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Summary

To navigate through the world, animals must stabilize their path against disturbances and change 

direction to avoid obstacles and to search for resources [1,2]. Locomotion is thus guided by 

sensory cues, but also depends on intrinsic processes, such as motivation and physiological state. 

Flies, for example, turn with the direction of large-field rotatory motion, an optomotor reflex that 

is thought to help them fly straight [3-5]. Occasionally, however, they execute fast turns, called 

body saccades, either spontaneously or in response to patterns of visual motion such as expansion 

[6-8]. These turns can be measured in tethered flying Drosophila [3,4,9], which facilitates the 

study of underlying neural mechanisms. Whereas there is evidence for an efference copy input to 

visual interneurons during saccades [10], the circuits that control spontaneous and visually elicited 

saccades are not well known. Using 2-photon calcium imaging and electrophysiological 

recordings in tethered flying Drosophila, we have identified a descending neuron whose activity is 

correlated with both spontaneous and visually elicited turns during tethered flight. The cell's 

activity in open- and closed-loop experiments suggests that it does not underlie slower 

compensatory responses to horizontal motion, but rather controls rapid changes in flight path. The 

activity of this neuron can explain some of the behavioral variability observed in response to visual 

motion and appears sufficient for eliciting turns when artificially activated. This work provides an 

entry point into studying the circuits underlying the control of rapid steering maneuvers in the fly 

brain.
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Results

To find neurons involved in steering behavior, we measured activity of descending neurons 

that convey signals from the brain to the ventral nerve cord in tethered flying Drosophila 
melanogaster. The Gal4-line R56G08 targets four to five pairs of descending interneurons 

that terminate in the ventral nerve cord (VNC) as well as ascending haltere afferents [11] 

and an assortment of others cells throughout the brain (Fig. 1A, Movie 1). We performed 2-

photon calcium imaging from this line using the genetically encoded indicator GCaMP6f 

[12] while simultaneously monitoring the difference in wing stroke amplitude between the 

left and right wing (L-R WSA) (Fig. 1B), a measure for intended steering maneuvers. When 

we imaged from the presumed dendritic region of one of the labeled descending neurons 

within the posterior slope, we observed that the cell in the right hemisphere exhibited 

spontaneous activity that was strongly correlated with increases in L-R WSA corresponding 

to rightward turns (Fig. 1C). We never observed increases in fluorescence within the imaged 

area when the animal was not flying. Although the driver line labeled other cells in the brain, 

we were able to specify a region of interest in which a fine process of the cell was well 

isolated from other neurons (Fig.1A, inset). Because the morphology of the cell suggests 

that it is an unidentified member of a family of similar descending neurons (A1 through A5) 

with anterior cell bodies recently described by Shigehiro Namiki at the Janelia Research 

Campus (pers. com.), we tentatively label it AX until a more permanent nomenclature is 

established.

Recordings from AX in the absence of any applied visual stimulus indicated that it was 

correlated with spontaneous turns. To test whether its activity also correlated with visually 

elicited turns, we subjected flies to a set of moving visual patterns, including looming 

stimuli that are effective in eliciting rapid evasive turns [14]. When we presented flies with a 

sequence of dark looming objects from either the left or right, we found that whenever a 

looming stimulus elicited a turn to the right (i.e. when L-R WSA increased), the right AX 

cell was transiently active (Fig. 1D, E). Note that the traces show many instances in which 

the AX cell was briefly active, when no stimulus was presented, and in all of these cases the 

fly exhibited a turn to the right (Fig. 1F). We observed much variability in the magnitude of 

the rightward turns, which correlated with the size of the AX response (Fig. 1G). We also 

recorded failures – i.e. cases in which a loom from the left did not elicit a rightward turn, but 

in these cases we did not observe a response in AX, suggesting that the cell is better 

classified as pre-motor than sensory. The failures most often occurred when the fly was – for 

whatever reason – executing a series of rapid turns to the left. We never observed rapid turns 

to the right that were not accompanied by transient rises in fluorescence in the right AX. All 

these results suggest that AX plays an important role in the pathway responsible for both 

visually elicited and spontaneous turns.

