al 2012), 

but as the patch size increases, it becomes impractical to find the properly matched patches 

in the image or the database. To solve this problem, the con-Patch method (Romano and 

Elad 2016) was proposed to integrate the context features into the patch, and it can benefit 

from the potential the large patches provide. In this work, to produce better cluster results, 

the con-Patch method is adopted and it is defined as follows:

P j
Conμ =

P jμ

λℋ P jμ
(6)

where ℋ P jμ  is the context features for patch Pjμ, and λ is a scalar to control the weights of 

the context features. The context features ℋ P jμ  quantify the correlation between the 

current patch and its surrounding patches, and they are obtained by dividing the similarity 

weights s jm m ∈ Ω j
 of the patches into a histogram of b-bins. The similarity weight s jm

between the two patches is calculated as follows:

s jm = exp −
P jμ − Pmμ 2

2h2 .

In this work, the bin number is set to 10. If the correlation between the current patch and its 

surroundings is high, the similarity weights will be concentrated in the bins with larger 

values, indicating that the current patch has many co-occurrences in its surroundings. The 

advantage of the con-patch is that it can encapsulate the information from the surroundings 

of the current patch and the size of the patch does not significantly increase (Romano and 

Elad 2016).
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Algorithm 1.

Algorithm for PWLS-RATP.

1: Require:

2:    β: Regularization parameter

3:    λ, h, b: Parameters for con-patch

4:    K: Cluster numbers

5:    p: Patch size

6: Initialization:

7:    μ = FBP y
8:    r = y − Aμ

9:    Calculate Σ

10:    d j = A j
TΣ−1A j, ∀ j

11:    Calculate wnd using equation (5)

12: for each iteration: do

13:    for each voxel j: do

14:        Choose the coefficients wk
nd

 for P jμ ∈ R(k)

15:        μ j
old: = μ j

16:        μ j
new: =

A j
TΣ−1r + d jμ j

old + β wk
nd TP jμ

d j + β∑wk
nd

17:        μ j: = max 0, μ j
new

18:        r: = r + A j μ j
old − μ j

19:   end for

20:    Update Σ

21:    d j: = A j
TΣ−1A j, ∀ j

22: end for

2.4. Implementation of PWLS with RATP prior

In our implementation, the previous NdCT image is reconstructed by the FBP method with 

ramp filter, and then texture information is learned adaptively from the clustered patches 

with similar structures from the NdCT image. A Gauss–Seidel based strategy (Sauer and 

Bouman 1993, Fessler 1994, Wang et al 2006) is used to optimize the cost function in 

equation (1) which is summarized in algorithm 1. The patch size in this study is set to 7 × 7. 

Compared to the 3 × 3 patch size, more information can be derived from the NdCT image by 

increasing the patch size. However, for the larger patch size, the extra coefficients are close 

to zero and have nearly no impact in the experiments. Therefore, the 7 × 7 patch size is 

adequate in this study. To derive the context features for con-patch, the size of the searching 

window is set to 17 × 17. Then, we classify the derived con-patches by GMM, and other 
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advanced cluster methods can also be used (Su and Chou 2001, Veenman et al 2002, 

Rodriguez and Laio 2014).

In this study, two quantitative metrics, root mean squared error (RMSE) and universal 

quality index (UQI) (Zhou and Bovik 2002), were employed to find the optimal β value. 

Specifically, the optimal β is determined by lowest RMSE and highest UQI measurements. 

Figure 3(a) shows these two quantitative measurements with different β on patient data. 

Figure 3(b) plots convergence curve of the cost function in equation (1) with respect to the 

iteration number. The curve shows that the cost function value decreases monotonically, and 

after 30 iterations, the value decreases little with further iteration. The result demonstrates 

that the proposed method can conv erge to a stable solution. In our studies, the 

reconstruction process is stopped after 30 iterations.

2.5. Comparison methods

To evaluate the performance of the proposed PATP method, the FBP method using ramp 

filter and the PWLS methods with different regularization, including Gaussian 

regularization, Huber regularization and the texture preserving (TP) regularization (Zhang et 
al 2016a), and these PWLS methods are termed as ‘Gaussian’, ‘Huber’ and ‘TP’ in the 

following experiment. In Gaussian regularization, wjm in equation (3) usually takes the 

distance information of the neighbors into account and it can be written as follows:

1
4 + 2 2

1
2 1 1

2
1 0 1
1
2 1 1

2

.

The potential function for Huber regularization is defined as follows:

φ(t) =
t2 t ⩽ θ

2θ t − θ2 t > θ

where θ is a threshold. The TP regularization can be approximately viewed as a special case 

of the RATP regularization by setting K = 4, which segments the image into four regions.

