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Abstract

Growth and differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are 

oocyte-secreted factors with a leading role in the control of ovarian function in female 

reproduction, modulating both the cell fate of the somatic granulosa cells and the quality and 

developmental competence of the egg. This short review aims to consolidate the molecular aspects 

of GDF9 and BMP15 and their integral actions in female fertility to understand particularly their 

effects on oocyte quality and fetal growth. The significant consequences of mutations in the GDF9 
and BMP15 genes in women with dizygotic twins as well as the clinical relevance of these oocyte 

factors in the pathogenesis of primary ovarian insufficiency and polycystic ovary syndrome are 

also addressed.

1. INTRODUCTION

The bidirectional communications between the oocyte and GCs in the ovary consist in the 

exchange of nutrients and signals that influence the growth and differentiation of both 

somatic cells and the egg by a complex regulatory network of autocrine, juxtacrine, and 

paracrine factors (Eppig, 2001; Gilchrist, Ritter, & Armstrong, 2004; Matzuk, Burns, 

Viveiros, & Eppig, 2002). Earlier observations on the importance of this communication 

throughout folliculogenesis provided evidence of the regulatory and nourishing roles of GCs 

and cumulus cells (CCs) on the oocyte (Anderson & Albertini, 1976; Gilula, Epstein, & 

Beers, 1978; Goodenough, Simon, & Paul, 1999), while more recent studies led to the 

conclusion that the oocyte exerts a key role in influencing somatic cells’ proliferation, 

differentiation, and function through the production of soluble factors (Gilchrist, Lane, & 

Thompson, 2008). The oocyte is also able to influence its own developmental competence 

by inducing the production of positive regulatory factors in CCs that, in turn, act on it. For 

instance, factors produced by denuded oocytes, or exogenous recombinant GDF9 or BMP15, 

were able to increase the rates of blastocyst formation after in vitro maturation (IVM) and in 

vitro fertilization (IVF) of cumulus-oocyte complexes (COCs) (Dey et al., 2012; Gomez et 

al., 2012; Hussein, Sutton-McDowall, Gilchrist, & Thompson, 2011; Hussein, Thompson, & 

Gilchrist, 2006; Romaguera et al., 2010; Su, Hu, et al., 2014; Su, Wang, et al., 2014; 

Sudiman et al., 2014; Yeo, Gilchrist, Thompson, & Lane, 2008). Thus the oocyte, in addition 

to regulate the CC phenotype in its surrounding cells, can indirectly control and influence its 

own developmental competence.
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2. DISCOVERY OF GDF9 AND BMP15

GDF9 and BMP15 were first described in 1993 (McPherron & Lee, 1993) and 1998 (Dube 

et al., 1998; Laitinen et al., 1998), respectively, as novel members of the TGF-β superfamily 

and oocyte-specific factors in the mouse ovary (Dube et al., 1998; Laitinen et al., 1998; 

McGrath, Esquela, & Lee, 1995; McPherron & Lee, 1993). The mRNAs of both proteins are 

expressed in oocytes of the postnatal mouse ovary throughout folliculogenesis with a very 

low or no expression in oocytes of primordial follicles and a strong expression in oocytes at 

all stages of developing follicles (Laitinen et al., 1998; McGrath et al., 1995). GDF9 mRNA 

is also detectable in ovulated oocytes (McGrath et al., 1995), and indeed, its EST cDNA was 

originally identified from a mouse two-cell embryo library (Laitinen et al., 1998), although 

its expression is rapidly lost thereafter (McGrath et al., 1995). These findings excited and 

rekindled many researchers who have been studying over a long period the role of OSFs in 

folliculogenesis and ovulation. It is now well recognized that these factors play pivotal roles 

in the normal proliferation and differentiation of GCs and for the acquisition of 

developmental competence by the oocyte.

3. GDF9 AND BMP15 STRUCTURES

All TGF-β superfamily members including GDF9 and BMP15 are synthetized as large 

preproproteins composed of a signal peptide, a prodomain that directs their dimerization and 

a mature domain (Shimasaki, Moore, Otsuka, & Erickson, 2004). After removal of the signal 

peptide, the dimeric proproteins are cleaved by furin-like proteases, and the dimeric mature 

proteins are secreted (Al-Musawi, Walton, Heath, Simpson, & Harrison, 2013; Shimasaki et 

al., 2004; Simpson et al., 2012). GDF9 and BMP15 are the most homologous proteins in 

amino acid sequence, and a peculiarity of these proteins is that the fourth cysteine residue is 

substituted by a serine. The fourth cysteine is the only cysteine that is involved in the 

formation of intersubunit disulfide bond and present in all TGF-β superfamily members 

except not only GDF9 and BMP15 but also GDF3, lefty-1, and lefty-2 (McPherron & Lee, 

1993; Meno et al., 1997). Thus, a question was whether GDF9 and BMP15 proteins exist as 

monomers or noncovalently linked homodimers. They are now known to be noncovalently 

linked homodimers (Liao, Moore, Otsuka, & Shimasaki, 2003).

