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Abstract

Objectives: Electroencephalography (EEG) is a central part of the medical evaluation for 

patients with neurological disorders. Training an algorithm to label the EEG normal vs abnormal 

seems challenging, because of EEG heterogeneity and dependence of contextual factors, including 

age and sleep stage. Our objectives were to validate prior work on an independent data set 

suggesting that deep learning methods can discriminate between normal vs abnormal EEGs, to 

understand whether age and sleep stage information can improve discrimination, and to 

understand what factors lead to errors.

Methods: We train a deep convolutional neural network on a heterogeneous set of 8,522 routine 

EEGs from the Massachusetts General Hospital. We explore several strategies for optimizing 

model performance, including accounting for age and sleep stage.

Results: The area under the receiver operating characteristic curve (AUC) on an independent test 

set (n = 851) is 0.917 marginally improved by including age (AUC=0.924), and both age and sleep 

stages (AUC= 0.925), though not statistically significant.

Conclusions: The model architecture generalizes well to an independent dataset. Adding age 

and sleep stage to the model does not significantly improve performance.

Significance: Insights learned from misclassified examples, and minimal improvement by 

adding sleep stage and age suggest fruitful directions for further research.
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1. Introduction

Electroencephalography (EEG) can be used to detect the abnormal patterns of brain 

electrical activity present in a broad range of neurological and medication conditions. For 

example, EEGs of patients with epilepsy often exhibit characteristic “epileptiform” 

discharges (epileptic spikes or sharp-waves) (Schomer and Da Silva 2012). Lesions, such as 

strokes or hemorrhages, can result in asymmetry across left and right hemispheres (Agius 

Anastasi et al. 2017; Jordan 2004; van Putten 2007). Patients with depressed levels of 

consciousness exhibit generalized slowing of EEG rhythms or burst suppression patterns 

(Young 2000; Kaplan 2004; Schomer and Da Silva 2012) Metabolic encephalopathy from 

acute liver failure can cause abnormalities such as triphasic waves (Boulanger et al. 2006; 

Foreman et al. 2016).

Routine EEGs, brief recordings lasting typically 20–30 minutes, play an important part in 

diagnosing these conditions. However, there are several important difficulties in determining 

whether an EEG is normal or abnormal. First, inter-rater agreement is moderate. For 

example, a spike-and-wave discharge can be brief and small in amplitude, barely 

distinguishable from the background. Asymmetries of the EEG background similarly range 

from obvious to subtle. Such ambiguities lead to imperfect agreement among clinical 

neurophysiologists and inconsistent interpretations of the same EEG. For example, six 

board-certificated neurophysiologists classified 300 EEGs from a general clinically 

heterogeneous population (≥ 1-year-old) as normal vs containing seizures or epileptiform 

discharges and achieved an agreement (Fleiss’s kappa) of 55% (Grant et al. 2014). For 

neonates with hypoxic ischemic encephalopathy, three pediatric neurophysiologists reviewed 

60 EEGs and categorized them as normal vs. abnormal (Wusthoff et al. 2017) and achieved 

an agreement (Fleiss’s kappa) of 49%. Second, determining whether an EEG is normal or 

abnormal is also time-consuming. Many abnormal patterns are intermittent, thus the 

interpreting neurologist must review the entire EEG to perform an adequate EEG analysis.

Deep neural networks, including convolutional neural networks (CNN) have recently been 

used for EEG classification tasks (See Supplementary Appendix A, Table A1, for a review). 

Schirrmeister et al. recently described a convolutional neural network (CNN) that classifies 

EEGs as normal vs abnormal, using 20 minutes of 21-channel EEG from 3017 subjects in 

the TUH dataset (Obeid and Picone 2016). The network was trained in an end-to-end 

manner without hand-crafted features. On a test set of 277 routine EEG recordings, the 

network achieved an accuracy of 84.8%. An analysis of the misclassified cases suggested 

that future work might be able to improve performance by considering patient age and state 

(awake vs asleep).