3. Experiments and results

In this work, the datasets from ‘2016 Low-dose CT Grand Challenge3’ were used to evaluate 

the performance of the proposed RATP method. The normal-dose CT data were acquired 

with 120 kilovolts peak (kVp) and 200 effective milliampere second (mAs). In addition, the 

corresponding CT data with 1/4, 1/8 and 1/16 dose were generated by adding noise to the 

normal-dose projection data according to the simulation method (Zeng et al 2015). The CT 

data with 1/8 and 1/16 dose are considered as ultra low-dose cases. In the experiments, the a 
priori information was extracted from the NdCT images reconstructed by the FBP method.

3www.aapm.org/GrandChallenge/LowDoseCT
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3.1. Selection of the parameter K

The parameter K determines the number of the regions extracted from the image. Generally, 

increasing the K can yield better reconstruction results. In this study, because the similar 

anatomy structures between the LdCT and corresponding NdCT images exist, a large K is 

not necessary in practice. Here, we evaluated the reconstruction performance with different 

K value and chose an appropriate K for the LdCT reconstruction. Figure 4(a) depicts the 

RMSE measurements of the quarter-dose reconstructions by the proposed RATP method 

with different K value. In the results, the proposed RATP method can produce smaller 

RMSE value with increased K value. The main reason is that the RATP method can use the 

information in NdCT images more effectively with increased K. With the observation, the K 
is set to 54 as default value in the following experiments. In this paper, the experiments were 

conducted on a PC with i7 3.5GHz CPU, 64Gb RAM and MATLAB 2015b compiler. In the 

stage to derive the coefficients from the NdCT image, the computational cost increased from 

40 s to 190 s as the cluster number increased from 6 to 54. And in the reconstruction stage, 

since the cluster operation was pre-completed before the reconstruction, the correlation 

between the computational cost and the cluster numbers was not significant.

3.2. Texture information from different slices

To validate the robustness and adaptability of the proposed RATP method, two strategies can 

be used to extract texture information from the NdCT images. The first one is to extract 

texture information from the corresponding NdCT image (#3), and the other one is to extract 

texture information from the nearby slices (#1, #2, #4 and #5) of the corresponding NdCT 

image (#3). In this experiment, five selected neighbor slices (#1, #2, #3, #4, #5) of the same 

patient are used for the LdCT image reconstruction respectively and figure 5 shows the 

corresponding reconstruction results of slice #3 with NdCT images from the different slices 

(#1–#5) with the proposed RAPT method. Here, RATP#1 denotes that the texture 

information is extracted from the slice #1, and the same for the others. And RATP#1–5 

denotes that the texture information is extracted from all the normal-dose slices in the 

proposed RATP method. It can be observed that the reconstruction results with texture 

information for the nearby slices (RATP#1, RATP#2, RATP#4 and RATP#5) and all the 

slices (RATP#1–5) are similar to the result from the corresponding NdCT image (RATP#3) 

in visual inspection by the proposed RATP method.#

In figure 6, the proposed RATP method is further evaluated by using the texture information 

derived from the slices that are similar to the current slice but of different patients’ normal-

dose scan. Figure 6(a) shows the FBP reconstruction of the normal-dose slice from another 

patient. It can be observed that there is a mismatch between this image and the NdCT 

images in figures 4 and 5. Besides, the details indicated by red arrows in figure 6(a) do not 

exist in the other two images. Figures 6(c)–(e) are the quarter-dose images reconstructed by 

the proposed RATP method with the texture information from the NdCT images in figures 4, 

5, and corresponding NdCT image, respectively. As shown, the proposed RATP method 

provides similar results by using the texture information from different patients in visual 

inspection. The RMSE values of the images in figure 6 are 17.77, 15.16, 15.11 and 15.06, 

respectively. It can be found that although the figures 6(c) and (d) are reconstructed by using 

the texture information from different patients, the corresponding RMSE values are close to 
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the result by using the texture information form the same patient. The main reason is that for 

the proposed RATP method, the patch-based strategy mitigates the mismatch between 

different images, and if the structures are not perfectly matched in the images, the texture 

information from the similar structures will be adopted instead. Additionally, the data 

fidelity term in equation (1) also plays a positive and important role in the reconstruction. 

These two experiments demonstrate the robustness and adaptability of the proposed method 

and in this work, the texture information from the corresponding NdCT image is used for the 

RATP method unless explicitly stated.