We did not observe any consistent changes in the average GCaMP6f response to other visual 

stimuli we presented including rightward motion, which evokes the well-characterized 

optomotor response [3,13]. We did, however, observe substantial trial-by-trial variability in 

the behavioral as well as the neuronal responses to rightward motion. In most trials, we 

recorded no changes in the activity of AX during stimulus presentation; however, the trials 

in which the cell was active tended to be those in which the animal exhibited a particularly 
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large motor response (Fig. S1). To explore this trend in more detail, we divided all trials into 

10 equally spaced bins based on the magnitude of the wing motor responses after baseline 

subtraction. Only during the strongest turns in the direction of visual motion did we observe 

an increase in fluorescence (Fig. 2A). In some trials, flies responded to the visual stimulus 

with a ‘contrary’ turn, i.e. opposite to the direction of visual motion. Whenever the fly 

exhibited a contrary turn, we observed a decrease in fluorescence, suggesting that the cell 

receives inhibitory input at this time. We speculated that the contralateral AX cell was active 

during these events. To test this idea, we analyzed activity from the neuron during motion in 

the opposite direction (i.e. to the left) in the same way (Fig. 2A) and found that the cell on 

the right side of the brain was indeed active during contrary turns, which in the case of 

leftward motion stimuli are turns to the right. We also observed a decrease in fluorescence 

during particularly strong leftward optomotor responses – when the neuron's contralateral 

partner was presumably active – further suggesting that when one cell is active the 

contralateral cell is inhibited. In summary, the AX is usually unresponsive to horizontal 

motion, but when it does respond, its activity is correlated with a large syndirectional turn. 

When the visual stimulus is towards the ipsilateral side, the changes in L-R WSA are quite 

large, presumably because the cell's output sums with the output of the optomotor pathway. 

When active during visual motion toward the contralateral side, the cell's output largely 

cancels the optomotor response, which results in small changes in L-R WSA (Fig. 2B). The 

activity of AX can thus partially explain the behavioral variability in responses to horizontal 

motion.

The previous experiments suggest that AX mediates deviations from the flight path that are 

superimposed on the continuous output of the optomotor system. To test this hypothesis 

further, we created a situation in which the fly had to compensate for a constant visual drift 

by performing closed-loop experiments in the presence of a steady rotational bias. Flies 

readily compensate for a rotational bias to either the left or right by shifting the mean level 

of L-R WSA (Fig. 2C). This shift is not, however, accompanied by tonic changes in the 

fluorescence signal from AX. Rather, the cell's activity is correlated with transient steering 

maneuvers superimposed on the new baseline, leading to a shift in the relationship between 

L-R WSA and fluorescence (Fig. 2D). These results suggest that the pathway that mediates 

slower optomotor responses and the pathway that mediates spontaneous turns - represented 

by AX – are parallel and converge linearly on the steering motor system.

As calcium imaging did not allow us to clearly identify the anatomy of the cell and is limited 

by the slow time constants of the indicator, we attempted whole-cell patch-clamp recordings 

from the cell bodies of AX. Due to the deep location of the cell body, these were very 

difficult recordings to achieve in flying animals, but we did successfully record from GFP-

labeled descending neurons in eight flies. Three of the recorded cells exhibited a correlation 

between changes in L-R WSA and membrane potential during flight and thus most likely 

represent AX. We did not detect action potentials in any of our recordings from this cell and 

suspect that it conducts information to the VNC via graded potentials. Although action 

potentials are likely to be heavily filtered in recordings from the cell body, we were able to 

clearly detect spikes in recordings from a nearby descending neuron with very similar 

anatomy (not shown).
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An example recording of AX performed under closed-loop conditions, in which the L-R 

WSA signal controlled the horizontal velocity of a vertical grating, is shown in Fig. 3A. The 

cross-correlation between the two signals (Fig. 3B) as well as the average traces during large 

increases in L-R WSA (Fig. 3C) indicate that changes in membrane potential clearly precede 

changes in steering responses. The delay of about 130 ms obtained from the cross-

correlation appears long for a premotor neuron, but is within the range of the measured 

delays in the optomotor response, for which values of up to 220 ms have been reported [15]. 

These data also suggest that the offset of neuronal activity does not strictly determine the 

end of a turn, which is likely regulated by other processes, such as sensory feedback from 

the wings or halteres. We filled the cell with Biocytin during recording and reconstructed its 

anatomy from a confocal image stack (Fig. 3D, Movie 2, Movie 3), confirming that it was a 

GFP-positive descending neuron with arborizations in the posterior slope that descends 

ipsilaterally and terminates dorsally within the wing neuropil of the VNC. Although we 

acknowledge the anecdotal nature of our whole-cell flight recordings, the results are entirely 

consistent with our imaging data; AX is descending neuron that appears to be involved in the 

generation of rapid turns.

Next, we wanted to test for sufficiency of the AX to elicit behavioral changes during flight. 