In this study, we develop a convolutional neural network to classify normal and abnormal 

EEG based on 8,522 routine EEGs. Our model builds on the prior work of Schirrmeister et 
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al. Beyond minor technical enhancements, our efforts extend this prior work in four 

important ways. First, by training on a larger and more heterogeneous dataset, our work 

validates the previous results, and provides a more stringent test of the extent to which 

detecting generic EEG abnormalities is learnable by CNN models. This addresses the 

“replication crisis” in science (Schooler 2014), which is particularly important in the current 

climate of deep neural networks, where models do not always show similar results when 

used on a different dataset. Second, we systematically explore whether including age and 

sleep stages into the model improves performance. In clinical practice, age contributes to 

EEG interpretation. For example, normal elderly patients show more slowing of the posterior 

alpha rhythm and decreased overall amplitude relative to younger patients (Mander et al. 

2017). As another example, for children under 1-year-old, the posterior dominant rhythm is 

typically slower, in the 3 – 4 Hz range, than the typical adult range of 8–12Hz and vertex 

waves seen during sleep tend to be very high in amplitude and sharply peaked (“spiky”) 

relative to vertex waves in adults (Grigg-Damberger et al. 2007; Ebersole and Pedley 2003). 

In addition, patterns that would be abnormal in an awake EEG may be normal while asleep. 

For example, generalized slowing, a sign of encephalopathy in an awake patient, is normal 

during drowsiness and sleep. Third, we explore various ways of pooling temporal 

information to come to a final overall decision about whether an EEG is normal or 

abnormal. Finally, we analyze model prediction errors. Our analysis suggests future 

directions that may be fruitful for improving CNN models, and provides information 

regarding the degree of uncertainty in the training labels, which govern the ultimate 

performance ceiling of supervised machine learning approaches for this classification task.

2. Methods

2.1 Dataset

The Partners Institutional Review Board approved retrospective analysis of the dataset 

without requiring additional consent for its use in this study. A database of 8,522 routine 

EEGs from the Department of Neurology in Massachusetts General Hospital was collected 

from 2012 to 2016. All EEG recordings were recorded using the standard international 10–

20 EEG system. All EEGs included had a minimum duration of 20 minutes (see Figure 1). 

Each EEG was reviewed by a minimum of two experienced clinical 

electroencephalographers, who described their findings in semi-structured EEG reports that 

were filed in the electronic medical record. All reports include a header which declares the 

EEG as being either “normal” or “abnormal”. The label “normal” or “abnormal” is extracted 

from each report and used as target labels to be predicted for our study. Only subjects 

between ages 18 and 85 years old are included in the present study. Subject characteristics 

are summarized in Table 1.

2.2 Preprocessing

EEGs are resampled to 100 Hz and clipped from −800 to 800 mV to reject unphysiologically 

extreme values. A longitudinal bipolar (“double banana”) montage is constructed from the 

original reference recording montage. Each 6 seconds of EEG is automatically assigned a 

label of ‘good quality’ EEG, ‘flatline’, or ‘extreme values’. Using these labels, a segment of 

15 minutes consisting of at least 90% ‘good quality’ data is extracted.
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The subjects are randomly split into a train (7671 EEG recordings) and test set (851 EEG 

recordings) with likelihood of 0.9 and 0.1 respectively, in which no subject overlap is 

present. A sample of one tenth of the train set is taken as the validation set (767 EEG 

recordings).

2.3 Network architecture

The architecture of our CNN is adapted from the network architecture of Schirrmeister et al. 

(Schirrmeister et al. 2017b; Schirrmeister et al. 2017a) (Figure 2). For each 1-minute EEG 

segment (6000 × 18), we obtain NxM values, with N=5400 the number of time points and 

M=200 the number of filters. We include an extra average pooling layer to take the average 

along the time point axis before the last classification layer. This layer enables us to add new 

features to the learned EEG features before the linear classification layer.

The network is trained using the Adam optimizer (Kingma and Ba 2014). In each minibatch 

of 64 samples (1 minute of EEG), the samples are augmented by flipping EEG channels of 

the right and left hemispheres with probability 50% to prevent overfitting to one hemisphere. 

The training is further regularized with batch normalization, dropout and early-stopping.

2.4 Including Age

Subject age is incorporated into the model in two different ways. First the normalized age is 

added to the 200-dimensional feature vector right after the average pooling layer, making it a 

feature vector of 201 dimensions, as seen in Figure 3A. Secondly, we perform transfer 

learning (Sharif et al. 2014), in which the model trained on all ages is fine-tuned on 

subgroups with about a ten-year span (18–29, 30–39, 40–49 years). We experiment with the 

number of layers in which to allow for parameter updates.