The proteolytic cleavage of the recombinant BMP15 and GDF9 proproteins expressed in 

vitro is not as efficient as expected, unless specific proteolytic enzymes are simultaneously 

overexpressed (Hayashi et al., 1999; Li, Rajanahally, Edson, & Matzuk, 2009; Liao et al., 

2003; Liao, Moore, & Shimasaki, 2004; McNatty et al., 2005a; Mottershead et al., 2008; 

Otsuka, Moore, & Shimasaki, 2001; Pulkki et al., 2012; Reader et al., 2011; Saito, Yano, 

Sharma, McMahon, & Shimasaki, 2008). Similarly, in monkey follicular fluid, a strong and 

a faint band of GDF9 proprotein and mature protein, respectively, was observed, while 

BMP15 proprotein but not mature protein was detected (Duffy, 2003). Proproteins and 

mature proteins were also detected in human (Requena, Cruz, Agudo, Pacheco, & Garcia-

Velasco, 2016; Wu et al., 2007) and dairy cow (Behrouzi, Colazo, & Ambrose, 2016) 

follicular fluid with different ratios. Thus, proproteins of GDF9 and BMP15 together with 

the respective mature proteins are secreted in vitro in cell culture and in vivo from the 

oocyte. Moreover, the secretion of mature and proproteins of these factors by the oocyte 
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depends on the species analyzed, and it can be different if produced in vivo or during in vitro 

culture (Gilchrist et al., 2004; Lin et al., 2012; McNatty et al., 2006). For instance, it was 

demonstrated that in vitro, but not in vivo, mouse COCs are deficient of the mature protein 

of BMP15 (Mester et al., 2015; Yoshino, McMahon, Sharma, & Shimasaki, 2006), or that 

sheep oocytes produce only unprocessed GDF9 and BMP15 in follicular fluid (McNatty et 

al., 2006), while during IVM they secrete mature proteins of the two factors (Lin et al., 

2012). Further, in mouse, IVM oocytes produce a mixture of pro-GDF9 and mature GDF9 

(Gilchrist et al., 2004), while in rat, IVM oocytes produce only mature GDF9 (Lin et al., 

2012).

Some TGF-β superfamily members are secreted as a complex consisting of the mature dimer 

noncovalently bound to the prodomain (Israel, Nove, Kerns, Moutsatsos, & Kaufman, 1992; 

Jones et al., 1994; Thies et al., 2000; Wang et al., 1990). Saito et al. demonstrated that 

purified and bioactive recombinant human BMP15 is composed of the dimeric mature and 

proregion proteins (Saito et al., 2008). In contrast, Simpson et al. reported that recombinant 

human, but not mouse, GDF9 is inactive due to a latent complex with proregion proteins 

(Simpson et al., 2012). However, it is not always the case since purified bioactive 

recombinant human GDF9 produced from HEK293 (Liao et al., 2004) and HEK293T cells 

(Mottershead et al., 2008) was also reported. Further, both recombinant human BMP15 and 

GDF9 are phosphorylated and the phosphorylation is necessary for their bioactivity 

(McMahon, Sharma, & Shimasaki, 2008; Saito et al., 2008). The kinase for BMP15 was 

later identified to be Fam20C (Tagliabracci et al., 2012). Thus, the phosphorylation status of 

BMP15 and GDF9 should also be addressed with regard to their biological activity. The 

necessity of standardization in preparation and biochemical analysis for recombinant GDF9 

was previously proposed by Pangas and Matzuk (2005), but unfortunately without 

substantial clues until now.

4. GDF9/BMP15 HETERODIMERS

As stated earlier, GDF9 and BMP15 share most homologous amino acid sequences, lack the 

fourth cysteine necessary for the covalent linkage between two subunits, and are expressed 

in the same cell (the oocyte) at the same time from the primary stage throughout 

folliculogenesis. Based on these information and our earlier experience in discovering 

activin (now called activin AB) that is composed of βA and βB subunits of inhibin A and B, 

respectively (Ling et al., 1986), we speculated that GDF9 and BMP15 may form 

heterodimers and demonstrated the first direct physical evidence of the heterodimeric GDF9/

BMP15 molecule (Liao et al., 2003). Thereafter over a decade the integrated bioactivity of 

GDF9 and BMP15, observed in different species and functional studies, let many 

researchers approach on the formation of a functional heterodimer (Hanrahan et al., 2004; 

McIntosh et al., 2008; McNatty et al., 2005a, 2005b, 2004; Mottershead, Ritter, & Gilchrist, 

2012; Peng et al., 2013). However, only recent studies demonstrated the functional evidence 

of the purified recombinant human GDF9/BMP15 heterodimer, which was named cumulin 

(Mottershead et al., 2015), able to exhibit highly potent bioactivity on GCs and to improve 

oocyte quality. Specifically, cumulin stimulates thymidine incorporation in primary mouse 

mural GCs (ED50, 0.6ng/mL) and both SMAD2/3 and SMAD1/5/8 luciferase reporter 

activities in COV434 human GC line. Cumulin also regulates in vitro GC differentiation by 
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increasing mRNA expression of Ptx3, Has2, Tnfaip6, and Ptgs2. Covalent cumulin, in which 

the fourth cysteine is recovered, is more potent than noncovalent procumulin in these assays. 

Noncovalent procumulin, however, is more effective in the improvement of oocyte quality 

than the covalent cumulin, proving the important functional activity of the prodomain in 

these factors.

Mottershead et al. also demonstrated interesting data, suggesting that mature GDF9 and 

BMP15 as well as pro-GDF9 and pro-BMP15 form heterodimers extracellularly. They 

further proposed that the latent GDF9 is activated following the heterodimerization with 

BMP15 to form cumulin, either within the oocyte or in the extracellular matrix (Mottershead 

et al., 2015). This could explain the potent synergistic action observed between BMP15 and 

GDF9 in terms of mitogenic and differentiating activity on GCs as well as on oocyte quality, 

raising cumulin to the position of main regulator of fertility in monoovulatory mammals. 

