
Tissue-Specific Compartmental Analysis for Dynamic Contrast-
Enhanced MR Imaging of Complex Tumors

Li. Chen,
Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and 
State University, Arlington, VA 22203 USA chen2000@vt.edu

Peter L. Choyke,
Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, 
MD 20892 USA pchoyke@mail.nih.gov

Tsung-Han Chan,
Institute of Communications Engineering and Department of Electrical Engineering, National 
Tsing Hua University, Hsinchu 30013, Taiwan thchan@ieee.org

Chong-Yung Chi,
Institute of Communications Engineering and Department of Electrical Engineering, National 
Tsing Hua University, Hsinchu 30013, Taiwan cychi@ee.nthu.edu.tw

Ge Wang, and
School of Biomedical Engineering and Science, Virginia Polytechnic Institute and State University, 
Blacksburg, VA 24061 USA wangg@vt.edu

Yue Wang*

Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and 
State University, Arlington, VA 22203 USA

Abstract

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) provides a noninvasive 

method for evaluating tumor vasculature patterns based on contrast accumulation and washout. 

However, due to limited imaging resolution and tumor tissue heterogeneity, tracer concentrations 

at many pixels often represent a mixture of more than one distinct compartment. This pixel-wise 

partial volume effect (PVE) would have profound impact on the accuracy of pharmacokinetics 

studies using existing compartmental modeling (CM) methods. We, therefore, propose a convex 

analysis of mixtures (CAM) algorithm to explicitly mitigate PVE by expressing the kinetics in 

each pixel as a nonnegative combination of underlying compartments and subsequently identifying 

pure volume pixels at the corners of the clustered pixel time series scatter plot simplex. The 

algorithm is supported theoretically by a well-grounded mathematical framework and practically 

by plug-in noise filtering and normalization preprocessing. We demonstrate the principle and 

feasibility of the CAM-CM approach on realistic synthetic data involving two functional tissue 

compartments, and compare the accuracy of parameter estimates obtained with and without PVE 

* yuewang@vt.edu. 

Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.

HHS Public Access
Author manuscript
IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 December 28.

Published in final edited form as:
IEEE Trans Med Imaging. 2011 December ; 30(12): 2044–2058. doi:10.1109/TMI.2011.2160276.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ieeexplore.ieee.org


elimination using CAM or other relevant techniques. Experimental results show that CAM-CM 

achieves a significant improvement in the accuracy of kinetic parameter estimation. We apply the 

algorithm to real DCE-MRI breast cancer data and observe improved pharmacokinetic parameter 

estimation, separating tumor tissue into regions with differential tracer kinetics on a pixel-by-pixel 

basis and revealing biologically plausible tumor tissue heterogeneity patterns. This method 

combines the advantages of multivariate clustering, convex geometry analysis, and compartmental 

modeling approaches. The open-source MATLAB software of CAM-CM is publicly available 

from the Web.

Keywords

Compartmental modeling; convex analysis of mixtures; data clustering; dynamic contrast-
enhanced magnetic resonance imaging (DCE-MRI); partial volume effect

I. Introduction

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) provides a useful 

noninvasive tool for evaluating tumor vasculature patterns based on contrast accumulation 

and washout [1], [2]. DCE-MRI uses various molecular weight contrast agents to 

demonstrate tumor vasculature perfusion and permeability, thereby producing functionally 

relevant images of angiogenic status [3], [4]. For example, DCE-MRI can depict spatial 

heterogeneity of vascular permeability which reflects tumor angiogenic activity, and has 

potential utility in testing the alternative hypotheses for drug effects and predicting the 

efficacy of cancer treatment on the basis of functional vasculature changes observed over 

time [1], [5].

Compartmental modeling (CM) is a widely used mathematical tool to model dynamic 

imaging data and can provide accurate pharmacokinetics parameter estimates when 

delineated regions of interest (ROIs) are homogeneous and available a priori [6]-[8]. 

However, due to markedly tissue heterogeneity in malignant tumors and limited imaging 

resolution, tracer concentrations at many pixels often represent a complex mixture of more 

than one distinct vasculature compartment. This pixel-wise spatially-mixed partial volume 

effect (PVE), while often conveniently overlooked, would have a profound impact on the 

reliability of pharmacokinetics studies using existing CM methods [1], [3], [9]–[12].

To implicitly account for PVE, models with multiple parallel compartments on both ROI and 

pixel-wise scales have been used to fit to DEC-MRI data in previous pharmacokinetics 

studies [8], [13], [14]. However, many experimental results indicate that the use of 

commonly accepted multi-compartment models often leads to considerably biased and high-

variance estimates of the pharmacokinetics parameters. Evidently, this is due to the existence 

of multiple local optima in the nonconvex parameter space, complex and nonlinear 

optimization procedures, and the lack of a theoretical identifiability proof [3], [9], [15]—

[19]. To explicitly account for the PVE, a recent proof-of-principle study aimed to 

understand and evaluate PVE on pharmacokinetics parameter estimation using computer 

simulations and subsequently proposed a postprocessing technique for PVE compensation 

[10]. The major limitations of this pixel-by-pixel tissue heterogeneity evaluation include its 
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high noise impact, high computational complexity, and limited applicability to normal 

tissues or static images [10],[20]. While time-concentration curve clustering using spatial 

prior knowledge has been exploited to improve pixel-by-pixel pharmacokinetics parameter 

estimation, this approach is both not intended and unable to mitigate pixel-wise PVE [13], 

[14], [16], [21].

Motivated by the fact that the kinetics in each pixel can be expressed as a nonnegative 

combination of underlying compartments, we propose a convex analysis of mixtures (CAM) 

algorithm to explicitly eliminate PVE by identifying pure volume pixels at the corners of the 

clustered pixel time series scatter plot (Fig. 1). The algorithm is theoretically supported by a 

series of newly proved identifiability theorems and, practically by additional noise filtering 

and normalization preprocessing. We first isolate pixels that define tumor area using a 

standard masking technique and remove noise or outlier pixels using a vector-norm filtering 

[21]. By a perspective projection of pixel time series onto standard scatter simplex, we 

obtain normalized pixel temporal shape patterns independent of signal amplitude [22]. 

Subsequent multivariate pixel clustering, based on standard finite normal mixture (SFNM) 

distribution modeling, estimated using the affinity propagation clustering (APC) and the 

expectation-maximization (EM) algorithm, provides further noise and outlier reduced 

representations of the data set. CAM then effectively isolates pure volume pixels by 

identifying the corner cluster centers of the scatter plot convex hull, and accordingly 

eliminates the interior data points corresponding to partial volume pixels. The algorithm 

proceeds to accurately estimate tissue-specific pharmacokinetic parameter values by fitting 

the compartmental model to the data of the isolated pure volume pixels, based on which the 

pixel-by-pixel spatial distributions of these parameters can be readily obtained [8].

We demonstrate the principle and feasibility of the CAM-CM approach on realistic synthetic 

data involving two functional tissue compartments, and compare the accuracy of parameter 

estimates obtained with PVE elimination using CAM-CM to those obtained without PVE 

elimination using relevant techniques. Experimental results show a significant improvement 

in the accuracy of kinetic parameter estimation using the proposed PVE elimination 

approach, where we also report the comparative studies using other relevant techniques 

including classical CM, iterative quadratic maximum likelihood (IQML) estimation, and 

iterative maximum likelihood CM (IML-CM) [7], [13], [18]. We then apply the algorithm to 

real DCE-MRI breast cancer data and observe improved pharmacokinetics parameter 

estimation, separating tumor tissue into sub-regions with distinct tracer kinetics on a pixel-

by-pixel basis and revealing biologically plausible tumor tissue heterogeneity patterns. 

Finally, extensions to the algorithm, and the relationships to previous approaches, are briefly 

discussed.

II. Background and Theory

A. Classical Compartment Model

We first introduce an illustrative J-tissue compartment model of DCE-MRI time series (Fig. 

2) (Jth tissue compartment corresponds to tracer plasma input indexed by p), whose tracer 

concentration kinetics are governed by a set of first-order differential equations [7], [8], [23], 

[24]
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dC1(t)
dt = K1

transCp(t) − kep, 1C1(t),

⋮
dCJ − 1(t)

dt = KJ − 1
trans Cp(t) − kep, J − 1CJ − 1(t),

Cmeasured(t) = C1(t) + ⋯ + CJ − 1(t) + K pCp(t)

(1)

where Cj(t) is the tracer concentrations in the interstitial space weighted by the fractional 

interstitial volume in tissue-type j, at time t; Cp(t) is the tracer concentration in plasma (the 

input function); Cmeasured(t) is the measured tracer concentration in the ROI; K j
trans is the 

unidirectional volume transfer constant (/min) from plasma to tissue-type j; kep,j is the flux 

rate constants (/min) in tissue-type j; and Kp is the plasma volume in the ROI [13]. Equation 

(1) can be solved for C1(t),…,CJ–1(t)in terms of the rate constants as

C j(t) = K j
transCp(t) ⊗ exp −kep, jt , j = 1, …, J − 1 (2)

where ⊗ denotes the mathematical convolution operation.