3.3. Comparison results

Figure 7 shows the normal-dose and quarter-dose images reconstructed by the different 

methods. The normal-dose FBP reconstruction result is served as the reference for 

comparison. In the quarter-dose case, all the PWLS methods significantly suppress noise-

induced artifacts in the reconstructed images, wherein the FBP result contain severe noise-

induced artifacts. Moreover, the Gaussian method yields a strong isotropic smooth effect and 

both the edges and structures are smoothed equally without discrimination as indicated by 

the red arrows in figure 7. The Huber method can well preserve the details with larger 

intensity change, but the subtle details in flat region are somewhat smoothed inevitably. 

Moreover, both the TP and proposed RATP are superior to those two generic MRF priors in 

terms of edges and structures preservation. In figure 7, the magnified local regions indicated 

by the orange boxes are the Post op/Post RFA defect, which contains detailed and abundant 

anatomical features, and were selected to demonstrate image quality improvement. By visual 

inspection, we can see that the proposed RATP method can obtain better structures than the 

other three methods, indicating the benefits of the incorporating region-aware learning 

strategy. Figure 8 depicts the horizontal profiles indicated by the red line in figure 7. In the 

profile comparison results, the noise in the proposed RATP method is much lower than that 

in the other three methods. The boundary of the proposed RATP result is sharper and more 

accurate than that from other three methods. The results demonstrate that the proposed 

RATP method can achieve more noticeable gains than the other competing methods in 

preserving the edges and details as compared with the reference one, and this is consistent 

with the visual observation in figure 7. Figure 9 shows the residuals between the normal-

dose image and the reconstructed low-dose images reconstructed by the SIR methods. It can 

be observed that the proposed RATP method can better suppress noise-induced artifacts than 

other methods with fewer details loss.

To quantitatively demonstrate the benefits of the proposed RATP method, the five selected 

ROIs in figure 7 are evaluated with the RMSE and UQI. The RMSE characterizes the 

reconstruction accuracy and the UQI measures the similarity between the reconstructed 

images and the reference image. The lower RMSE and the higher UQI indicates that the the 

better image quality is obtained. Figure 10 shows the corresponding RMSE and UQI 

measurements, and it shows that the proposed RATP method producing the best RMSE and 

UQI values in all the cases. This indicates that the proposed RATP methods can reconstruct 

accurate CT image with efficient noise-induced artifacts reduction. In addition, the haralick 

texture features (Haralick et al 1973), were extracted from the five selected ROIs in figure 7. 

Then, the Euclidean distances between the features of the normal-dose image and the 
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reconstructed quarter-dose images were computed, and this can be viewed as a quantitative 

index in texture analysis where a shorter distance indicates better texture preservation 

performance. The haralick measurements for the proposed RATP method fall by about 62%, 

50%, 32% and 13% compared to the results from the FBP, Gaussian, Huber and TP 

methods, respectively. The distance results listed in table 1 illustrate that the proposed RATP 

method obtains strong texture preservation capability than the other competing methods in 

all cases.

Figure 11 shows the selective coronal and sagittal slices of the reconstructed images from 

another patient. The yellow ROI in the image indicates a hemangioma in the liver. As seen in 

the results, the lesions from the proposed RATP method have the sharper anatomical 

structures with less noise-induced artifacts, indicating that the proposed RATP method is 

capable of improving the resolution to match the normal-dose one.

3.4. Ultra low-dose study

Figure 12 shows the images reconstructed by different methods from the 1/8 and 1/16 dose 

data. The proposed RATP method can yield better results in terms of the noise-induced 

artifacts reduction and edge preservation by visual inspection. In order to qualitatively 

evaluate reconstruction performance in a clinically realistic context, three experienced 

physicians were invited to score the images in terms of noise reduction and detail/texture 

preservation. The score ranges from 0 (worst) to 10 (best). Table 2 summarizes the 

physicians’ scores on the reconstructed image quality under the three different dose levels. 

The proposed RATP method clearly yields the highest scores, indicating that the RATP 

method outperformed other methods from the physicians’ point of view. The main reason is 

that the RATP method can learn more texture-specific information from the NdCT images.

4. Discussion and conclusion

In this paper, we incorporated a region-aware texture preserving (RATP) regularization into 

the PWLS reconstruction framework for LdCT, and the method is evaluated in multiple 

patient data experiments. CT has been widely used for both diagnostic and therapeutic 

procedures. In the repeated CT scans, the NdCT images share similar anatomical structures 

with the sequential LdCT images while the NdCT images have lower noise level and more 

abundant structures. And the abundant prior information can further promote CT 

reconstruction performance i.e. prior image induced CT reconstruction (Chen et al 2012, 

Stayman et al 2013, Zhang et al 2014b, Zhang et al 2016a), and deep learning CT 

reconstruction (Chen et al 2017, Wu et al 2017, He et al 2018, Würfl et al 2018). In the 

work, the RATP method adaptively learns the abundant information from the clustered 

patches with similar patterns in the previous NdCT images and adopts the a priori 
information for the LdCT reconstruction. Compared with the generic MRF priors, i.e. 

