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Abstract

While normal angiogenesis is critical for development and tissue growth, pathological 

angiogenesis is important for the growth and spread of cancers by supplying nutrients and oxygen 

as well as providing a conduit for distant metastasis. The interaction among extracellular matrix 

molecules, tumor cells, endothelial cells, fibroblasts, and immune cells is critical in pathological 

angiogenesis, in which various angiogenic growth factors, chemokines, and lipid mediators 

produced from these cells as well as hypoxic microenvironment promote angiogenesis by 

regulating expression and/or activity of various related genes. Sphingosine 1-phosphate and 

lysophosphatidic acid, bioactive lipid mediators which act via specific G protein-coupled 

receptors, play critical roles in angiogenesis. In addition, other lipid mediators including 

prostaglandin E2, lipoxin, and resolvins are produced in a stimulus-dependent manner and have 

pro- or anti-angiogenic effects, presumably through their specific GPCRs. Dysregulated lipid 

mediator signaling pathways are observed in the contxt of some tumors. This review will focus on 

LPA and S1P, two bioactive lipid mediators in their regulation of angiogenesis and cell migration 

that are critical for tumor growth and spread.
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1. Introduction

Lipids, important constituents of the diet, serve as energy source and major structural 

components of biological membranes. In addition to these fundamental roles, many lipids 

such as lysophospholipids and fatty acids have been proposed to function as signaling 

molecules in intercellular and intracellular locales (Rosen & Goetzl, 2005; Shimizu, 2009; 

Xie, Gibbs, & Meier, 2002). Lipid mediators that function as extra-cellular signaling 

molecules are synthesized by specific enzymes in both intracellular and extracellular milieu 

while intracellularly produced lipid mediators are released via exocytosis or transporter-

mediated pathways (Nakanaga, Hama, & Aoki, 2010; Nishi, Kobayashi, Hisano, Kawahara, 

& Yamaguchi, 2014). Subsequently, binding to specific receptors activates downstream 

signaling cascades in target cells. A single lipid mediator can act as an agonist for multiple 
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receptor subtypes, and the expression patterns in these receptor subtypes enable different 

cellular responses such as migration, proliferation, apoptosis, cell survival and 

differentiation.

Numerous knockout mice in which lipid receptors and metabolizing enzymes have been 

deleted were generated and analysis of these mice revealed the involvement of such 

mediators in a wide range of physiological phenomena including inflammation, immunity, 

and angiogenesis. For example, during embryonic development, precisely-controlled 

vascular network formation is regulated by key pro- and anti-angiogenic factors including 

vascular endothelial growth factor (VEGF) and lipid mediators. While angiogenesis does not 

occur frequently under homeostatic conditions in the postnatal period, angiogenesis is 

critical for cancer progression. Uncontrolled angiogenesis enables tumor growth by 

supplying oxygen and nutrients to the rapidly growing tumor and allowing metastasis to 

distant sites. This review will focus on the bioactive lipid mediators that regulate 

angiogenesis and cell migration.

2. Sphingosine 1-phosphate signaling

Sphingosine 1-phosphate (S1P), a bioactive lipid mediator that occurs abundantly in plasma, 

regulates many physiological processes including angiogenesis, vascular permeability, 

inflammation, and immunity (Brinkmann, 2007; Proia & Hla, 2015). Intracellularly 

produced S1P was proposed to function as a second messenger, as well as a ligand for its 

specific G-protein coupled receptors expressing on target cell surface after secreted from the 

cells via its specific transporters such as SPNS2 (Hisano, Nishi, & Kawahara, 2012). In our 

opinion, intracellular S1P plays a role as a metabolic intermediate in interconnected lipid 

metabolic pathways (Hla & Dannenberg, 2012; Nakahara et al., 2012). Its function as a bona 
fide second messenger has been questioned since physiological and genetic evidence to 

support this mode of action are lacking.