2.5 Including Sleep Stage

To assess the impact of providing information about sleep stages, we use a recently 

published algorithm that performs at a level similar to human experts in assigning sleep 

stages to consecutive 30 second epochs of EEG (Sun et al. 2017). The model outputs a 

probability for stages NREM1, NREM2, NREM3, REM or awake. The probabilities over 

the EEG segment are averaged over 1 minute to match the input size of the current network. 

This vector of five probability values is concatenated with the 200-dimensional feature 

vector and age, producing a 206-dimensional input for the final classification layer (Figure 

3B).

2.6 Aggregation

The model generates a probability value for each minute of EEG, therefore we get multiple 

predicted probabilities per 15-minute EEG sample. These multiple predictions of each 15-

minute segment are combined to obtain a final single label of “normal” or “abnormal”, 

which can be compared with the overall impression given to the EEG in the clinical EEG 

report. Our baseline approach is to average these multiple predicted probabilities from each 

minute of EEG into a single abnormality probability for each 15-minute EEG sample.
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As an alternative to the baseline approach, we experiment with a long-short-term-memory 

layer (LSTM) to consider the temporal domain in the final classification. The inputs of the 

LSTM are the feature vectors of length 200 from the convolutional layers before the linear 

classifier. Instead of having an average pooling layer of 1 × 5400, we use an average pooling 

of 1 × 600, by which we obtain a feature vector for each 6 seconds of input. We perform 

hyperparameter tuning by changing the number of hidden layers (1 or 2), the hidden layer 

size (32 or 64), drop-out rate (0 or 0.25), and the direction (unidirectional or bidirectional). 

The LSTM is trained separately from the main convolutional model.

2.7 Statistical Analysis and Model Evaluation

To compare and evaluate the performance of the trained models, we use area under the 

receiver operating characteristic (AUC) for the train, validation and test sets. Statistical 

significance of differences between AUCs of different models is tested via the permutation 

test with 5000 repetitions and significance level of 0.05. Accuracy and specificity at a level 

of 90% sensitivity are also calculated.

To gain insight into the reasons for EEGs that are misclassified by the final model, we use 

five approaches. First, we create a 2-dimensional visualization using t-SNE of the output 

after the average pooling layer. This gives us insights in which EEGs are misclassified. 

Secondly, weights of the final linear layer are plotted to visualize the importance of age and 

sleep stage features. Third, the accuracy per age group is reviewed comparing the baseline 

model with the model including age and sleep stage. Fourth, we examine the clinical reports 

to identify factors that might differentiate misclassified from correctly classified EEGs. For 

this analysis EEG reports are analyzed for word frequencies. The frequencies of each unique 

word in the entire corpus of EEG reports is determined and compared in misclassified vs 

correctly classified samples. The ratio of word frequencies in misclassified and in correctly 

classified are calculated, with ratios > 1 indicating words that appear more frequently in 

misclassified samples, and <1 indicating words more frequent in correctly classified 

samples. Student t-tests are performed to assess statistical significance of deviations of the 

ratio from 1. Fifth, a random subset of misclassified EEG samples is reviewed manually to 

generate hypotheses about the reasons for misclassification.

3. Results

3.1 Generalization of algorithm

Our baseline model and the original Schirrmeister et al model perform similarly (AUC 0.914 

vs 0.917, p = 0.45) on the MGH dataset, as shown in Table 2. In Supplementary Appendix 

B, Figure B1, it can be seen that train, validation and test set have a similar loss indicating 

the network is not overfitting to the train set.

3.2 Including Age

Adding age to the feature vector after the average pooling layer yields a small but 

statistically insignificant performance improvement compared with the baseline model 

without age included (Table 3).
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We also attempt to improve performance by creating distinct models for different age 

groups, by using transfer learning to adapt the baseline model. Table 4 gives the results for 

three age groups (18–29, 30–39 and 40–49 years old) used to separately fine tune the 

baseline model that is pre-trained on all training data (18–85 years old). The results are 

compared to the baseline model tested on each age group separately. As shown in Table 4, 

accounting for age in this way does not yield any statistically significant performance gains.