Therefore, the differential or synergistic effect of GDF9 and BMP15 may occur depending 

on whether they exert their bioactivity separately or cooperatively by forming cumulin, 

respectively.

BMP15 binds to the complex of ALK6 and BMPRII on GC surface and activates 

SMAD1/5/8 intracellular pathway (Moore, Otsuka, & Shimasaki, 2003; Pulkki et al., 2012; 

Shimasaki et al., 2004), whereas GDF9 activates ALK5 and BMPRII receptors and triggers 

SMAD2/3 pathway downstream (Kaivo-Oja et al., 2003; Mazerbourg et al., 2004; Roh et al., 

2003; Vitt, Mazerbourg, Klein, & Hsueh, 2002), although it is controversial whether ALK5 

is the only type I receptor for GDF9 as Alk5 conditional knockout mice have no defects in 

follicular development and cumulus expansion (Li et al., 2011), which is a distinct 

phenotype from Gd/9-null mice (Dong et al., 1996). Interestingly, it is suggested that 

cumulin binds to a receptor complex formed by two BMPRII, one ALK6, and one ALK5/4 

molecule, which can activate the two distinct SMAD pathways (i.e., SMAD1/5/8 and 

SMAD2/3). This last evidence is in contrast to the work of Peng et al., which showed that 

the GDF9/BMP15 heterodimer signals exclusively through SMAD2/3 pathway, since it can 

bind to but not activate the ALK6 receptor (Peng et al., 2013).

5. SPECIES-SPECIFIC ROLES OF GDF9 AND BMP15

The significance of GDF9 and BMP15 factors in the regulation of ovarian function emerged 

with the studies of deficient mouse models of GDF9 (Dong et al., 1996) and BMP15 (Yan et 

al., 2001). Gd/9-deficient female mice are infertile and show a block of folliculogenesis at 

the stage of primary follicles, when one layer of cuboidal GCs surrounds the oocyte (Dong 

et al., 1996). Ovaries from Gdf9-deficient female mice appear smaller in size, the number of 

primordial and primary follicles is higher compared with control, no corpora lutea are 

observed, and atretic follicles are missing. Without the support of highly differentiated GCs, 

oocytes are prevented to acquire meiotic competence, thus altering the reproductive 

function. Moreover, the hypogonadal phenotype related to the absence of GDF9 induces 

higher serum levels of FSH and LH as compared with control. Deficient males are not 

affected in the reproductive phenotype as they proved to be fertile (Carabatsos, Elvin, 

Matzuk, & Albertini, 1998; Dong et al., 1996).
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In contrast, Bmp15-deficient female mice are subfertile, with a lower litter size and a lower 

number of litters per month (Pangas & Matzuk, 2004; Yan et al., 2001), demonstrating a less 

essential role for BMP15 in mouse reproductive function compared with GDF9. Bmp15-null 

male mice are fertile with normal testis size (Yan et al., 2001), highlighting the importance 

of this factor restricted to the female reproductive function. Also, mice lacking BMP15 and 

GDF9 showed lower expression of epidermal growth factor receptor (EGFR) compared with 

wild-type mice, and the activation of SMAD2/3 and extracellular signal-regulated kinases 1 

and 2 signaling in CCs triggered by the oocyte was poor (Su et al., 2010). Thus, the oocyte, 

via paracrine signaling of OSFs, guides the acquisition of responsiveness of CCs to EGF 

signals, promotes a correct cumulus expansion, and improves its own meiotic maturation 

and developmental competence in the follicle (Ritter, Sugimura, & Gilchrist, 2015; Su et al., 

2010; Sugimura et al., 2015). Moreover, even though BMP15 was shown to have a role in 

the preservation of gap junction communication between the oocyte and CCs (Sugimura et 

al., 2014), the action of OSFs on cumulus expansion is species specific, as for some species 

(e.g., in the mouse) the activation of SMAD2/3 and/or SMAD1/5/8 is required (Buccione, 

Schroeder, & Eppig, 1990; Dragovic et al., 2007), whereas in the cow the presence of OSFs 

is not critical (Sugimura et al., 2014).

Of interest in species-specific differences in the role of GDF9 and BMP15 is the 

dissimilarity between mono- vs polyovulatory species (Dong et al., 1996; Galloway et al., 

2000; Moore, Erickson, & Shimasaki, 2004). For instance, BMP15 action is more important 

in sheep (mono-ovulatory) rather than mice (polyovulatory) in the first stage of follicle 

development (Eppig, 2001). In fact, while Bmp15-null female mice show impaired fertility 

but an overall normal follicular morphology (Yan et al., 2001), sheep with spontaneous 

homozygous mutations in the Bmp15 gene show no further follicle development beyond the 

primary stage, which lead to sterility (Eppig, 2001; Galloway et al., 2000; Hanrahan et al., 

2004).