Letting F j(t) = Cp(t) ⊗ exp −kep, jt and Fp(t) = Cp(t), the spatial-temporal patterns of tracer 

concentrations in DCE-MRI data can be expressed as [21]

Cmeasured i, t1
Cmeasured i, t2

⋮
Cmeasured i, tL

=

F1 t1 ⋯ FJ − 1 t1 Fp t1
F1 t2 ⋯ FJ − 1 t2 Fp t2

⋮ … ⋮ ⋮
F1 tL ⋯ FJ − 1 tL Fp tL

K1
trans(i)

⋮
KJ − 1

trans (i)
KP(i)

(3)

where Cmeasured (i,tl) is the tracer concentration measured at time tl at pixel i, L is the 

number of sampling time points K1
trans(i), …, KJ − 1

trans (i) are the local volume transfer constants 

of the tissue-types 1 to (J–1), at pixel i, respectively; and Kp(i) is the plasma volume at pixel 

i.

B. Convexity of Pixel Time Series Scatter Plot

Denote the measured dynamic tracer concentration curve vector by
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Cmeasured(i)

= Cmeasured i, t1 , Cmeasured i, t2 , …, Cmeasured i, tL
T

the compartment time-concentration curves (TCs) by Fj = [Fj(t1),Fj(t2),…,Fj(tL)]T, and the 

local volume transfer constants along with the plasma volume by 

Ktrans(i) = K1
trans(i), K2

trans(i), …, KJ − 1
trans (i), K p(i) T

 where J is the number of latent 

compartments including plasma volume. We can then re-express (3) in its vector-matrix 

notation

Cmeasured(i) = F1, …, FJ Ktrans(i) . (4)

For ease of subsequent discussion, we normalize Cmeasured (i,t) and Fj(t) over their effective 

interval of L time samples, via a sum-based normalization that projects the scatter plot data 

points onto the standard simplex as follows:

x i, tl =
Cmeasured i, tl

∑l′ = 1
L Cmeasured i, tl′

, a j tl =
F j tl

∑l′ = 1
L F j tl′

(5)

for l = 1,…,L, j = 1,…,J.

We can then re-express (4) as

x(i) = ∑
j = 1

J
K j(i)a j (6)

for i = 1,…,N, where Ktrans(i) is accordingly normalized and denoted by K(i) with 

∑ j = 1
J K j(i) = 1, x(i) = [x(i,t1),…,x(i,tL)]T, aj = [aj(t1),…,aj(tL)]T, and N is the number of 

pixels. Note that the physical meanings of the pharmacokinetics parameters remain the same 

after normalization while their values shall be interpreted as relatively “strength” at this 

stage. Furthermore, since these local volume transfer constants and plasma volume, entries 

in Ktrans(i) or K(i), are non-negative, pixel time series model (6) indicates that the observed 

pixel time series x(i,t) is a non-negative linear combination of the compartment TCs, {aj(t)}, 

weighted by their spatially-distributed local volume transfer constants, {Kj(i)}. This falls 

neatly within the definition of a convex set [25]. Specifically, the observed set of pixel time 

series 𝒳 = {x(1),…,x(N)} forms a subset of the convex set readily defined by the set of 

compartment TCs 𝒜 = a1, …, aJ , i.e.,
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𝒳 = ∑
j = 1

J
K j(i)a j a j ∈ 𝒜, K j(i) ≥ 0,

∑
j = 1

J
K j(i) = 1, i = 1, …, N .

(7)

C. Identifiability of Compartment Model

We now discuss the identifiability of the compartment model (6) and the required conditions 

via the following definitions and theorems (see formal proofs in Appendix A).

Definition 1: Given a set of compartment TCs 𝒜 = a1, …, aJ , we denote the convex set it 

specifies by

ℋ{𝒜} = ∑
j = 1

J
α ja j a j ∈ 𝒜, α j ≥ 0, ∑

j = 1

J
α j = 1 . (8)

Definition 2: A compartment TC vector aj is a corner point of the convex set ℋ 𝒜  if it can 

only be expressed as a trivial convex combination of a1,…,aJ.

Lemma 1 (Convex Envelope of Pixel Time Series): Suppose that the J compartment TCs a1,

…aJ are linearly independent, and x(i) = ∑ j = 1
J K j(i)a j where K1(i),…, KJ(i) are the non-

negative normalized spatially-distributed volume transfer constants. Then, the elements of 𝒳
(the pixel time series) are confined within a convex set ℋ 𝒜  whose corner points are the J 

compartment TCs a1,…,aJ.

Definition 3: Any pixel whose associated normalized spatially-distributed volume transfer 

constants are in the form of K(iWGP(j)) = ej is called a well-grounded point (WGP) and 

corresponds to a pure-volume pixel, where {ej} is the standard basis of J-dimensional real 

space (the axes of the first quadrant). In other words, we define pure volume pixels (or well-

grounded pixels) as the pixels that are occupied by only a single compartment tissue type.

Theorem 1 (Convexity of Pixel Time Series): Suppose that the J compartment TCs a1,…,aJ 

are linearly independent, and x(i) = ∑ j = 1
J K j(i)a j where non-negative normalized spatially-

distributed volume transfer constants {K(i)} have at least one well-grounded point on each 
of the J coordinate axes (i.e., ∃iWGP(j) such that K(iWGP(j)) = ej, ∀j), then, 𝒳 uniquely 
specifies a convex set

ℋ{𝒳} = ∑
i = 1

N
αix(i) x(i) ∈ 𝒳, αi ≥ 0, ∑

i = 1

N
αi = 1
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which is in fact the same as the convex set ℋ 𝒜 , whose corner points are the J 

compartment TCs a1,…,aJ.

From Theorem 1, there appears to be a mathematical solution uniquely identifying the 

compartment model (6) based on the observed set of pixel time series 𝒳 (identifiability): 

The corner points of the pixel time series convex set ℋ 𝒳  are the compartment TCs {aj} 

when pure-volume pixels exist for each of the compartments and for the plasma input 

function, That is, if pixel i is a pure volume pixel occupied by the jth compartment tissue 

type, mathematically, we will have K(iWGP(j)) = ej where ej is the jth standard basis. 

Accordingly, for pure volume pixel i, since the corresponding pixel time series 

x(i) = ∑ j = 1
J K j(i)a j is now a trivial combination of {aj}, it is the corner of the convex hull 

ℋ 𝒜 , and by Theorem 1, also the corner of the convex hull ℋ 𝒳 . This means that, in 

principle, under a noise-free scenario, we can directly estimate {aj} by locating x(iWGP(j)), 

∀j. Note that there are computationally feasible algorithms for finding these corner points 

[27]–[29]. Moreover, Lemma 1 and Theorem 1 imply that the pure-volume pixels constitute 

the corner points of the observed pixel time series convex set and reflect the temporal 
patterns of the underlying compartments, while the partial-volume pixels constitute the 

interior points of the observed pixel time series convex set and, thus, can be readily 

identified and eliminated in the compartmental analysis (Fig. 1).

One important consideration with the present method is the existence of pure-volume pixels 

for each of the underlying compartments, and this reasonable assumption reflects only the 

ideal scenario and constitutes the necessary and sufficient condition for the mathematical 

identifiability of the tissue-specific CAM-CM model. Nevertheless, it is possible that in 

some datasets, no pixel is pure and it would be helpful to provide an accurate interpretation 

of the CAM-CM solution in such non-ideal scenarios. For the nonideal scenarios 

(accordingly with relaxed conditions), the following two theorems (see formal proofs in 

Appendix A) show that, if source-dominance or source-specific-dominance pixels exist for 

each of the underlying tissue compartments, CAM-CM will provide the optimal solution that 

captures maximum source information (i.e., with the identified corners of the pixel time 

series scatter simplex corresponding to maximum source-dominance or source-specific-

dominance).

Theorem 2 (Source Dominance): Suppose that the non-negative normalized pixel-wise local 
volume transfer constants {K(cj) = [K1(cj),…,Km(cj),…,KJ(cj)]} are the corners of the pixel 
time series scatter simplex. Then the CAM-CM solution based on these corners {K(cj)} 

achieves the maximum source dominance in the sense of Km(cj) = maxi=1,2,…N Km(i).