3.3 Including sleep stages

Most routine EEGs contain periods of wake, drowsiness (stage N1 sleep), and stage N2 

sleep. When the model is trained including age and sleep stage information concatenated to 

the feature vector feeding into the linear classification layer, the results are again statistically 

indistinguishable from the baseline model (p-value of 0.35), as seen in Table 3. Figure 4 

visualizes the performance differences of the baseline model with and without age and sleep 

stage accounted for.

Figure 5 shows the weights of the final classifying linear layer, of which 200 are descriptive 

of the EEG, five for sleep stage probabilities and one for age. Weights close to zero have 

little influence on the final probability value for the EEG being abnormal and a positive 

value promotes abnormality. The figure shows that the weight learned by the final layer for 

age is only slightly positive, favoring abnormality when the age is larger. The sleep stages all 

have larger (negative or positive) weights than the mean EEG weights, except for the awake 

feature.

3.4 Aggregation

Training an LSTM to integrate temporal information across the duration of the EEG does 

not produce any significant performance gain over the baseline method of simple averaging. 

The LSTM providing the best results (2 hidden layers, dropout 0.25, hidden units 64, 

bidirectional), leads to an AUC the same as the baseline as can be seen in Table 3.

3.5 Evaluation of misclassification: feature embedding map

The t-SNE plot (Figure 6) shows how features of normal and abnormal EEGs overlap in the 

projected feature space. The threshold used to distinguish normal and abnormal is 0.5, which 

gives 91.7% specificity and 73.9% sensitivity. The confusion matrix is shown in Table 5. 

There are only 32 normal EEG samples (3.8% of all test samples) that have been 

misclassified as abnormal (upper right, false positive). The opposite is more prevalent 

(bottom left, false negative) and can be understood by the fact that these points appear in a 

region of feature space that is near many normal samples.

3.6 Evaluation of misclassification: age related error

Figure 7 demonstrates that the misclassification percentage over age only minimally changes 

when including age in the model. The largest performance gain is seen in the age group from 

18 to 29 years old, where the accuracy increases by 3%, from 81% to 84% when including 

age. Between age groups the maximum accuracy deviation is about 10%, with the highest 

accuracy of 87.2% seen in the age group of 70 to 85.
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3.7 Evaluation of misclassification: EEG report word frequency analysis

The word analysis (Table 6) of the EEG text reports for the test set shows which words are 

more frequent in the misclassified cases over the correctly classified cases. If the ratio is 

greater than 1 the word is more prevalent in the misclassified sample, indicating these cases 

are harder to classify. Abnormal cases with words related to sleep are more often 

misclassified, similar to findings of Schirrmeister et al (Schirrmeister et al. 2017a). Cases 

with prominent nonphysiological signal artifacts are more likely to be misclassified as 

abnormal. In misclassified cases, the scoring neurologist uses expressions of doubt or 

uncertainty 1.93 and 2.35 times more often than in correctly classified samples of abnormal 

and normal samples respectively. EEG reports including words related to slowing or spike 

wave discharges, but labeled as normal, were more often predicted to be abnormal and were 

thus misclassified, presumably because such EEGs contained “suspicious” but not 

sufficiently distinct or obvious to be considered definitively abnormal. In Supplementary 

Appendix C, Table C1, this word analysis is compared to the word analysis of the baseline 

model showing minimal deviations.

4. Discussion

In this study, we have developed a deep convolutional neural network-based that detects 

abnormal EEGs, using a large and heterogeneous clinical routine EEG dataset containing 

8,522 EEGs (MGH data). The baseline model performs remarkably well, despite being 

tested on a wide range of ages (18–85), and despite being provided none of the explicit 

contextual information that is typically utilized by clinical experts such as patient age and 

sleep stage. Somewhat surprisingly, we find that several different ways of attempting to 

include information about age and sleep stage are unable to further improve classification 

performance with statistical significance, nor does using a recurrent neural network (LSTM) 

to combine information across time improve performance over simple averaging. Our work 

builds on that of Schirrmeister et al. (Schirrmeister et al. 2017b; Schirrmeister et al. 2017a) 

Performance of the two models are similar, and demonstrate the generalizability and 

robustness of the CNN-based approach on independent large datasets.