As in two previous studies of descending neurons [16,17], we found that depolarizing the 

cell by current injection was not feasible due to the long thin neurite connecting the soma 

and dendrite. Instead, we co-expressed GFP and P2X2, an ATP-gated ion channel, using 

R56G08 [16,18]. By pressure-injecting ATP locally using a micropipette positioned close to 

the dendrite of AX, we could reliably elicit changes in L-R WSA (Fig. 4A). Control flies 

that either did not express P2X2 or were injected with saline lacking ATP showed no reaction 

to the pulses. Even though the dendrites of the cell reside near the midline, we were able to 

elicit left or right turns depending upon which hemisphere we injected. The turning reactions 

involved changes in the motion of both wings, indicating that the cell – which does not cross 

the midline in the VNC - elicits bilaterally coordinated motor actions (Fig. 4B). Although 

the Gal4-line is not specific for AX, we believe it is most parsimonious to suspect that its 

activation is responsible for the elicited behavioral response because it is the only cell in our 

imaging experiments that exhibited a correlation with changes in wing motion.

To explore the potential interaction between AX and the optomotor pathways, we combined 

presentation of a large-field leftward motion with ATP injection in P2X2-expressing flies in 

the right hemisphere. The rationale for combining two manipulations that should result in 

turns of opposite sign was to avoid saturation of the behavioral response. As controls, we 

only presented visual motion or only injected ATP within the same flies, which both led to 

strong changes in L-R WSA of the opposite sign. When we injected ATP during the 

presentation of motion, we observed a turning response that was almost identical to the sum 

of the response to either motion or ATP injection alone (Fig. 4C), which is also apparent 

when looking at individual traces (not shown). This result is further evidence that the 

optomotor pathway and the AX interact linearly.
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Discussion

We have discovered a descending neuron in Drosophila, whose activity is strongly correlated 

with both spontaneous and visually elicited turns that likely represent the body saccades 

during free flight. Whereas the cell did respond robustly to looming stimuli and sporadically 

to large-field motion, it also often exhibited spontaneous events that were correlated with 

motor responses, but occurred in the absence of any externally applied stimuli. Altogether, 

our results support the existence of at least two descending pathways for controlling flight 

direction (Fig. 4D). Via its input from the wide-field system, the optomotor pathway is 

responsible for trimming the flight motor in response to internal or external perturbations. 

The pathway mediated by the AX mediates rapid flight responses elicited by loom, but also 

generates spontaneous turns in the absence of visual input. Our data are consistent with a 

simple summation of the signals of the optomotor and the AX pathway. A recent study of 

the steering motor system indicates that direct flight muscles are divided into two groups: 

tonic muscles that are responsible for maintaining the trim of the flight motor and phasic 

muscles that are primarily recruited during the largest spontaneous turns [19]. We thus 

predict that the AX neuron makes particularly strong connections with phasic muscle motor 

neurons. In addition, we propose that the two AX neurons mutually inhibit each other, albeit 

in an indirect fashion, because the cells do not cross the midline

A prior statistical analyses of free flight behavior within an enclosed chamber found that 

while most body saccades exhibited by flies are triggered by visual cues such as expansion, 

flies also exhibit spontaneous saccades at a rate of ∼0.5 Hz [20]. However, as the exact 

percentage of saccades driven by sensory stimuli versus intrinsic processes likely depends 

on the precise structure of the environment, it is hard to compare these prior results with data 

from tethered conditions. The spontaneous behavioral events correlated with AX activity 

were somewhat longer than the intended maneuvers that had been described previously and 

that are thought to represent body saccades [6,10,14]. It is therefore possible that the events 

represent an unknown class of slower turns, although it is more likely that they represent 

saccades that are artificially long due to the head-fixed preparation required for imaging.

Recent studies reported evidence for an efference copy of flight saccades that influences the 

membrane potential of motion-responsive visual interneurons in the lobula plate [10,22], an 

effect that might explain why flies do not react with an optomotor response to the reafferent 

visual motion caused by their spontaneous turns. It remains to be shown whether activity of 

AX is correlated with similar events in visual interneurons or if it is involved in the pathway 

that provides the efference copy.

Recently, three descending cells, each sensitive to a different axis of rotational visual motion 

have been characterized in Drosophila [17], two of which appear to be homologs of 

descending neurons described in larger flies [23-28]. Aside from these cells, little is known 

of the roughly 1100 cells descending from the brain to the VNC [30]. Two noteworthy 

exceptions are the so-called “moonwalker neuron”, which elicits backward walking [31] and 

the giant fiber neuron, which triggers evasive take-offs [16]. Given the number of 

descending interneurons it is striking that activation of a single cell (or a small group of 

cells) is sufficient to elicit large turns, which suggests that some descending cells might act 
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as command-like neurons [32]. Although in our experiments we never saw examples of 

spontaneous turns that were not correlated with the activity of AX, it is still possible that 

there are other neurons that can elicit similar motor actions.