Why is the role of BMP15 in female mice during folliculogenesis less critical than that in 

ewes? One of the relevant findings is that the functional mature BMP15 in the mouse ovary 

is not detectable before the ovulatory stage (Yoshino et al., 2006). Three days before 

ovulation, however, the mature BMP15 is produced and induces cumulus expansion in 

mouse COCs along with increased expression of essential EGF-like growth factors (Park et 

al., 2004; Yoshino et al., 2006). These findings are consistent with the phenotype of Bmp15-

null mice, which exhibit normal folliculogenesis but have defects in the ovulation process 

(Yan et al., 2001). The species-specific differences in the phenotypes caused by Bmp15 
mutations may thus be attributed to the temporal variations in the production of the mature 

form of BMP15. Additionally, Crawford et al. reported that mean expression levels of 

BMP15 mRNA are lower than GDF9 mRNA in denuded mouse oocytes (Crawford & 

McNatty, 2012) in contrast to the similar ratio of BMP15 and GDF9 produced by the oocyte 

in sheep (Crawford & McNatty, 2012). Indeed, ewes with spontaneous homozygous 

mutations in the Bmp15 or Gdf9 gene have high similarity in their infertile phenotype 

(McNatty et al., 2005). Ewes with spontaneous heterozygous mutations in Bmp15 or Gdf9 
also share the increased fecundity with an augmented ovulation rate and increased litters of 

twins and triplets, due to an amplified sensitivity to LH and development of secondary 

follicles followed by an increased number of antral follicles (Galloway et al., 2000; 
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Hanrahan et al., 2004; Juengel, Hudson, Whiting, & McNatty, 2004), showing that the 

dosage of BMP15 or GDF9 in the oocyte can modulate fertility (Galloway et al., 2000; 

Moore et al., 2004).

6. OOCYTE ACTIONS ON GCs

The evidence of a critical function of the oocyte in promoting proliferation of GCs in 

preantral and antral follicles dates back to the early 1990s with the studies of Vanderhyden, 

Cohen, and Morley (1993) and Vanderhyden, Telfer, and Eppig (1992). The oocyte was 

proved to induce GC proliferation through the production of a soluble factor that was acting 

in a paracrine fashion on GCs, most likely via follicular fluid. Experiments with mouse CCs 

from COCs or GCs from preantral follicles cultured with oocyte-conditioned medium 

suggested that no direct contact between the oocyte and somatic cells was required to 

proliferate (Vanderhyden et al., 1992). However, the ability of the oocyte to promote GC 

proliferation and differentiation is highly influenced by the developmental stage of the 

oocyte, besides the developmental state of GC itself (Gilchrist, Ritter, & Armstrong, 2001). 

In particular, the meiotic status of the oocyte determines the mitogenic influence on GC 

proliferation. During meiotic competence acquisition the oocyte highly promotes GC 

proliferation and starts losing this capability at the metaphase I of the meiosis. Coculturing 

experiments with meiotically arrested GV oocytes and mural GCs gave the highest GC 

proliferation rate that was gradually decreased when GCs were cultured with maturing 

oocytes, ovulated oocytes, or zygotes (Gilchrist et al., 2001). In fact, meiotically growing 

incompetent oocytes, even if they were proved to express BMP15 and GDF9 (Dube et al., 

1998; McGrath et al., 1995), are less effective in regulating follicular cell function than fully 

grown GV-stage oocytes (Gilchrist et al., 2001). When oocytes from secondary follicles 

were paired with somatic cells from newborn mouse ovaries and implanted beneath the renal 

capsules of ovariectomized female mice, a double rate of follicle growth along with GC 

differentiation was observed after only 9 days from implantation. In this study, the oocytes in 

the newly formed and developed follicles were able to resume meiosis, be fertilized, and 

complete the preimplantation stages of development in vitro (Eppig, Wigglesworth, & 

Pendola, 2002).

OSFs modulate the production of factors that control ovarian functions in promoting 

follicular growth, including inhibin (Lanuza, Groome, Baranao, & Campo, 1999), 

luteinizing hormone receptor (Eppig, Pendola, & Wigglesworth, 1998; Eppig, 

Wigglesworth, Pendola, & Hirao, 1997), and kit ligand (Joyce, Pendola, Wigglesworth, & 

Eppig, 1999), and contribute to the regulation of gene expression (Paradis et al., 2010; 

Regassa et al., 2011), metabolism (Sugiura et al., 2007), and apoptosis (Hussein, 2005). As 

for apoptosis, the level of CC apoptosis was increased when the oocytes were removed from 

the COCs but reversed when the oocytes were added back to the CC culture (Hussein, 2005), 

suggesting that OSFs play a role to prevent CC apoptosis. Oocyte-secreted BMP15 and 

BMP6 as well as theca cell-secreted BMP7 (Erickson & Shimasaki, 2003) were shown to 

protect spontaneous CC apoptosis, but GDF9 has no significant effect (Hussein, 2005). This 

is likely to be due to the different signaling pathways, namely SMAD1/5/8 for BMP15, 

BMP6, and BMP7, and SMAD2/3 for GDF9.
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7. OSF EFFECTS ON THE OOCYTE DEVELOPMENTAL COMPETENCE

GDF9 and BMP15 have critical roles in the ovary for the transition after primary stage of 

follicle development, but they also control later events in follicle development. The absence 

of GDF9 or BMP15 in mice, as previously described, brings to a phenotype of infertility or 

reduced fertility, respectively, due to misregulation of GCs and low developmental 

competence of the oocyte (Su et al., 2004). However, the treatment of COCs with 

recombinant GDF9, BMP15, or denuded oocytes during IVM led to higher rates of 

blastocyst formation and fetal yield after IVM and IVF of COCs in cattle (Dey et al., 2012; 

Hussein et al., 2011, 2006; Su, Hu, et al., 2014; Su, Wang, et al., 2014), in mice (Glister, 