4.1 Age

We researched different ways of incorporating the subject’s age in the predictive model, but 

these all failed to enhance performance. This may be because age was only important in 

distinguishing normal from abnormal for a small number of EEGs, i.e. that neurologists 

would have also labeled the EEGs similarly even without knowing the age. Alternatively, the 

model may have implicitly learned to take age-related features into account in reaching a 

determination of normal vs abnormal. Figure 7 shows the largest accuracy gain when 

including age is found in the youngest age group (18–29 years old). As younger brains are 

still more in development, including age in the analysis might be more beneficial for this 

subgroup. Because of this, incorporating age in the model when including children’s EEGs 

might be more successful as children EEGs deviate more from each other due to age.
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4.2 Sleep stage

For the first time, this study pursues to include sleep stage information in the classification 

model. Word frequency analysis suggests that sleep is an important factor underlying 

misclassification, though our attempts to include explicitly sleep stage information in the 

model did not improve performance. The word analysis as in Supplementary Appendix C, 

shows that the appearance for sleep-related words in misclassified samples barely change 

when adding sleep stage to the model indicating its minimal impact. ‘Covariate drift’ is one 

possible explanation, as the algorithm used for determining sleep stages was developed 

using overnight sleep EEGs from a sleep lab rather than the routine EEGs in this study. In 

support of this, we found that some misclassified EEG segments had been labeled by the 

sleep staging algorithm as REM when in fact the patient was awake with eyes open. 

Similarly, the algorithm occasionally mistakes periods of hyperventilation (which tend to 

induce slow oscillations) or abnormal background slowing with N3 sleep.

4.3 Aggregation

The initial approach to combine predictions of 1-minute pieces of EEG into a final label for 

the 15-minute EEG segment was to average probability values. We trained an LSTM to 

contemplate the time domain and the intermittent characteristics of many abnormalities, 

however, without significant improvement. The LSTM was trained separately from the 

convolutional network. It might improve results if it were to be included to become an end-

to-end trained model.

4.4 Misclassification analysis

We compared word frequencies in EEG text reports to understand which features recognized 

by expert EEG readers might underlie classification errors and successes. By manually 

evaluating confidently correctly detected abnormal EEGs, we find that theta and delta 

slowing are prominent common abnormalities, congruent with the word frequency analysis. 

Word frequency analysis also suggests that artifacts bias raters toward the abnormal class. 

We also note that muscle artifacts are a source of occasional errors; the model’s estimated 

probability of the EEG being abnormal often rises during periods of muscle artifact. These 

findings suggest that artifact reduction methods might be beneficial to increase specificity. 

One of the most outstanding word clusters was the one expressing doubt by EEG reviewers. 

This raises the possibility of further improving discrimination by considering label noise. 

When phrases describing abnormalities (slowing, spike, discharge, etc.) were used in the 

reports of normal EEGs, EEGs were more often misclassified, giving further support for 

label noise being an issue. Interrater agreement in EEG reading is well known to be 

imperfect, and could thus explain some of the error (van Donselaar et al. 1992; Azuma et al. 

2003).

5. Conclusion

We developed a deep convolutional neural network to classify routine EEG recordings as 

normal or abnormal, using 8,522 EEGs from the MGH dataset. On the MGH dataset we 

achieved AUC at 0.917. Including age improved the AUC to 0.924, and including both age 

and sleep stages to 0.925, though not significant. The analysis of factors underlying 
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classification errors suggests promising directions for further improving model performance 

and interpretability.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

1. We validate a convolutional neural network identifying abnormal EEGs in a 

large diverse set of 8522 EEGs.

2. Including age and sleep stage in the model results in minimal performance 

gain.

3. Extensive prediction error analysis reveals promising future research 

directions.
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Figure 1: 
Flowchart of the data selection process.
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Figure 2: 
Baseline model. Convolutional neural network starting with separate temporal layer and 

spatial convolutional layers, followed by a pooling layer. This is followed by three similar 

convolution+pooling blocks including dropout and batch normalization. An extra average 

pooling layer was added before the last fully connected linear layer with a softmax 

activation. The numbers between brackets represent the kernel sizes.
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Figure 3: 
Network architecture including age (a) and sleep stages (b). After the average pooling layer, 

the age (normalized age) and sleep stage features (probability value for each sleep stage) 

were concatenated with the EEG feature vector (1 × 200). The combined vector was the 

input for the classification layer.
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Figure 4: 
ROCs on the test set for the baseline model, the model including age, and the model 