Theorem 3 (Source-Specific Dominance): Suppose that the non-negative normalized pixel-
wise local volume transfer constants {K(cj) = [K1(cj),…,Km(cj),…,KJ(cj)]} at the corners of 
the pixel time series scatter simplex are near well-grounded points and exist for each of the 
underlying tissue compartments (i.e., nearly-pure volume pixels that satisfy Kj(cj) ≫ Km(cj) 

for m ≠ j reflecting source-specific dominance. Then the CAM-CM solution based on these 
corners {K(cj)} achieves maximum source-specific dominance in the sense of the minimum 
Kullback-Leibler (KL) divergence between {ej} and K(i).
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III. Method and Algorithm

So far, we have developed a mathematical framework for partial volume elimination and 

tissue-specific compartmental analysis. In this section, we fully develop an associated 

practical algorithm, consisting of data preprocessing, clustering of pixel time series, convex 

analysis of mixtures, and compartment analysis (see the schematic flowchart of our 

algorithm in Fig. 1).

A. Data Preprocessing

For the identified tumor site, our algorithm begins with four data preprocessing steps. First, 

the tumor area is extracted by masking out the normal tissues surrounding the tumor site. 

This task can be fulfilled by either multivariate image segmentation or by a human expert as 

done in drawing conventional ROIs [9], [21]. Second, the first few image frames, for 

instance, four initial images in our experiments, are taken out, as they correspond to the time 

period before sufficient tracer uptake. This task is done with great care, in accordance with 

applied imaging protocols [18], [21]. Third, pixels whose temporal average signal intensity 

is lower than 5% of the maximum value or whose temporal dynamic variation is lower than 

5% of the maximum value, are eliminated, as these noninformative pixels could have a 

negative impact on subsequent analyses. Fourth, the pixel time series is normalized over 

time using a sum-based normalization scheme specified by (5), as similarly done in [22]. 

This step focuses our analysis on the “shape” of pharmacokinetics rather than on absolute 

tracer concentration.

B. Clustering of Pixel Time Series

1) SFNM and EM Algorithm: The purpose of multivariate clustering of normalized 

pixel time series is three-fold: 1) data clustering has proven to be an effective tool for 

reducing the impact of noise/outlier data points on model learning [21], [30], [31]; 2) 

aggregation of pixel time series into a few clusters improves the efficiency of subsequent 

convex analysis of mixtures, [31]; 3) the resultant clustered compartment model permits an 

automated determination of the number of underlying tissue compartments using the 

minimum description length (MDL) criterion [18], [32], [33].

There has been considerable success in using SFNMs to model clustered data sets such as 

DCE-MRI data, taking a sum of the following general form [21], [30], [34]:

p(K(i)) = ∑
m = 1

J
πmg(K(i) em, ΣK, m)

+ ∑
m = J + 1

M
πmg(K(i) μK, m, ΣK, m)

(9)

where the first term corresponds to the clusters of pure volume pixels (m = 1,…,J), the 

second term corresponds to the clusters of partial volume pixels (m = J + 1,…,M), M is the 

total number of pixel clusters, 𝜋m is the mixing factor, g(·) is the Gaussian kernel, em 

denotes the mth natural basis vector corresponding to the mean vector of the mth pure tissue 
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compartment, and μK,m and ΣK,m are the mean vector and covariance matrix of cluster m, 

respectively. It is worth noting that SFNMs are a flexible and powerful statistical modeling 

tool and can adequately model clustered structure with essentially arbitrary complexity by 

introducing a sufficient number of mixture components. Thus, strict adherence of the (in 

general, unknown) ground-truth data distribution to the form in (9) is not required in most 

real-world applications [30], [34]. By incorporating (7) into (9), the SFNM model for pixel 

time series becomes

p(x(i)) = ∑
m = 1

J
πmg(x(i) am, Σx, m)

+ ∑
m = J + 1

M
πmg(x(i) μx, m, Σx, m)

(10)

where Σx,m = AΣK,mAT and μx,m = AμK,m, with A = [a1,…,aJ]. Accordingly, the first term 

of (10) represents the corner clusters and the second term of (10) represents the interior 

clusters (as shown in Fig. 1). From Theorem 1 and SFNM model (10), the clustered pixel 

time series set 𝒳 is (approximately) confined within a convex set whose corner centers are 

the J compartment TCs a1,…,aJ.

It has been shown that significant computational savings can be achieved by using the EM 

algorithm to allow a mixture of the form (10) to be fitted to the data [30], [34]. 

Determination of the parameters of the model (10) can be viewed as a “missing data” 

problem in which the missing information corresponds to pixel labels lim = I(i,m) specifying 

which cluster generated each data point with I(i,m) denoting the indicator function. When no 

information about lim is available, the log-likelihood for the model (10) takes the form

logℒ(𝒳|Θ) = ∑
i = 1

N
log ∑

m = 1

M
πmg[x(i) | μx, m, Σx, m] (11)

where ℒ( ⋅ ) denotes the joint likelihood function of SFNM and Θ = {πm,μx,m, Σx,m, ∀m}. 

If, however, we were given a set of already clustered data with specified pixel labels, then 

the log likelihood (known as the “complete” data log-likelihood) becomes

logℒ(𝒳, L |Θ) = ∑
i = 1

N
∑

m = 1

M
limlog πmg[x(i) |μx, m, Σx, m] (12)

where L = {lim|i = 1,…,N;m = 1,…,M}. Actually, we only have indirect, probabilistic, 

information in the form of the posterior responsibilities zim for each model m having 

generated the pixel time series x(i). Taking the expectation of (12), we then obtain the 

complete data log likelihood in the form
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logℒ(𝒳, Z |Θ) = ∑
i = 1

N
∑

m = 1

M
zimlog πmg[x(i) | μx, m, Σx, m] (13)

in which the zim = Pr(lim = 1|x(i)) are constants, and Z = {zim|i = 1,…,N;m = 1,…,M}.

Maximization of (13) can be performed using the two-stage form of the EM algorithm, 

where the pixel labels lim are treated as missing data as aforementioned. At each complete 

cycle of the algorithm we commence with an “old” set of parameter values Θ. We first use 

these parameters in the E-step to evaluate the posterior probabilities zim using Bayes 

theorem

zim = Pr lim = 1|x(i)

=
πmg[x(i) | μx, m, Σx, m]

∑m′ = 1
M πm′g[x(i) | μx, m′, Σx, m′]

, m ∈ {1, …, M} .

(14)

These posterior probabilities are then used in the M-step to obtain “new” values Θ using the 

following re-estimation formulas

πm = 1
N ∑

i = 1

N
zim (15)

μx, m =
∑i = 1

N zimx(i)
∑i = 1

N zim
(16)

Σx, m =
∑i = 1

N zim x(i) − μx, m x(i) − μx, m
T

∑i = 1
N zim

. (17)

2) APC Initialization: To reduce the likelihood of pixel time series clustering being 

trapped into local maxima, an effective and initialization-free affinity propagation clustering 

(APC) is attempted to initialize the parameter Θ for the EM algorithm and to estimate the 

number of obtainable clusters [35]. APC simultaneously considers all data points as 

potential exemplars (cluster centers) and recursively exchange real-valued messages between 

data points until a high-quality set of exemplars and corresponding clusters gradually 

emerges. Let the “similarity” s(i,m) = –‖x(i) – x(m)‖2 indicate how well the data point x(m) 

is suited to be the exemplar for data point x(i); the “responsibility” r(i,m) reflects the 
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accumulated evidence for how well-suited data point x(m) is to serve as the exemplar for 

data point x(i), and the “availability” a(i,m) reflects the accumulated evidence for how 

appropriate the data point x(i) chooses data point x(m) as its exemplar. Then, the 

responsibilities r(i,m) are computed based on

r(i, m) s(i, m) − max
m′ ≠ m

a i, m′ + s i, m′ (18)

where the availabilities a(i,m) are initialized to zero and the competitive update rule (18) is 

purely data-driven. Whereas the responsibility update (18) allows all candidate exemplars to 

compete for ownership of a data point, the availability update rule

a(i, m) min 0, r(m, m) + ∑
i′ ∉ i, m

max 0, r i′, m (19)

collects evidence from data points to support a good exemplar, where the “self-availability” 

is updated differently

a(m, m) ∑
i′ ∉ m

max 0, r i′, m . (20)

Then, the availabilities and responsibilities are combined to identify exemplars; i.e., for a 

data point x(i), its exemplar is identified as x(m*) by

m* = arg max
m

{a(i, m) + r(i, m)} . (21)

If i = m*, x(i) itself is a exemplar; otherwise x(m*) is the exemplar of the data point x(i). 
The update rules (18)—(20) are repeated iteratively, and for each iteration, APC makes 

decisions on the exemplars based on (21). The iteration is terminated when these decisions 

do not change for 10 iterations [35].