Groome, & Knight, 2003; Sudiman et al., 2014; Yeo et al., 2008), in goats (Romaguera et 

al., 2010), and in pigs (Gomez et al., 2012). BMP15 in particular seems to interact with 

amphiregulin (one of EGF-like growth factors) to enhance oocyte developmental 

competence, via a prolonged gap-junctional coupling between the oocyte and CCs that 

would allow the passage of metabolites to the oocyte (Sugimura et al., 2014). The 

implication of these results resides in the improvement of IVM techniques, in which 

compromised oocytes from IVM cycles might benefit from treatment with OSFs to restore a 

good developmental competence. In fact, IVM oocytes might not be able to secrete oocyte 

factors that are able to sustain oocyte meiotic maturation, as demonstrated by the evidence 

that murine IVM COCs lack a processed form of BMP15 compared with in vivo matured 

COCs (Sugimura et al., 2014). The synergistic effects of BMP15 and GDF9 in the 

improvement of oocyte meiotic competence might be related to a better nuclear and 

cytoplasmic maturation, the prevention of zona pellucida hardening, a correct fertilization 

pattern, and the higher expression of glutathione peroxidase 1 in the oocyte (Dey et al., 

2012).

8. GDF9 AND BMP15 IN DIZYGOTIC TWINNING, POI, AND PCOS

As stated earlier, GDF9 and BMP15 can influence female reproduction. Published data that 

have been accumulated so far indicate that non-synonymous mutations in the GDF9 and 

BMP15 genes are correlated with dizygotic (DZ) twinning (Montgomery et al., 2004; 

Palmer et al., 2006; Zhao et al., 2008) (Table 1) as well as gynecological diseases such as 

primary ovarian insufficiency (POI) (Bouilly et al., 2016; Di Pasquale, Beck-Peccoz, & 

Persani, 2004; Di Pasquale et al., 2006; Dixit et al., 2005, 2006; Ferrarini et al., 2013; 

Kovanci et al., 2007; Laissue et al., 2006; Ledig, Ropke, Haeusler, Hinney, & Wieacker, 

2008; Mayer, Fouquet, Pugeat, & Misrahi, 2017; Rossetti et al., 2009; Tiotiu et al., 2010; 

Wang et al., 2013, 2010; Zhao et al., 2007) (Table 2) and polycystic ovary syndrome (PCOS) 

(Liu et al., 2011; Mehdizadeh, Sheikhha, Kalantar, Aali, & Ghanei, 2016; Wang et al., 2010) 

(Table 3).

8.1 DZ Twinning

The spontaneous conception of DZ twinning rate is influenced by a combination of male and 

female reproductive factors as it reflects the frequency of double ovulation, the successful 

fertilization, and the survival of the zygote (Tong & Short, 1998). Of GDF9 and BMP15 as 

potentially associated genes with DZ twinning is the genetic influence in the GDF9 gene 
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more frequent than that in the BMP15 gene (Hoekstra et al., 2008). The first evidence of 

association between DZ twinning and GDF9 mutation was the finding of a loss-of-function 

mutation (c.207_210delATCT, p. L69LfsTer88) in two sisters with spontaneous DZ twins 

(Montgomery et al., 2004) (Table 1). This mutation alters the reading frame for the protein 

introducing a stop codon at codon position 88 of exon 1. Other mutations in the GDF9 gene 

with insertion/deletions (c.392–393insT and c.1268–1269delAA) or missense codons 

(P103S and T121L in the proregion; P374L and R454C in the mature region) were found 

(Palmer et al., 2006). Variants P103S and R454C were also reported in POI women (see 

below), supporting the hypothesis that mutations causative of DZ twinning may be 

candidates for the development of POI as well and vice versa (Inagaki & Shimasaki, 2010). 

In biochemical and functional studies for in vitro GC proliferation, it was demonstrated that 

mutations P103S and P374L abrogated mature GDF9 expression, suggesting a 50% decrease 

in GDF9 levels in heterozygous women carrying these mutations (Inagaki & Shimasaki, 

2010; Simpson et al., 2014). Pooling the prevalence data of GDF9 variants in Table 1 

provides a significant difference (P = 0.0006) between DZ twinning and controls by Fisher’s 

exact test (https://www.graphpad.com/quickcalcs/contingency1.cfm). In this regard, Palmer 

et al. previously predicted the frequency differences of individual variants in the GDF9 gene 

found in mothers of DZ twins and normal controls by contingency χ2 testing with χ2 and 

asymptotic P values estimated, allowing for the family nature of the data as implemented in 

MENDEL binomial link measured genotype model (Palmer et al., 2006). They found that 

the frequencies of the variants P103S, P374L, and c.1268_1269delAA (frame shift) were 

significantly higher (P< 0.05, denoted by asterisks in Table 1) in mothers of DZ twins than 

the control (Palmer et al., 2006), supporting the results by Fisher’s exact test.

In contrast, Zhao et al. identified several mutations and deletions/insertions in the BMP15 
gene in mothers of DZ twins, three of which (P174S, A311T, and R392T) were not detected 

in 1512 controls (Zhao et al., 2008). However, no significant evidence has been provided in 

these variations in DZ twinning (Zhao et al., 2008). Fisher’s exact test (P = 0.8328) also 

supports their conclusion (Table 1).