Premotor neurons that are responsible for turns during search behavior have been described 

in worms [33,34] and moths [35], suggesting that similar neural architecture might underlie 

steering maneuvers across species. Here, we describe a previously unknown descending 

neuron that controls both spontaneous and visually elicited rapid turns in Drosophila. We 

expect that the further study of AX and its input pathways will uncover the neural circuits in 

the fly brain that underlie the control of spontaneous turning behavior and could reveal 

general principles governing course control.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Descending neuron activity correlates with spontaneous and looming-elicited changes 
in L-R WSA
(A) Maximum intensity projection of mCDGFP and stingerRed expression in the whole 

brain driven by R56G08-Gal4. A 261μm z-stack was taken with the 2-photon microscope 

(scale bar: 50μm). The approximate imaging area is depicted with a white box. An example 

image (maximum intensity projection of the tdTomato-signal of one experimental trial) with 

the region of interest highlighted in yellow is shown as inset. See also Movie S1. (B) Image 

of a fly taken from below illustrating the measurement of left (L) and right (R) wing stroke 

amplitude (WSA). (C) Representative traces of spontaneous changes in L-R WSA (L-R) and 

GCaMP6f fluorescence in AX (ΔF/F) from 2 (out of 19) recorded flies in the absence of 

visual stimulation. (D) Two example traces of changes in L-R and ΔF/F in AX during 

presentation of looming stimuli presented either left (blue) or right (brown). Several 

spontaneous saccades (black arrows) occur in between looming stimuli. (E) Top panel: 

Baseline-subtracted mean L-R (thick line), boot-strapped 95% CI for the mean of fly means 

(shaded area), and individual responses (thin lines) to looming stimuli on the left (blue line). 

Bottom panel: Same as top panel, but baseline-averaged ΔF/F instead of baseline-subtracted 

traces. N=13. (F) Same as E, with L-R and ΔF/F for spontaneous saccades. (G) For pooled 

responses to looming stimuli (E) and spontaneous saccades (F), a total least squares 

regression of fly sample version z-scores (purple line) explained 66.1 % of the variance 

between peak responses in ΔF/F and L-R (N=13).
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Figure 2. AX activity is linked to deviations from a straight flight path
(A) Mean baseline-subtracted changes in L-R WSA and ΔF/F in response to a horizontally 

moving grating grouped into 10 equally spaced bins based on the magnitude of the 

behavioral response. Corresponding trials are colored the same. N=9 flies, n=57/65 trials. 

See also Figure S1. (B) Mean +/- 1 s.e.m. changes in ΔF/F during stimulus presentation 

plotted against simultaneous changes in L-R for all bins from A. (C) Example traces of 

simultaneously recorded changes in L-R and ΔF/F from the putative descending neuron 

during closed loop with a constant bias of left- or rightward motion (temporal frequency: 

1.56 Hz.) (D) Mean changes in ΔF/F plotted against L-R for a bias of rightward (black) or 

leftward (brown) motion. N=10 flies.
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Figure 3. Whole-cell recordings enable anatomical identification of AX
(A) Example traces of the simultaneously recorded L-R and membrane potential (MP) of the 

descending neuron during closed loop. The mean resting potential of the three cells recorded 

was -59 mV. The shaded area is expanded on the inset below. (B) Cross-correlation between 

the traces shown in A. (C) Averages of the large changes in MP that exceed twice the 

standard deviation (at time zero) and the concomitant changes in L-R from the traces in A. 

(D) Reconstruction of the biocytin-filled neuron in the brain (left) and ventral nerve cord 

(right) (maximum intensity projection). The background staining against NC82 is shown in 

blue. Scale bar: 50μm. See also Movie S2 and Movie S3.
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Figure 4. ATP-induced activation of P2X2-expressing neurons is sufficient to elicit changes in L-
R WSA
(A) Changes in L-R WSA upon stimulation with ATP/P2X2 driven by R56G08-Gal4 in 

either the right (N=11 flies) or left hemisphere (N=9) or of control flies (no ATP: N=14, no 

P2X2: N= 10). (B) Changes in WSA of the ipsi- and contralateral wing for all experimental 

flies from A. (C) ATP activation (dark gray) in the right hemisphere during stimulation with 

leftward motion (light gray). The sum of the responses to each manipulation alone is shown 

in white. Shaded areas represent s.e.m. (D) Qualitative model describing the experimental 

findings; C stands for the continuous optomotor pathway, S for the pathway mediating 

saccadic turns represented by AX. An inhibitory pathway connects the two AX cells. Input 

from the visual system drives AX albeit through a not yet characterized process represented 

by χ.
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