One advantage of APC is that it does not need initialization for the exemplars, since the 

update rules are purely data-driven. A set of data points sharing the same exemplar can be 

considered as a cluster, with the exemplar being the cluster center. Therefore, the mean and 

the covariance matrix of this cluster can be estimated to initialize the parameter Θ for the 

EM algorithm. Another advantage of APC is that the number of clusters need not be 

specified a priori but emerges from the message-passing procedure and only depends on the 

density distribution of the data points. This enables automatic model selection at clustering 

stage [35].
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C. Convex Analysis of Mixtures

At this point in our analysis procedure, each pixel time-course is represented by a group of 

cluster centers, where both the dimensionality and noise/outlier effect are significantly 

reduced. Given the obtained M cluster centers μx,1,…,μx,M, CAM is applied to separate 

pure-volume clusters from partial-volume clusters by detecting the “corners” of the convex 

hull containing all clusters of pixel TCs (theoretically supported by Lemma 1 and Theorem 

1). Assuming the number of compartments J is known a priori, an exhaustive combinatorial 

search (with total CJ
M combinations), based on a convex-hull-to-data fitting criterion, is 

performed to identify the most probable J corners. This explicitly maps partial-volume pixels 

to the corners and partial-volume pixels to the interior clusters of the convex hull.

Let {μx, m1
, …, μx, mJ

} be any size—J subset of {μx,1,…,μx,M}. Then, the margin (i.e., 

distance) between μx,m and the convex hull ℋ{μx, m1
, …, μx, mJ

} is computed by

δ
m, m1, …, mJ

= min
αm1

, …αmJ

μx, m − ∑
j = 1

J
αm j

μx, m j 2
(22)

where αm j
≥ 0, ∑ j = 1

J αm j
= 1. It shall be noted that if μx,m is inside ℋ{μx, m1

, …, μx, mJ
} then 

δm, (m1, …, mJ) = 0. Next, we define the convex-hull-to-data fitting error as the sum of the 

margin between the convex hull and the “exterior” cluster centers and detect the most 

probably J corners with cluster indices m1*, …mJ*  when the criterion function reaches its 

minimum

m1*, …mJ* = arg min
(m1, …, mJ)

∑
m = 1

M
δm, (m1, …, mJ) . (23)

The optimization problems of (22) and (23) can be solved by advanced convex optimization 

procedure described in [25] and an exhaustive combinatorial search (for realistic values of J 
and M, in practice), respectively.

One important issue concerning CAM-CM method is the detection of the structural 

parameter J in the model (the number of underlying tissue compartments or types), often 

called model selection [36]-[38]. This is indeed particularly critical in real- world 

applications where the true structure of the compartment models may be unknown a priori. 
We propose to use a widely- adopted and consistent information theoretic criterion, namely 

the minimum description length (MDL) [33], [36], [37], to guide model selection. The major 

thrust of this approach is the formulation of a model fitting procedure in which an optimal 

model is selected from several competing candidates, such that the selected model best fits 

the observed data. MDL formulates the problem explicitly as an information coding problem 
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in which the best model fit is measured such that it assigns high probabilities to the observed 

data while at the same time the model itself is not too complex to describe.

However, when the number of pixels is large as in DCE-MRI application, direct use of MDL 

may underestimate the value of J, due to the lack of “structure” in classical compartment 

models (over-parameterization) [18], [32], [33]. We therefore propose to naturally adopt and 

extend the clustered compartment models into the MDL formulation [39]. The proposed 

clustered compartment model allows all pixels belonging to the same cluster to share a 

common Km, thus greatly reducing model complexity for a given value of J (the number of 

convex hull corners). Specifically, a model is selected with J tissue compartments by 

minimizing the total description length defined by [32], [36]

MDL(J) = − log ℒ CM |Φ(J) + 5 + J(M + 1)
2 log(LM) (24)

where ℒ( ⋅ ) denotes the joint likelihood function of the clustered compartment model, CM 

denotes the set of M cluster centers, and Φ(J) denotes the set of freely adjustable parameters 

in the clustered compartment model (see Appendix B for more detailed discussions).

D. Tissue-Specific Compartmental Analysis

Having determined the probabilistic pixel memberships associated with pure-volume 

compartments, zi j for j = 1,…, J, i = 1…., N, we can then estimate the tissue-specific 

compartmental parameters, namely K j
trans and kep,j, j = 1,…, J, directly from DCE-MRI pixel 

time series Cmeasured(i), in which various compartment modeling techniques can be readily 

applied.

To specify which “exterior” cluster is associated with which compartment, we investigate the 

temporal enhancement patterns of the “exterior” cluster centers. From (1) and (2), Cp is 

associated with the cluster of the fastest enhancement (reaching its peak most rapidly); Cj is 

associated with the cluster of jth tissue type. We then compute Cp and Cj via

Cp =
∑i = 1

N ziJCmeasured(i)
∑i = 1

N ziJ
, C j =

∑i = 1
N zi jCmeasured(i)

∑i = 1
N zi j

(25)

For j = 1,…,J – 1.

We then recall the relationship C j(t) = K j
transCp(t) ⊗ exp −kep, jt , and discretize the 

convolution (with discretization interval Δt (/min)) to the following vector-matrix notation

C j = K j
transH kep, j Cp, j = 1, …, J − 1 (26)

by constructing a Toeplitz matrix
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H kep, j

=

e
−kep, jt1 0 0 … 0

e
−kep, jt2 e

−kep, jt1 0 … 0
… … … … …

e
−kep, jtL e

−kep, jtL − 1 e
−kep, jtL − 2 … e

−kep, jt1

Δt

(27)

that is the sampled system impulse response. Then, the estimate of kep,j and K j
trans can be 

obtained by solving the following optimization problem:

k ep, j, K j
trans = arg min

K f
trans, kep, f

C j − K j
transH kep, j Cp 2

s . t . K j
trans > 0, kep, j > 0

(28)

for j = 1…., J - 1. Finally, we can calculate the compartment TCs F Cp, k ep, 1, …, k ep, J − 1
based on Cp and k ep, 1, …, k ep, J − 1, and then estimate the local volume transfer constants 

Ktrans(i) = K1
trans(i), …, KJ − 1

trans (i), K p(i) T
 based on (4) via

Ktrans(i) =

arg min
Ktrans i

Cmeasured(i) − F Cp, k ep, 1, …, k ep, J − 1 Ktrans(i) 2

s . t . K1
trans(i) ≥ 0, …, KJ − 1

trans (i) ≥ 0, K p(i) ≥ 0

(29)

that reflects the spatial heterogeneity of vascular permeability [8].

IV. Experiments and Results

In the absence of definitive ground truth about the volume transfer constants Ktrans and flux 

rate constants kep in the tumor, the validation of a new method for tissue-specific 

compartment analysis of DCE-MRI data is always problematic. We propose therefore to first 

validate CAM-CM on realistic simulation data for the typical case of J = 3, where there are 

two tissue compartments: fast flow and slow flow, and the input function. The J = 3 case has 
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been widely considered in previous studies [8], [18], [21], [40]. We then proceed to evaluate 

the method using real DCE-MRI data.

A. Experiment Design and Data Analysis

All the data sets were analyzed according to the algorithm described in Fig. 1. We tested 

CAM-CM on realistic simulation data, comparing the estimates of kinetic parameters 

produced by CAM-CM to the ground truth, both in terms of biases (accuracy) and variance 

(reproducibility) of the estimates, measured over 50 replicated data sets. For comparison 

purposes, we also evaluated three most relevant methods, including two ROI/subROI-based 

methods—classic CM and IQML [7], [13], and one pixel-based method—IML-CM [18], 

with randomized initialization of kinetic parameters within a pre-specific realistic range 

[13], [41]. We assess the performance of these peer methods using the same procedures as 

for CAM-CM. Specifically, classic CM and IQML require the input of predefined 

compartment ROIs that can often be acquired by winner-take-all classification of local 

volume transfer constants at each pixel [22]. To illustrate the impact of PVE elimination, we 

also report the reduction of relative bias achieved by CAM-CM over the peer methods, 

calculated as 1 - (Biascam/Biaspeer). To assess the accuracy of estimated local volume 

transfer constants Ktrans(i) produced by CAM-CM and IML-CM, we calculated the root 

mean-square fitting error (RMSE) defined by [16]

RMSE j = 1
K j

trans*
1
N ∑

i = 1

N
K j

trans(i) − K j
trans(i)

2
(30)

for j = 1,…,J, where K j
trans* is the ground truth compart- mental volume transfer constant for 

compartment j, K j
trans(i) is the ground truth local volume transfer constant for pixel i and 

compartment j, and K j
trans(i) is the estimate of K j

trans(i).