It was shown that mothers of DZ twins reach menopause significantly earlier than those of 

monozygotic twins, with a higher number of diagnoses for POI (Gosden et al., 2007; Martin, 

Healey, Pangan, Heath, & Turner, 1997), highlighting the correlation between the faster 

depletion of follicle reserve with multiple ovulation and the early ovarian insufficiency 

(Moore et al., 2004). Given that reduced levels of BMP15 and/or GDF9 in ewes are 

associated with increased ovulation rate and litter size, women with GDF9 (and possibly 

BMP15) mutations may have an increased number of dominant follicles, resulting in an 

increased likelihood of bearing DZ twins.

8.2 Primary Ovarian Insufficiency

POI is a dysfunction of the ovary caused by heterogeneous factors (viral infections, 

autoimmune disorders, genetic disorders, iatrogenic causes), among which the genetic 

component plays a substantial role, as the synergistic action of different mutations may 

underlie the development of this phenotype (Rossetti, Ferrari, Bonomi, & Persani, 2017; 

Tucker, Grover, Bachelot, Touraine, & Sinclair, 2016). Relatively a few genes are considered 
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involved in the development of syndromic and nonsyndromic POI (Cox & Liu, 2014; 

Fortuno & Labarta, 2014). Approximately 1% of women are affected by POI presenting 

prolonged amenorrhea (4–6 months) before the age of 40, which is a major cause of 

infertility, and they show elevated plasma gonadotropin levels. BMP15 and GDF9 gene 

variants were found to have a high incidence on the POI phenotype, namely 0%–12% 

prevalence ofBMP15 variants (Dixit et al., 2006; Ma et al., 2015; Persani, Rossetti, Di 

Pasquale, Cacciatore, & Fabre, 2014) and 1%–4% prevalence of GDF9 variants (Dixit et al., 

2006; Laissue et al., 2006; Ma et al., 2015; Qin, Jiao, Simpson, & Chen, 2015) in certain 

ethnicities.

The first identified human BMP-15 mutation associated with hypergonadotropic ovarian 

failure due to ovarian dysgenesis was a heterozygous Y235C missense mutation (Di 

Pasquale et al., 2004). Thereafter, a number of nonsynonymous mutations in the BMP15 and 

GDF9 genes were identified in women with POI as follows: (i) BMP15, S5R, E51IfsTer27, 

R61W, R61E, E64AfsTer12, R68W, R76C, R76H, H81R, N103S, R138H, L148P, A180T, 

A180F/S+V, F194S, N196K, G199R, H200Y, R206H, E211X, W221R, Y235C, I243G, 

Ins263L, and R329C; and (ii) GDF9, D57Y, K67E, P103S, R146C, T148A, S186Y, V216M, 

T238A, S428T, and R454C (Table 2).

The biochemical and biological properties of these variants have been extensively studied. 

For example, BMP15 variants of R68W, R138H, L148P (Rossetti et al., 2009), R76C, and 

R206H (Inagaki & Shimasaki, 2010) located in the proregion lead to a reduced production 

of mature BMP15 in an in vitro assay, showing that reduced biological effects may be due to 

an impaired processing or a decreased precursor stability (Inagaki & Shimasaki, 2010; 

Rossetti et al., 2009). Ins263L might not have a functional abnormality since it is present 

also in control women and might represent, together with N103S, a polymorphism with no 

functional significance (Bouilly et al., 2016; Di Pasquale et al., 2006; Dixit et al., 2006; 

Laissue et al., 2006; Rossetti et al., 2009; Tiotiu et al., 2010; Wang et al., 2010).

A study from Dixit and coworkers in 2006 found a homozygous mutation, E211X, in the 

proregion of BMP15 associated with POI (Dixit et al., 2006). This variant is likely to 

represent a knockout of the BMP15 gene, with the production of a prematurely truncated 

protein that leads to the lack of the mature protein. The patient carrying the mutation was 

infertile and presented ovarian hypoplasia, together with other developmental defects. A 

study from 2010 on Chinese POI patients showed the identification of a missense mutation 

in BMP15 in the mature region (R329C) that might impair the correct folding and final 

three-dimensional structure of BMP15 subunit as well as the formation of homo- or 

heterodimers with GDF9 (Wang et al., 2010). A more recent study was published on a 

family with two sisters who exhibited to be compound heterozygous with E51IfsTer27 

inherited from their father and E64AfsTer12 from their mother (Mayer et al., 2017). Due to 

frame-shift mutations, both of these mutant BMP15 proteins are prematurely truncated in the 

proregion, precluding mature BMP15 production. Thus, a deletion in the two alleles of the 

BMP15 gene in two sisters revealed a human “knockout-like” effect, which resulted in 

primary amenorrhea in one sister and primo-secondary amenorrhea in the other. Moreover, 

hormonal analysis showed high FSH and LH, very low estradiol, and low but detectable 

AMH. Five years later, FSH and LH levels were elevated, estradiol level lowered, and AMH 
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became undetectable, indicating a complete loss of growing follicles. Interestingly, their 

brother, hemizygous for BMP15, showed asthenozoospermia but refused further 

investigations.