including both age and sleep stages. ROCs are similar, and AUC differences are not 

statistically significant.
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Figure 5: 
Weights of the linear classification layer. Weights for the normal class were deducted from 

the weights for the abnormal class. Features with weights close to zero have little influence 

on the final prediction of the model. A feature with a high positive weight promotes 

abnormality.
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Figure 6: 
T-SNE plot of the feature vectors before classification of the baseline model applied to the 

test set. Dots show correctly classified EEGs and triangles misclassified EEGs. The 

abnormal class is considered the positive class. Classification threshold of 0.5.
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Figure 7: 
Bar plot showing the percentages of correctly and incorrectly classified samples (accuracy) 

per age group of the baseline model and the model including age and sleep stage. Accuracy 

gain when adding age and sleep stage is highest in the 18–29 years group. Overall accuracy 

is highest in the 70–85 years group.
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Table 1

Subject Characteristics in the MGH Dataset

Variable Train Test

Number of EEGs 7671 851

Number of subjects 6465 835

Sex, male (percentage) 3875 (50.5%) 425 (50.0%)

Mean age ± std (year) 52.1 ± 19.2 51.5 ± 19.2

Abnormal/normal ratio 0.56 0.53
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Table 2

Results of test set of the MGH dataset, with predictions made by the two baseline models

Specificity at 90% Sensitivity (%) Accuracy (%) AUC p-value AUC

a Our baseline model 74.8 81.6 0.914

b Schirrmeister’s model 74.1 81.6 0.917
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Table 3

Results on the MGH test set with and without age and sleep stage included in the model

Specificity at 90% Sensitivity (%) Accuracy (%) AUC p-value AUC

Baseline model 74.8 81.6 0.914

Age model 74.3 83.4 0.924

Age + sleep stage model 76.3 82.5 0.925

Baseline model + LSTM 71.1 83.1 0.914
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Table 4

RESULTS OF TRANSFER LEARNING PER AGE GROUP: TESTED FOR AGE 18–29, 30–39 AND 40–49

Variables Specificity at 90% Sensitivity (%) Accuracy (%) AUC p-value AUC
a

Baseline model tested per age group 71.2 79.4 0.894

    - All layers finetuned per age group 63.6 80.4 0.891 0.48

    - Last two layers finetuned per age group 66.5 80.4 0.893 0.49

    - Last layer finetuned 64.4 81.5 0.890 0.46

a
p-values are calculated against the baseline model
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Table 5

Confusion matrix age model with accuracy in the right bottom corner

Predicted

Normal Abnormal Sens/spec

Normal 355 (41.7%) 32 (3.8%) 91.7%

Actual

Abnormal 121 (14.2%) 343 (40.3%) 73.9%

Precision 74.6% 91.5% 82.0%
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Table 6

EEG report word analysis of the test set of the age + sleep stage model

Abnormal EEGs Normal EEGs

Category Words
Ratio of 

misclassified/
correctly classified

p-value (t-test)
Ratio of 

misclassified/
correctly classified

p-value (t-test)

Sleep Sleep, drows*, N1, N2, N2, REM, spindles 1.90 <0.01
† 0.96 0.66

Artifacts Quality, artifact, difficult, nois*, 
unsatisfactory, myogenic 0.50 0.06 2.80 0.03

†

Medication Medication, medicine, meds, sedat 0.78 0.32 0.22 0.10

Small Subtle, small, little, slight, minor, modest, 
limited 1.10 0.78 1.49 0.57

Large Large, great, clear, apparent, evident, 
substantial 0.75 0.25 2.14 0.22

Doubt Probable, maybe, mildly abnormal, 
possibl*, plausib* 1.93 0.04

† 2.35 0.10

Slowing Theta, delta, slowing 0.71 <0.01
† 1.77 <0.01

†

Spike Spike, sharp, wave, discharge 1.18 0.08 1.56 <0.01
†

Diffuse Generalized, diffuse, continuous, frequent, 
regular 0.71 <0.01

† 1.52 <0.01
†

Intermittent Intermittent, rare, infrequent, irregular, 
occasional, focal 1.15 0.26 1.62 0.24

†
significant (<0.05) with a two-tailed T-test testing the misclassified and correctly classified groups. Ratios >1 indicate words associated with 

misclassification.
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