We tested CAM-CM on four real DCE-MRI data sets acquired for breast cancer studies [1], 

[42]. We visually examined the convexity of projected pixel time series via the top two 

convexity-preserved projections. The convexity-preserved projections pursues two 

orthonormal bases that project the data points onto a 2-D space where the margin (i.e., 

distance) between the data points outside the convex hull and the convex hull [see (22)] is 

minimum.

In all four data sets, we observed that J = 3 compartments were sufficient to describe the 

scatter plots via a three-corner convex set. Additional compartments can be used to account 

for the noisy data points in the imperfect convex hull. However, these compartments become 

difficult to interpret [13], [16]. For comparison purposes, we analyzed the data using J = 4, 

5, 6 and observed noise-like and biologically implausible TC patterns associated with these 

additional compartments. In addition, we also applied the proposed MDL criterion based on 

clustered compartment model to these four data sets (see (24) and Appendix B); where MDL 

achieves its minimum values when J = 3 for all cases. We, therefore, use J = 3 compartments 

in the CAM-CM analysis. The number of clusters M takes integer values between 12 and 18, 
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determined automatically by the APC algorithm [35]. In addition to estimating kinetic 

parameters, we also plot the estimated compartment TCs, the local volume transfer constant 

maps, and the fitting error between the parametric compartment TCs F k ep, f , k ep, s, Cp  and 

non-parametric compartment TCs μx,f/s/p. To illustrate the existence of PVE and impact of 

partial-volume correction, we compared the dissected tissue-specific compartment TCs and 

overall ROI-based TCs.

B. Synthetic Data and Simulation Studies

To validate CAM-CM, we reconstituted a large set of synthetic DCE-MRI time series by 

multiplying customized local volume transfer constant maps Ktrans(i) by known 

compartment TCs F (kep,f,kep,s,Cp) (Fig. 3). Such mixtures mimic the common scenario in 

DCE-MRI of actual tumors [1], [8], [9], [21], [41]. Specifically, four sets of compartment 

TCs were synthesized according to the ground truth kinetic parameter values listed in Table I 

and were sampled at tl = 0.5(l – 1) for l = 1, 2,…18 [41], The three customized local volume 

transfer constant maps Ktrans(i) were synthesized based on the K(i) maps given in Fig. 3 

multiplied by the compartment Ktrans listed in Table I, where K(i) takes one of the vectors 

{[1,0,0], [0,1,0], [0,0,1]} for pure-volume pixels, one of the vectors {[0.5,0.5,0], [0.5,0,0.5], 

[0,0.5,0.5]} for two-tissue compartment partial-volume pixels, and equal-weight vector 

[1/3,1/3,1/3] for three-compartment partial-volume pixels. To account for object variability, 

we superimposed maximally 15% relative object variability to K(i) by introducing a zero-

mean Gaussian perturbation term, where negative values were truncated to zero and K(i) 
was re-normalized. For highly unlikely pixels with all three negative values, we simply 

eliminated them from the synthetic data sets. To account for experimental noise, we 

introduced a zero-mean Gaussian term ε with covariance matrix Σ σi j = 0.9i − j |σ2  to each 

pixel kinetics C(i) = [F1,…,FJ]Ktrans(i) + ε, where the values of σ2 were chosen according 

to the three signal-to-noise ratio (SNR) levels listed in Table I and defined by [29]

SNR = 10log10
∑l = 1

L C i, tl − 1
L ∑l′ = 1

L C i, tl′
2

σ2L
. (31)

We report the results of the analysis of total 600 (= 4×3×50) synthetic data sets, where 50 

replicated data sets were generated for each of the 12 parameter settings. We compared the 

estimated tissue-specific compartmental kinetic parameter values by CAM-CM with the 

ground truth and observed consistent high estimation accuracy in terms of low estimation 

biases and variances (Table I). From these experimental assessments, the capability of 

CAM-CM approach is evident as the estimates of tissue-specific kinetic parameters are very 

close to the ground truth even with significant PVE present in a large number of pixels in the 

synthetic data sets.

Accurate correction of PVE enables the maximization of information obtainable from DCE-

MRI of a heterogeneous tumor [1], [3], [9], [10]. To estimate the beneficial impact of 

eliminating PVE to tissue-specific compartment analysis, we analyzed the same data sets 
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using two ROI-based methods: classic CM and IQML. The extensive experimental results 

show that CAM-CM significantly and consistently outperform the two peer methods on 

almost all data sets in terms of much lower estimation biases and variances (the most 

accurate estimates are marked as bold numbers for each scenario and noise level in Table I). 

Since classic CM and IQML do not explicitly correct PVE present in the overlapping areas 

of different compartments, large resulting biases in the tissue-specific kinetic parameter 

estimates are expected. On the other hand, the experimental results show the efficacy of 

CAM in eliminating the impact of PVE and reducing the estimation biases. Specifically, on 

Ks
trans estimation, CAM-CM achieved 25%−84% and 57%−92% reductions in relative bias 

over classic CM and IQML, respectively; on K f
trans estimation, CAM-CM achieved 68%

−93% and 64%−94% reductions in relative bias over classic CM and IQML, respectively; on 

kep,s estimation, CAM-CM achieved 85%−98% and 57%−92% reductions in relative bias 

over classic CM and IQML, respectively; on kep,f estimation, CAM-CM achieved 61%−99% 

and 50%−98% reductions in relative bias over classic CM and IQML, respectively.

To further illustrate the inevitable impact of PVE to the estimation bias of the tissue-specific 

kinetic parameters produced by classic CM and IQML, we used the true values of the kinetic 

parameters (ground truth) to initialize the classic CM and IQML algorithms. As expected 

(Table II), the experimental results show that the parameter estimates actually moved away 

from the initial, ground truth values, approaching the biased values similar to those 

summarized in Table I.

To validate CAM-CM in reconstructing local volume transfer constant maps Ktrans(i) based 

on (27), we calculated the RMSE between the estimated tissue-specific compartmental 

kinetic parameter values Ktrans(i) by CAM-CM and the ground truth using (28) and observed 

consistent high estimation accuracy. Specifically, on data sets with scenario 1 parameter 

settings and 15 dB SNR, CAM-CM achieved quite low RMSE (mean ± standard deviation 

calculated over 50 replicated data sets), with RMSEf = 0.163±0.032, RMSEs = 0.145±0.042, 

and RMSEP = 0.055 ± 0.021, respectively. We then analyzed the same data sets using the 

pixel-based method, IML-CM [18], and observed much higher RMSE, with RMSEf = 0.529 

± 0.100, RMSEs = 0.501 ± 0.095, and RMSEp = 0.345 ± 0.040, respectively. Fig. 4 shows 

the local volume transfer constant maps estimated by CAM-CM and IML-CM, respectively. 

In addition, tested on the synthetic data sets with ground truth flux rate constants kep,s = 0.1 

min−1 and kep,f = 0.5 min−1, CAM-CM produced more accurate and reliable estimates of 

k ep, s = 0.120 ± 0.022 min−1 and k ep, f = 0.489 ± 0.031 min−1 as compared to the highly biased 

and unstable estimates of k ep, s = 0.2773 ± 0.105 min−1 and k ep, f = 0.635 ± 0.278 min−1 

produced by IML-CM.

To determine whether the proposed MDL criterion (see (24) and Appendix B) selects the 

correct number of underlying tissue compartments (J = 3), we calculated the MDL values for 

J = 2, 3,…, 6 and found that MDL achieves its minimum values when J = 3, indicating the 

efficacy of the proposed MDL criterion in determining correct model structure. Fig. 5 

displays the calculated MDL values (for scenarios 1–4) when SNR = 10 dB.
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C. Real DCE-MRI Data Studies

As aforementioned, classic compartment modeling methods are oblivious to tissue 

heterogeneity. They can neither distinguish between variations in kinetic patterns resulting 

from actual physiological changes versus differences in tissue-type composition, nor identify 

the contributions of different compartments to the total measured tracer concentration. 

Therefore, their power to detect mechanistic change of kinetic patterns could be significantly 

confounded by tumor variations under different tissue-type compositions [1], [9].