As described earlier, an increasing number of BMP15 variants have been identified in 

women with POI in different ethnicities. However, the statistical significance of the 

mutations in POI has not been provided in each study due to low numbers of patients and 

controls examined. In this regard, Persani et al. performed an excellent work in which they 

put together all BMP15 variants identified by January 2014 (the date in which the 

manuscript was submitted) by different laboratories in different ethnicities and found that 

the prevalence of nonsynonymous mutations in the POI cohorts is 10-fold higher than in the 

control populations (P < 0.0001 by Fisher’s exact test), thus supporting the pathogenic role 

of these rare variants (Persani et al., 2014). We repeated this calculation with all 

nonsynonymous BMP15 variants identified by March 2017. As a result, the P value of the 

difference between the POI and normal cohorts in the prevalence of non-synonymous 

mutations of BMP15 is 0.0170 (Table 2). However, if the relatively common variants, 

N103S and Ins263L, are excluded from the calculation, the P value would be <0.0001, 

which is consistent with the previous report by Persani et al. (2014). Collectively, the 

mutation rate in the BMP15 gene in women with POI is significantly higher than the normal 

control.

Variants K67E, P103S, and S428T rose to misfolded GDF9 proproteins when they were 

expressed in vitro, resulting in significantly reduced or nearly abrogated mature proteins 

(Inagaki & Shimasaki, 2010; Simpson et al., 2014). It is of interest that variants S186Y, 

V216M, and T238A, located in the proregion of GDF9, have reduced association with the 

mature domain as compared with the wild-type control, thus the availability of the mature 

protein dimers is increased (Simpson et al., 2014). The variants P103S and R454C are 

common in mothers of DZ twins as described earlier (Palmer et al., 2006). Another GDF9 

variant, R146C, was found in 3 out of 139 Chinese women with diminished ovarian reserve 

but absent in the control population (n = 152) (Wang et al., 2013). This mutation reduced the 

levels of mature GDF9 protein in transfected cells presumably through disruption of its 

three-dimensional structure. Moreover, variant R146C reduced the ability of the wild-type 

GDF9 to stimulate GC proliferation and to activate SMAD2 signaling, supporting the 

hypothesis that the R146C variant is deleterious and thus could have pathogenic effects 

(Wang et al., 2013). Putting all GDF9 variants detected in women with POI together, the 

GDF9 mutation rate in POI appeared to be significantly higher than control women (P = 
0.0484) (Table 2).

Women with nonsyndromic POI showed heterozygous mutations not only in BMP15 or 

GDF9 but also in other key genes of ovarian function, such as NOBOX, FOXL2, SOHLH1, 
FIGLA, GALT, STAG3, HFM1, SYCE1, MCM8, MCM9, SCM1β, REC8, LHX8, and many 

more, involved in cell functions such as regulation of transcription, meiosis, and DNA repair 

(Bouali et al., 2016; Bouilly et al., 2016; Qin et al., 2015). A recent study on whole-exome 

sequencing of Chinese POI patients showed a novel homozygous truncating variant in the 

NOBOX gene (chr7:144098161delC) that impaired severely the transcriptional activation of 
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the GDF9 gene in functional analyses, suggesting that a loss-of-function effect on NOBOX 

transcriptional activity could be associated with POI via reduced GDF9 (Li et al., 2017).

8.3 Polycystic Ovary Syndrome

PCOS affects 5%–10% of women in their reproductive age and is considered the most 

common endocrinological disorder characterized by anovulation, ovarian cysts, elevated 

plasma level of androgens, hirsutism, insulin resistance, obesity, and menstrual irregularities 

that lead to infertility (Dunaif, 1997; Fauser et al., 2012; Franks, 1995; Legro et al., 1998). 

Genetic factors have been shown to influence the impaired follicular development that 

contribute to PCOS pathogenesis, and the dysregulation of oocyte BMP15 and GDF9 

expression in women with PCOS has been reported; however, a consistent conclusion with 

regard to the dysregulated levels of BMP15 and GDF9 in PCOS remains to be lead (de 

Resende et al., 2012; Teixeira Filho et al., 2002; Wei et al., 2014; Wei, Liang, Fang, & 

Zhang, 2011; Zhao et al., 2010).

Nonsynonymous mutations in the BMP15 gene were also identified in PCOS patients 

(L12V, A37P, P57A, R96S, N103S, H200Y, and Ins263L) (Liu et al., 2011; Mehdizadeh et 

al., 2016) (Table 3). Several of these mutations (L12V, A37P, P57A, R96S, and N103S) in 

the BMP15 gene were found in PCOS, but not normal, women (Liu et al., 2011). However, 

the prevalence of all these BMP15 variants in women with PCOS is not significantly 

different from that in normal controls (Table 3). Nonsynonymous mutations were also found 

in the GDF9 gene in PCOS patients (N5L, L40V, M45V, D57Y, R146C, Y342F, S425R, and 

S428T) (Wang et al., 2010) with no significant difference in mutation rates between PCOS 

and normal women (Table 3). Despite the presence of a variety of studies indicating a 

correlation between genetic variations in key genes of ovarian function and PCOS 

development, other evidence exists in support of the absence of such associations between 

BMP15 and GDF9 polymorphisms and PCOS susceptibility (Sproul, Jones, Mathur, Azziz, 

& Goodarzi, 2010; Takebayashi et al., 2000).

9. PERSPECTIVES

Most of the mutations in the GDF9 and BMP15 genes identified in mothers of DZ twins and 

women with POI and PCOS are located in the proregion of the proprotein. As the proregion 

is necessary for dimerization of the mature protein (Hogan, 1996), mutations in the 

proregion may cause the impaired processing of the proproteins by forming misfolded 

proprotein dimers and thereby negatively impact the production of functional mature protein 

dimers. This impairment could occur in various combinations of GDF9 or BMP15 subunits 

(i.e., homodimers of the mutant GDF9, heterodimers of the mutant GDF9 and the wild-type 

GDF9, heterodimers of the mutant GDF9 and the wild-type BMP15, homodimers of the 

mutant BMP15, heterodimers of the mutant BMP15 and the wild-type BMP15, and 

heterodimers of the mutant BMP15 and the wild-type GDF9).