Gaussian and Huber, the proposed RATP method can adaptively characterize the local 

structures and textures of the desired image. Compared with the TP method, the proposed 

RATP method is much more robust and adaptive for the local structures discrimination 

because more useful information can be derived from the NdCT image and the image 

segmentation operation is not needed. Compared with the Gaussian mixture MRF method 
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(Zhang et al 2016b), the proposed RATP method provides a more direct way to derive the 

priors for the desired LdCT image. The idea of using the pre-learned knowledge from the 

clustered NdCT image patches for LdCT image reconstruction was also adopted in PWLS 

reconstruction with a union of learned transform (PWLS-ULTRA) (Zheng et al 2018). Based 

on the pre-learned sparsifying transforms from NdCT image patches, the PWLS-ULTRA 

exploits the regularization in the transform domain. Compared to the PWLS-ULTRA 

method, the proposed RATP method derives the MRF coefficients from the clustered NdCT 

image patches directly, and it has been demonstrated as a simple and effective way to 

incorporate the a priori knowledge from the NdCT image into the LdCT image 

reconstruction. Additionally, the con-patch method is adopted for clustering in this study and 

it efficiently integrates the features from the surroundings of the current patch and can yield 

better matches for the similar patches, which is another contribution of this work.

There are several limitations to this preliminary study. First, the optimal parameters in the 

proposed RATP method were determined empirically. It is known that proper parameter 

selection in all SIR methods is a crucial task to achieve superior image quality. Generally, 

this should be done by using some adaptive optimization schemes that sweep all the 

parameter combinations to find the optimal one. Therefore, some automatic/adaptive 

parameter selection strategies, i.e. deep learning-based method (Shen et al 2018), task-driven 

method (Gang et al 2017), can be investigated in the future study. Second, in this work, the 

con-patch method is used to improve the patch cluster performance. The context features are 

derived based on the similarity weights of the patch and its surrounding patches by 

measuring the Euclidean distance between them. It should be noted Euclidean distance is 

one option to quantify the similarity between the patches. And some other meaningful 

feature descriptors, i.e. Histogram of Oriented Gradient (HOG) (Freeman 1995, Dalal and 

Triggs 2005) or Local Binary Pattern (LBP) (Ojala and Harwood 1996), can be adopted to 

quantify the similarity of the patches. The investigation of conpatch method based on these 

different feature descriptors will be a future topic. Third, the Gaussian mixture model 

(GMM) was directly used for patch cluster in this study and the comparison of the different 

cluster methods was not conducted explicitly. How to choose an appropriate cluster method 

should be discussed in the future study. Fourth, the interactions between the system models 

and the regularization were not taken into account in this study, which may lead to spatially 

variant spatial resolution in the reconstructed images. This problem could be solved by 

adjusting the regularization strength with a scaling factor at each voxel (Cho and Fessler 

2015). And the performance of the proposed method will be further improved if such 

strategy is employed, which will be the subject of future work. Fifth, in this paper, the slices 

with the similar structures were selected to provide the texture information for the current 

LdCT image reconstruction. If the selected slices are not similar to the current one with 

totally different anatomical structures, the derived texture information could not exactly 

reflect the characteristics in the desired image and some structures would be compromised 

because of the texture divergence. Therefore, how to automatically retrieve a similar NdCT 

image from the huge existing images would be an interesting topic in the future study. Last, 

the datasets used in the experiment were produced by retrospective low-dose simulation. 