We first considered a T1-weighted gadolinium-enhanced (Gd-DTPA) DCE-MRI data set 

(collected by P. L. Choyke, NIH Clinical Center) of an advanced breast cancer case [11], 

[12] (Fig. 1). The three-dimensional DCE-MRI scans were performed every 30 s for a total 

of 11 min after the injection, on a 1.5T magnet using three-dimensional spoiled gradient-

echo sequences (TR < 7 ms, TE < 1.5 ms, flip angle = 30°, matrix = 192 × 256, 0.5 

averages). Typically, 12–15 slices are obtained and 15–18 time frames are acquired for each 

case.

We applied the proposed MDL criterion together with clustered compartment model to 

detect the number of underlying tissue compartments, and observed that with J = 3, MDL 

achieves its minimum value [see Fig. 6(a)]. We therefore set J = 3 for this data set. Our 

CAM-CM analysis reveals two biologically interpretable compartments with distinct 

physiological kinetic patterns [Fig. 7(c)]: 1) Fast-flow: fast clearance rate of the tracer; 2) 

Slow-flow: very slow tracer kinetics. They are associated with local volume transfer constant 

maps with different spatial distributions [Fig. 7(d)]: 1) Fast-flow: peripheral “rim” region of 

the tumor; 2) Slow-flow: inner “core” region of the tumor. As can be expected, the overlap 

of regions (partial volume pixels) that was noticed on these maps cannot be obtained in the 

ROI studies. Our analysis indicates that the tumor site contains a significant fraction (84.3%) 

of partial volume pixels, which can be visually observed from and verified by the “filled” 

three-corner convex hull of the projected pixel time series scatter plot [Fig. 7(a)]. As shown 

by the dissected and overall TC dynamic patterns [Fig. 7(c) versus (b)], the values found for 

the kinetic parameters by CAM-CM demonstrate that the tumor site contains rapid and slow 

tracer clearance compartments and estimated Ktrans(i) varies from pixel to pixel, which 

otherwise could not be seen if tissue heterogeneity was not taken into account [9].

The outcomes of CAM-CM analysis are plausibly consistent with the previously reported 

heterogeneity within tumors [1], [9], [11], [42]. Since angiogenesis is essential to tumor 

development, it has been widely observed that active angiogenesis in advanced breast tumors 

often occurs in the peripheral “rim” with co-occurrence of inner-core hypoxia [1], [43]. 

Defective endothelial barrier function due to vascular endothelial growth factor (VEGF) 

expression is one of the best-documented abnormalities of tumor vessels, resulting in 

spatially heterogeneous high microvascular permeability to macromolecules [1], [9], [11]. 

Specifically, tumor neovasculature is abnormal—leaky vessels, chaotic and tortuous 

structure, and dead ends, giving rise to a rapid enhancement and gradual washout pattern 

[11]. At the same time, as a tumor grows, it rapidly outgrows its blood supply and requires 

neovessel maturation, leaving an inner core of the tumor with regions where the blood flow 

and oxygen concentration are significantly lower than in normal tissues, gives rise to a much 
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slower accumulation and minimum washout pattern [11], [44], In fact, the estimated Ktrans(i) 
maps reveal regions of differential function that correlate with differential gene expression 

involved in angiogenesis [11], [42], Furthermore, the CAM-CM estimated values of kep,f = 

3.06 min−1 and kep,s = 0.29 min−1 were generally consistent with the parameter values (kep,f 

= 2.95 min−1 and kep,s = 0.16 min−1) reported by the most relevant studies [41].

As an example of a more complex problem, we considered the data sets arising from a 

longitudinal study of tumor response to anti-angiogenic therapy using similar imaging 

protocols (Figs. 8–10) [1], [11], [42]. Three sets of DCE-MRI data were acquired before, 

during, and after the treatment period, each three months apart, serving as the potential 

endpoints in assessing the response to therapy. We calculated the MDL values based on (24) 

for J = 2,…, 6, and MDL suggests J = 3 for all these three data sets [see Fig. 6(b)-(d)]. On 

data set 1 (baseline), our CAM-CM analysis reveals two biologically interpretable 

compartments with distinct physiological kinetic patterns [Fig. 8(c)]. They are associated 

with local volume transfer constants maps with a significant fraction (72.4%) of partial 

volume pixels [Fig. 8(d)], which can be visually observed from the “filled” three-corner 

equal-lateral convex hull of the projected pixel time series scatter plot [Fig. 8(a)]. This 

represents a relatively less aggressive and early stage breast tumor with relatively higher 

permeability kep,f = 2.093 min−1 in its fast-flow pool and relatively lower permeability kep,s 

= 0.695 min−1 in its slow-flow pool (Table III). As expected, local volume transfer constants 

maps do not show any visible rim-shape region of aggressive angiogenesis or inner-core 

region of hypoxia but rather more uniform distributions of the two compartments.

On data set 2 (the same tumor, acquired during the treatment), our CAM-CM analysis 

reveals two biologically interpretable compartments with distinct, yet with much closer 

physiological kinetic patterns [Fig. 9(c)]. They are associated with local volume transfer 

constants maps with a significant fraction (61.8%) of partial volume pixels [Fig. 9(d)], 

which can be visually observed from the “filled” three-corner convex hull of the projected 

pixel time series scatter plot [Fig. 9(a)]. The CAM-CM estimated values of kep,f = 1.781 min
−1 and kep,s = 0.749 min−1 indicated much reduced permeability in its fast-flow pool and 

slightly increased permeability in its slow-flow pool (Table III), while local volume transfer 

constant maps reveal disconnected and reduced regions of localized angiogenesis and 

connected and enlarged regions of normalized tissue [Fig. 9(d)]. On the data set 3 of the 

same tumor acquired after the treatment period, our CAM-CM analysis reveals two similar 

compartments with largely converged physiological kinetic patterns [Fig. 10(c)]. They are 

associated with local volume transfer constants maps with a significant fraction (59.4%) of 

partial volume pixels [Fig. 10(d)], which can be visually observed from the blended obtuse-

isosceles triangle convex hull of the projected pixel time series scatter plot [Fig. 10(a)]. The 

CAM-CM estimated values of kep,f = 1.068 min−1 and kep,s = 0.582 min−1 indicate 

significantly reduced overall vascular permeability (Table III), while local volume transfer 

constant maps reveal globally reduced yet only isolated angio-genic activities [Fig. 10(d)].

The outcomes of CAM-CM analysis here are plausibly consistent with the reported 

observations on tumor response to antiangiogenic therapy [1], [3], [5], [9], [11], [12], [43]. 

The interaction between angiogenic inhibitors and tumor vasculature is a complex process 

depending upon the doses and timing of the applied therapeutic agents [5], [9]. For example, 
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controlled antiangiogenic therapies not only destroy aggressive angiogenesis but also 

transiently “normalize” the abnormal structure and function of surviving tumor vasculature 

to make it more efficient for oxygen and drug delivery. Initial results from trials of 

angiogenesis inhibitors monitored with DEC-MRI suggest that before therapy, the tumors 

are often highly and heterogeneously perfused and permeable, while soon after successful 

therapy begins, dramatically decreased perfusion and permeability can be detected [1], [11]. 

In breast cancer, a decrease in transendothelial permeability has been reported to accompany 

tumor response to therapy [9], [11]. We note that tumor induced vascular activities were 

significantly reduced as an early response to therapy, where most noticeable is the large and 

consistent drop in the relative fraction of the K f
trans(i) map and permeability rate kep,f (slower 

initial enhancement, decreased amplitude, slower wash-out) [11]. We note that the tumor 

vasculature is intrinsically heterogeneous and, as a result, the whole tumor region may not 

demonstrate responses to antiangiogenic therapy that occur in some parts of the tumor but 

not in other parts [12]. We also note that tumor islands of persistent enhancement have 

escaped the effects of therapy, representing previously reported foci of resistant and more 

aggressive clones within a tumor [3], [11], Once again, the CAM-CM estimated values of 

kep = 0.58 ~ 2.09 min−1 were generally consistent with the parameter values of kep = 0.88 ~ 

1.93 min−1 reported by the most relevant studies [41].