Misfolded proteins are degraded in the endoplasmic reticulum (ER) by the process termed 

ER-associated degradation (McCracken & Brodsky, 1996), which is necessary for protein 

quality control in the eukaryotic secretory pathway to ensure that only properly folded 

proteins transit through cellular organelles (Ellgaard & Helenius, 2001). These pathological 
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events caused by adoption of nonnative protein conformations lead to a large range of 

conditions recognized as conformational diseases (Convertino, Das, & Dokholyan, 2016; 

Kopito & Ron, 2000). In the control process of misfolded proteins, chaperones control the 

folding status of proteins by preventing and reversing protein aggregation together with 

ATP-dependent proteases (Weibezahn, Bukau, & Mogk, 2004). As a therapeutic strategy for 

conformational diseases, cell-permeable pharmacological chaperones are expected to 

selectively provide a molecular scaffold for misfolded GDF9 and BMP15 proproteins to 

recover their native folding, leading to the secretion of functional mature proteins.
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Table 1

Prevalence of Carriers With BMP15 and GDF9 Nonsynonymous Variants in Cohorts of Mothers of DZ Twins 

and Respective Controls

Variants No. of Cases/Total

DNA Protein Domains DZ Twinning Normal Countries References

BMP15 in DZ twinning

c.520C > T P174S Proregion 2/1693 0/1512 Australia Zhao et al. (2008)

c.581T > C F194S Proregion 5/1693 11/1512 Australia Zhao et al. (2008)

c.931G > A A311T Mature region 3/1693 0/1512 Australia Zhao et al. (2008)

c.1175G > C R392T Mature region 1/1693 0/1512 Australia Zhao et al. (2008)

Total 11/1693 11/1512 P = 0.8328 by Fisher’s exact test

GDF9 in DZ twinning

c.207_210delATCT L69LfsTer88 Proregion 1/449 NA Australia Montgomery et al. (2004)

c.307C > T P103S Proregion 30/1693 13/1512 Australia Palmer et al.(2006)*

c.362C > T T121L Proregion 4/1693 1/1512 Australia Palmer et al.(2006)

c.392_393insT Frame shift Proregion NA NA Australia Palmer et al.(2006)

c.1121C>T P374L Mature region 4/1693 0/1512 Australia Palmer et al.(2006)*

c.1268_1269delAA Frame shift Mature region 4/1693 0/1512 Australia Palmer et al.(2006)*

c.1360C > T R454C Mature region 22/1693 12/1512 Australia Palmer et al.(2006)

Total 64/1693 26/1512 P = 0.0006 by Fisher’s exact test

Asterisks denote a significance (P < 0.05) that was calculated for the likelihood ratio test (MENDEL binomial link measured genotype model) 
(Palmer et al., 2006). NA denotes unavailable data, and thus the respective frequency numbers were excluded from the calculation. The total 
number of women analyzed in the same study was only counted once.
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Table 3

Prevalence of Carriers With BMP15 and GDF9 Nonsynonymous Variants in Cohorts With PCOS and 

Respective Controls

Variants No. of Cases/
Total

DNA Protein Domains PCOS Normal Countries References

BMP15 in PCOS

c.34C > G L12V Signal
peptide 1/216 0/200 China Liu et al. (2011)

c.109G > C A37P Proregion 1/216 0/200 China Liu et al. (2011)

c.169C > G P57A Proregion 1/216 0/200 China Liu et al. (2011)

c.288G > C R96S Proregion 1/216 0/200 China Liu et al. (2011)

c.308A>G N103S Proregion 1/216 0/200 China Liu et al. (2011)

c.308A>G N103S Proregion 2/70 NA Iran Mehdizadeh et al. (2016)

c.598C > T H200Y Proregion 1/216 2/200 China Liu et al. (2011)

c.788insTCT Ins263L Proregion 21/216 30/200 China Liu et al. (2011)

None — — 0/38 0/3 Japan Takebayashi et al. (2000)

Total 27/254 32/203 P = 0.1665 by Fisher’s exact test

GDF9 in PCOS

c.15C > G N5L Signal
peptide 1/216 0/200 China Wang et al. (2010)

c.118T > G L40V Proregion 4/216 0/200 China Wang, Zhou et al. (2010)

c.133A > G M45V Proregion 1/216 0/200 China Wang, Zhou et al. (2010)

c.169G > T D57Y Proregion 12/216 24/200 China Wang, Zhou et al. (2010)

c.436C > T R146C Proregion 2/216 0/200 China Wang, Zhou et al. (2010)

c.1025A > T Y342F Mature
region 1/216 0/200 China Wang, Zhou et al. (2010)

c.1275C > A S425R Mature
region 1/216 0/200 China Wang, Zhou et al. (2010)

c.1283G > C S428T Mature
region 2/216 0/200 China Wang, Zhou et al. (2010)

None — — 0/38 0/3 Japan Takebayashi et al. (2000)

Total 24/254 24/203 P = 0.5422 by Fisher’s exact test
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NA denotes unavailable data, and thus the respective frequency numbers were excluded from the calculation. The total number of women analyzed 
in the same study was only counted once.
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