Although the proposed RATP method presents a great potential in LdCT reconstruction, 

more patients data in practical scenarios should be enrolled in the future study.
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In summary, this work demonstrates the potential of the proposed RATP method for LdCT 

image reconstruction. The proposed RATP method is able to learn region-specific texture 

information from the available prior NdCT image while needs no registration and 

segmentation operations in the reconstruction procedure. This is a big advantage over 

conventional prior image induced LdCT reconstruction methods. While this work focused 

on the LdCT image reconstruction, the proposed RATP method may also be applied in other 

CT imaging tasks, such as spectral CT (Zhang et al 2017b), perfusion CT (Zeng et al 2016b, 

2016d, Gu et al 2018) and digital breast tomosynthesis (DBT) (Zheng et al 2018b).
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Figure 1. 
Flowchart of the proposed RATP method.
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Figure 2. 
Fourier transform of the three coefficient sets in figure 1 with the central coefficient setting 

to 1. (a)-(c) are corresponding to the regions indicated by red, greed, blue rectangular boxes, 

respectively.
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Figure 3. 
(a) RMSE and UQI measurements of the proposed PWLS-RATP method with different 

hyper-parameter β; (b) Cost function values of the proposed PWLS-RATP method with 

different iterations.
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Figure 4. 
Evaluation of the cluster number K. (a) The RMSE of the quarter-dose reconstructions by 

the proposed RATP method with different K. (b) The NdCT image reconstructed by FBP 

method; (c) and (d) the quarter-dose image reconstructed by the FBP method and the 

proposed RATP method with K = 54, respectively. All the images are displayed in the same 

window: [ —160 240] HU.
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Figure 5. 
The normal-dose and quarter-dose images reconstructed by the FBP method and the 

proposed RATP method with the texture information learned from different slices. All the 

images are displayed in the same window: [ —160 240] HU.
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Figure 6. 
Evaluation of the RATP method with the texture information from different patients. (a) The 

normal-dose image reconstructed by the FBP method; (b) the quarter-dose image 

reconstructed by the FBP method; (c)-(e) the images reconstructed by the proposed RATP 

method. The texture information used in (c) and (d) are from two different patients, and the 

texture information used in (e) is from the same patient. All the images are displayed in the 

same window: [ — 160 240] HU.
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Figure 7. 
The normal-dose and quarter-dose images reconstructed by the different methods. All the 

images are displayed in the same window: [ —160 240] HU. The magnified local regions 

are the Post op/Post RFA defect indicated by the orange boxes.
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Figure 8. 
Comparisons of the horizontal profiles between the normal-dose image and the low-dose 

images from the different methods.
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Figure 9. 
Residuals between the normal-dose image and the quarter-dose images reconstructed by (a) 

Gaussian, (b) Huber, (c) TP and (d) proposed RATP method, respectively. All the images are 

displayed in the same window.
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Figure 10. 
RMSE and UQI measurements of the selected ROIs in figure 7.
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Figure 11. 
The selective coronal and sagittal slices of the reconstructed images from the different 

methods. All the images are displayed in the same window: [ —160 240] HU. The yellow 

circles indicate the hemangioma.
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Figure 12. 
The images reconstructed by different methods at different dose levels. All the images are 

displayed in the same window: [−160 240] HU.
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Algorithm 1.

Algorithm for PWLS-RATP.

1: Require:

2:    β: Regularization parameter

3:    λ, h, b: Parameters for con-patch

4:    K: Cluster numbers

5:    p: Patch size

6: Initialization:

7:    μ = FBP y
8:    r = y − Aμ

9:    Calculate Σ

10:    d j = A j
TΣ−1A j, ∀ j

11:    Calculate wnd using equation (5)

12: for each iteration: do

13:    for each voxel j: do

14:        Choose the coefficients wk
nd

 for P jμ ∈ R(k)

15:        μ j
old: = μ j

16:        μ j
new: =

A j
TΣ−1r + d jμ j

old + β wk
nd TP jμ

d j + β∑wk
nd

17:        μ j: = max 0, μ j
new

18:        r: = r + A j μ j
old − μ j

19:   end for

20:    Update Σ

21:    d j: = A j
TΣ−1A j, ∀ j

22: end for
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Table 1.

Haralick texture measurements of the five selected ROIs in figure 7 from different methods.

FBP Gaussian Huber TP RATP

ROI 1 1.5774 1.4405 0.9283 0.7193 0.6702

ROI 2 0.3331 0.2581 0.2420 0.2118 0.1632

ROI 3 0.1766 0.1525 0.1399 0.1102 0.0953

ROI 4 0.7063 0.3383 0.3105 0.1961 0.1436

ROI 5 0.3962 0.2346 0.1820 0.1609 0.1376
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Table 2.

Physicians’ scoring of the reconstructed image quality in figure 12 by the different reconstruction methods.

Dose Physician FBP Gaussian Huber TP RATP

1/8 #1 5 6 5 7 8

#2 5 6 6 8 9

#3 4 6 5 8 9

Average 4.67 6 5.33 7.67 8.67

1/16 #1 2 4 3 5 6

#2 2 4 3 4 5

#3 2 3 4 4 5

Average 2 3.67 3.33 4.33 5.67
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