V. Conclusion and Discussion

In this paper, we have addressed the critical yet subtle issue of spatially-mixed pixel-wise 

partial volume effect in multi-compartment modeling applied to kinetic parameter estimation 

using real DCE-MRI data [3], [9]-[12]. We have presented the CAM-CM approach to 

implement tissue-specific compartment modeling of DCE-MRI on complex tumors, which 

combines multivariate pixel time-series clustering, convex geometry analysis of the clustered 

scatter plot simplex, and PVE-free compartment modeling (Fig. 1). As illustrated both by 

extensive realistic simulations with significant PVE (more than 50% of pixels being 

spatially-mixed pixel-wise partial-volume pixels) and by real examples, CAM-CM can be 

very effective at revealing multi-compartment structure within the DCE-MRI data of highly 

heterogeneous tumors, eliminating partial-volume pixels, and estimating tissue-specific 

kinetic parameter values. The multiform summaries of Figs. 7–10 are visually simple to 

interpret, yet still convey considerable mathematical insights. While the effectiveness of 

many attempts on tissue-specific compartment modeling is often data-dependent given the 

challenging nature of the task, we would expect the CAM-CM method, with publicly 

available open-source software package, to be a very useful tool for the exploratory analysis 

in many research and clinical applications.

It is important to emphasize that in compartment modeling there is no absolute ground truth 

about the underlying physical model, and so it is difficult to validate the merits of a 

particular tissue-specific compartment modeling technique. This is one reason, clearly, why 

there are repeated discussions on the problems associated with tissue heterogeneity in 

compartment modeling [1], [3], [9]-[12], [21]. We note that we have opted for mathematical 

identifiability as opposed to large-scale assessment in designing our method. our primary 

goal was to demonstrate that convex analysis of the clustered pixel time-series scatter plot 
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simplex is able to separate pure-volume pixels from spatially-mixed partial-volume pixels 

and to achieve PVE-free tissue-specific compartment modeling. our studies suggest that 

using a sufficient number of pure-volume pixels detected by clustered CAM as we do here 

combines the advantages of high-sNR sub-RoI based methods and less-PVE pixel-based 

methods [3], [9], [11], [12], [14], [22], [23], leading to a substantial improvement in the 

accuracy and reproducibility of multi-compartment kinetic parameter estimation. We have 

not explored the full flexibility that this method readily allows, with different numbers of 

clusters, M. Presumably, equal or better performance could be achieved with more clusters if 

more pixels were available. We may readily extend our method to incorporate spatial prior 

knowledge in place of the pixel time-series clustering in the current CAM-CM framework 

[16].

In relation to previous work, the concept of isolating sub- RoIs or single pixels for 

compartment or parametric analysis can be traced back to Zhu et al. [14], Hayes et al. [45], 

Li et al. [2], and Mayr et al. [46], and was further developed by Riabkov et al., [13], 

Yankeelov et al. [43], and Kelm et al. [16] by incorporating spatial prior knowledge 

(adjacent smoothness) or histogram analysis. As pointed out by Padhani and Leach [3], [19] 

and Cinotti et al. [22], pixel-based approaches attempt to visually appreciate tissue 

heterogeneity (thus being able to spatially match diagnostically-important tumor vascular 

characteristics) and remove the need to selectively place user-defined sub-RoIs, while at the 

cost of having poor sNR and less quantitative in- terpretability. It is important to emphasize 

that an additional limitation associated with these approaches is the inability to address 

spatially-mixed pixel-wise partial-volume effect, while the CAM-CM approach discussed in 

this paper permits robust identification of pure-volume pixels and subsequent PVE-free 

multi-compartment modeling. There is some similarity between the present method and our 

earlier work [18] which explicitly incorporates the PVE model (3) into a pixel-based 

maximum likelihood framework and so offers the potential for unbiased multi-compartment 

modeling. As well as again a key distinction is that the CAM-CM approach also allows to 

minimize the noise effect on modeling by aggregating pixels in a few clusters. Thus, it 

avoids a pixel by pixel compartmental analysis where noise would be maximum due to the 

lack of statistical accuracy [22].

A software implementation of the CAM-CM algorithm in open-source MATLAB is freely 

available online.1

Acknowledgments

This work was supported in part by the National Institutes of Health under Grant EB000830 and Grant CA109872, 
and in part by the National Science Council of Taiwan under Grant NSC 99-2221-E-007-003-MY3.

Appendix A

Proof of Lemma 1: By the definition of convex set [25], the fact that 

∀{i, j}K j(i) ≥ 0, ∑ j = 1
J K j(i) = 1, and x(i) = ∑ j = 1

J K j(i)a j readily yield x(i) ∈ ℋ 𝒜  where

1http://www.cbil.ece.vt.edu/software.htm
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ℋ{𝒜} = ∑
j = 1

J
α ja j |a j ∈ 𝒜, α j ≥ 0, ∑

j = 1

J
α j = 1 . (A1)

Since a1,…aJ are linearly independent, it follows that

∑
j = 1

J
α ja j = 0 iff α j = 0 ∀ j (A2)

that also implies that ∀j

a j = ∑
j = 1

J
α j′a j iff α1′ , …, αJ′

T = e j ∀ j (A3)

i.e., aj can only be a trivial convex combination of a1,…,aJ. Hence, by Definition 2, a1,…,aJ 

are therefore the corner points of convex set ℋ 𝒜 .

Proof of Theorem 1: Since ∃iWGP( j), K iWGP( j) = e j ∀ j, and x(i) = ∑ j = 1
J K j(i)a j, we have

x iWGP( j) = a j . (A4)

Then, for any

z ∈ ℋ{𝒜} = ∑
j = 1

J
α ja j |a j ∈ 𝒜, α j ≥ 0, ∑

j = 1

J
α j = 1

we have

z = ∑
j = 1

J
α ja j = ∑

j = 1

J
α jx iWGP( j)

= ∑
i = 1

N
αi′x(i), where αi′ =

α j, i ∈ iWGP( j)

0, i ∉ iWGP( j)

(A5)

that implies z ∈ ℋ{𝒳} = ∑i = 1
N αi′x(i) |x(i) ∈ 𝒳, αi′ ≥ 0, ∑i = 1

N αi′ = 1 , i.e., ℋ 𝒜 ⊆ ℋ 𝒳 . 

On the other hand, for any z ∈ ℋ{𝒳} = ∑i = 1
N αix(i) |x(i) ∈ 𝒳, αi ≥ 0, ∑i = 1

N αi = 1 , we have
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z = ∑
i = 1

N
αix(i) = ∑

i = 1

N
αi ∑

j = 1

J
K j(i)a j

= ∑
j = 1

J
∑
i = 1

N
αiK j(i) a j = ∑

j = 1

J
β ja j

(A6)

where β j = ∑i = 1
N αiK j(i), ∑ j = 1

J β j = 1 that implies z ∈ 

ℋ{𝒜} = ∑ j = 1
J α ja j |a j ∈ 𝒜, α j ≥ 0, ∑ j = 1

J α j = 1 , i.e., ℋ 𝒳 ⊆ ℋ 𝒜 . Combining 

ℋ 𝒳 ⊇ ℋ 𝒜  and ℋ 𝒳 ⊆ ℋ 𝒜  gives ℋ 𝒳 = ℋ 𝒜 , and together with Lemma 1 

readily completes the proof of Theorem 1.

Proof of Theorem 2: Consider the pixel K i* = ∑ j = 1
J α j i* K c j  of the convex hull defined 

by the corners {K(cj)} whose mth entry is the largest among all pixels, i.e., 

Km i* = maxi = 1, 2, …NKm(i). Since ∑ j = 1
J α j i* = 1, we may, therefore, write

Km i* = ∑
j = 1

J
α j i* Km i* = ∑

j = 1

J
α j i* Km i* . (A7)

Alternatively, the mth entry of K(i*) can be expressed as

Km i* = ∑
j = 1

J
α j i* Km c j . (A8)

By the unique convex expression of Km(i*), we have

∑
j = 1

J
α j i* Km i* − Km c j = 0 (A9)

which, together with the fact αj·(i*) > 0 and Km(i*) - Km(cj) ≥ 0, implies i* ∈ {cj}. Q.E.D

Proof of Theorem 3: Since ej represents the ideal source-specific dominance for the jth tissue 

compartment based on the definition of a pure-volume pixel, we can measure the degree of 

source-specific dominance in K(cj) by the Kullback–Leibler (KL) divergence [47]

KL e j K c j = log 1
K j c j

. (A10)
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Similarly, we can evaluate the source-specific dominance in any interior pixel 

K(i) = ∑ j = 1
J pi jK c j  of the convex hull defined by the corners {K(cj)}, which is sufficiently 

close to K(cj) (i.e., pij ≫ pim for m ≠ j with pij being the percentage of jth tissue 

compartment in pixel i), by the KL divergence

KL e j K(i)

= log 1
pi1K j c1 + ⋯ + pi jK j c j + ⋯ + piJK j cJ

.

Since Kj(cj) ≫ Km{cj) and pij ≫ pim for m ≠ j, ignoring the second-order terms 

{pimKj(cm),m ≠ j} [48], we may, therefore, write

KL e j K(i) = log 1
pi jK j c j

. (A11)

Combining (A10) and (A11), we have

KL e j K c j − KL e j K(i) = logpi j ≤ 0 (A12)

which implies KL(ej‖K(cj)) ≤ KL(ej‖K(i)) Q.E.D.

Appendix B

Our aim herein is to use MDL criterion [32], [36] and the CAM-CM estimates to select the 

best value of J automatically (the number of convex hull corners or tissue compartments). 

Since the number of pixels is large as in DCE-MRI application, direct use of MDL may 

underestimate J, due to the lack of “structure” in classical compartment models (over-

parameterization) [18], [32], [33]. We, therefore, propose to naturally adopt and extend a 

clustered compartment model into the MDL formulation [39].

In the clustered J-tissue compartment model, we allow all pixels belonging to the same 

cluster [identified from SFNM, see (9) and (10)] to share a common local volume transfer 

constant, namely Km with length J,m = 1,…,M. Letting Cm be the mth cluster center 

associated with Km, from (4), we can express the clustered compartment model as follows:

Cm = F1, …, FJ Km + n (B1)

where n is the modeling residual noise assumed to follow zero-mean white Gaussian 

distribution n ~ N(0,σ2∙I) with variance σ2. The corresponding minimum description length 

(MDL) [36] is then given by
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MDL(J) = − log ℒ CM |Φ(J) + |Φ(J)|
2 log(LM) (B2)

where CM = {Cm,m = 1,2,…,M}, ℒ CM |Φ(J)  is the likelihood function for the clustered 

compartment model, Φ(J) is the set of freely-adjustable parameters in the clustered 

compartment model, Φ(J) is the cardinality of Φ(J), and L is the length of Cm.

We specify Φ(J) as follows. From (3)-(4), F1,…,FJ−1 are parameterized by kep,j, j = 1,2,…,J
−1. Furthermore, Cp is parameterized by {λ1, λ2, λ3, α2, α3} based on the well-known 

exponential model [13], [18], Then, together with K1,…,KM and σ, we have

Φ(J) = λ1, λ2, λ3, α2, α3, kep, 1, kep, 2,

⋯kep, J − 1, K1, …, KM, σ

thus Φ(J)| = 5 + J + M ∙ J.

Based on CAM-CM estimated F1,…,FJ determined by Cp and k ep, j, j = 1, …, J − 1 , and 

Km and σ obtained by the maximum-likelihood estimation

Km = arg max
Km

log ℒ CM |Φ(J)

= arg min
Km

Cm − F1, …, FJ Km
2

s.t. Km ≥ 0 ∀m

σ = arg max
σ

log ℒ CM |Φ(J)

= 1
M ⋅ L ∑

m = 1

M
Cm − F1, …, FJ Km

2

we can express the joint likelihood function in the MDL given by (B2) as

ℒ CM |Φ(J)

= ∏
m = 1

M
2πσ2 −L/2exp −

Cm − F1, …, FJ Km
2

2σ2 .

(B3)
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Fig. 1. 
Roadmap of the CAM-CM method (illustrated on the special case of J = 3). A hybrid 

multivariate clustering first groups the normalized pixel time courses into “local” clusters 

that correspond to either pure-volume or partial-volume pixels. The CAM-CM then 

separates the pure-volume clusters from partial-volume clusters by detecting the corners of 

the clustered convex hull. The identified pure-volume cluster centers and their associated 

pixels are further used to estimate the tissue-specific kinetic parameters within the tumor site 

by compartment modeling globally and locally.
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Fig. 2. 
Schematic diagram of parallel-mode J-tissue compartment model.

Chen et al. Page 30

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 December 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
The spatial distributions of the compartments and TCs associated with the compartmental 

kinetic parameters used in the realistic DCE-MRI simulations. The nontumor background is 

denoted by “carpet texture” and the compartment pure-volume distributions are denoted by 

three partially-overlapped gray regions. The boundaries of the overlapping compartment 

pure-volume regions are also illustrated in “boundary map.”
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Fig. 4. 
Local volume transfer constants maps estimated by CAM-CM and IML-CM.
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Fig. 5. 
Model selection by MDL on different simulation data sets. MDL consistently indicates J = 3 

as the optimum model order that is also consistent with the ground truth. (a) Scenario 1.SNR 

= 10dB (b) Scenario 2 SNR = 10 dB.(c) Scenario 3 SNR = 10 dB. (d) Scenario 4 SNR = 10 

dB.
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Fig. 6. 
Model selection by MDL on real DCE-MRI data sets. MDL consistently suggests J = 3 as 

the optimum model order. (a) Typical case. (b) Longitudinal 1. (c) Longitudinal 2. (d) 

Longitudinal 3.
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Fig. 7. 
The experimental results of CAM-CM on a typical breast cancer DCE-MRI data. The 

estimated kinetic parameters are K f
trans = 0.382/min, Ks

trans = 0.017/min, kep,f = 3.063/min, 

kep,s = 0.293/min. (a) The identified convex hull of clustered pixel TCs (Blue dots: 

normalized pixel TCs; Red circles: cluster centers; Blue lines: cluster memberships). (b) 

Normalized overall TC calculated from the entire tumor ROI. (c) Normalized compartment 

TCs estimated by CAM-CM (the discrete curves show the normalized TCs directly 

estimated via CAM; while the smooth curves show the normalized TCs which are fitted by 

the kinetic parameters estimated via CAM-CM). (d) Local volume transfer constant maps 

estimated by CAM-CM.
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Fig. 8. 
The results of CAM-CM on DCE-MRI data set 1 of the breast cancer longitudinal study. (a) 

Identified convex hull of clustered pixel TCs (Blue dots: normalized pixel TCs; Red circles: 

cluster centers; Blue lines: cluster memberships). (b) Normalized overall TC calculated from 

the entire tumor ROI. (c) Normalized compartment TCs estimated by CAM-CM. (d) Local 

volume transfer constant maps estimated by CAM-CM.

Chen et al. Page 36

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 December 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
The results of CAM-CM on DCE-MRI data set 2 of the breast cancer longitudinal study.
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Fig. 10. 
The results of CAM-CM on DCE-MRI data set 3 of the breast cancer longitudinal study.
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TABLE II

Kinetic Parameter Values Estimated by Classic CM and IQML With Algorithms Being Initialized by the 

Ground Truth

Ground truth parameter values SNR=20dB SNR=15dB SNR=10dB

CM IQML CM IQML CM IQML

Scenario 1

Ks
trans

 = 0.03 /min 0.048 0.074 0.048 0.074 0.047 0.074

kep,s =0.1 /min 0.227 0.170 0.231 0.193 0.228 0.186

K f
trans

 = 0.03 /min 0.094
0.111

0.084
0.106

0.085
0.107

kep,f =0.5 /min 0.920 0.496 0.810 0.515 0.827 0.509

Scenario 2

Ks
trans

 = 0.03 /min 0.051 0.038 0.050 0.040 0.049 0.040

kep,s =0.1 /min 0.266 0.154 0.257 0.163 0.253 0.156

K f
trans

 = 0.05/min 0.125 0.058 0.124 0.063 0.134 0.067

kep,f =1.2 /min 1.596 0.506 1.542 0.545 1.708 0.572

Scenario 3

Ks
trans

 = 0.06/min 0.095 0.160 0.093 0.159 0.092
0.161

kep,s =0.5 /min 0.758 0.631 0.745 0.624 0.756 0.633

K f
trans

 = 0.05/min 0.134 0.200 0.132 0.200 0.130
0.200

kep,f =l.2/min 1.729 1.144 1.730 1.144 1.724 1.143

Scenario 4

Ks
trans

 = 0.05/min 0.101 0.119 0.097 0.128 0.098
0.128

kep,s= 0.6 /min 1.045 0.849 0.998 0.849 1.001 0.850

K f
trans

 = 0.08/min 0.168 0.181 0.155 0.191 0.157
0.189

kep,f= 1.5 /min 2.106 1.418 1.960 1.422 1.965 1.422
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TABLE III

Estimated Kinetic Parameters on Longitudinal Breast Cancer DCE-MRI Data Sets

K f
trans (/min) Ks

trans (/min) kep,f (/min) kep,s (/min)

Longitudinal 1 1.780 0.270 2.093 0.695

Longitudinal 2 0.412 0.057 1.781 0.749

Longitudinal 3 0.289 0.055 1.068 0.582
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