Since the first S1P receptor was cloned from human endothelial cells as an orphan receptor 

(Hla & Maciag, 1990), numerous studies have revealed the mechanism of S1P signaling and 

its biological actions (Gonzalez-Cabrera, Brown, Studer, & Rosen, 2014; Takuwa et al., 

2001). So far, five S1P receptors (S1PR1–5) have been identified in mammals and 

characterized. S1PR1, S1PR2, and S1PR3 are ubiquitously expressed on various cell types, 

including those of the immune, cardiovascular, and central nervous systems, whereas S1PR4 

and S1PR5 show more restricted expression patterns in the lymphoid tissues, lung and 

central nervous systems, respectively (Chae, Proia, & Hla, 2004; Graler, Bernhardt, & Lipp, 

1998; Ishii et al., 2001; Terai et al., 2003; Yamaguchi et al., 2003). Genetic studies with 

transgenic mice as well as pharmacological studies have revealed the physiological roles of 

each S1P receptor subtype. Genetic deletion of S1pr1 in mice leads to embryonic lethality 

due to severe edema and hemorrhage, and deletion of three receptors, namely S1pr1, S1pr2, 

and S1pr3 results in a more severe hemorrhagic phenotype at an earlier stage, indicating 

these S1P receptor subtypes cooperatively regulate vascular development (Kono et al., 2004; 

Liu et al., 2000). In addition, the clinically important role of S1PR1 as a regulator of 

lymphocyte circulation was uncovered since the discovery of fingolimod (FTY720), an 

analogue of sphingosine, which is now an approved oral drug for multiple sclerosis (Cyster 

Hisano and Hla Page 2

Pharmacol Ther. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



& Schwab, 2012). Its phosphorylated form can be recognized by S1P receptors except for 

S1PR2, and induces receptor internalization and degradation. Therefore, this drug is 

classified as a functional antagonist. FTY720 functions as an immunomodulatory agent by 

suppressing lymphocyte egress from lymphoid tissues and reducing the number of 

circulating lymphocytes.

At the cellular level, S1P signaling regulates fundamental functions including cell growth, 

apoptosis, and cell migration, which are also involved in many diseases including 

inflammatory diseases and cancer progression (Kihara, Mitsutake, Mizutani, & Igarashi, 

2007; Yester, Tizazu, Harikumar, & Kordula, 2011). Indeed, it has been reported that the 

expression of some S1P receptor subtypes and S1P-producing enzymes are dysregulated in 

cancer tissues (Watson et al., 2010; Zhang et al., 2014). It has been considered that the S1P 

signaling plays a key role in multiple processes in cancer progression such as cell growth, 

invasion, metastasis, and angiogenesis.

3. Cell migration, invasion, and metastasis

Cell migration is a fundamental phenomenon that occurs in many biological processes 

including embryogenesis, inflammatory responses, wound healing, lymphatic egress, and 

cancer progression. A dynamic reorganization of the actin cytoskeleton is essential for cell 

migration and regulated by chemoattractants mainly through Rho and Rac GTPase 

subfamilies. Rho regulates stress fiber formation and focal adhesions while Rac induces 

lamellipodia formation by promoting peripheral actin assembly at the leading edge of 

migrating cells (Ridley, 2015).

S1P signaling through S1PR1, S1PR2, and S1PR3 is known to be involved in cell migration 

by regulating Rho/Rac pathways. Each S1P receptor subtype associates with different 

heterotrimeric G protein α subunits. S1PR1 couples mostly with Gi, whereas S1PR2 and 

S1PR3 can associate with Gi, G12/13, and Gq. However, S1PR2 and S1PR3 show preferential 

coupling to G12/13, and Gq, respectively. The activation of S1PR1 and S1PR3 induces cell 

migration via Gi or G12/13-dependent Rho and Rac activation (Arikawa et al., 2003; Paik, 

Chae, Lee, Thangada, & Hla, 2001). In contrast to S1PR1 and S1PR3, S1PR2 signaling 

negatively regulates cell motility although this mechanism still remains unclear. S1P-

induced inhibition of Rac and migration were observed in S1PR2-overexpressing CHO cells 

and B16 melanoma cells, in which Rho activation was required for the inhibitory effect 

(Arikawa et al., 2003; Okamoto et al., 2000). In addition, PTEN, a lipid phosphatase, has 

been reported to act downstream of the Rho and be necessary for S1PR2-mediated inhibition 

of migration in mouse embryonic fibroblasts (Sanchez et al., 2005), while another study 

shows that S1PR2-mediated activation of G12/13 and Rho also inhibits cell migration in 

PTEN-null GNS-3314 glioblastoma cells (Malchinkhuu et al., 2008). Furthermore, S1P 

stimulation does not induce Rac suppression in U118 glioblastoma cells exogenously 

overexpressing S1PR2, in which cell migration is inhibited (Lepley, Paik, Hla, & Ferrer, 

2005). In murine macrophages, S1PR2-inhibition of migration is independent of PTEN but 

requires cAMP/PKA signaling (Michaud, Im, & Hla, 2010). These studies suggest that the 

S1PR2-mediated inhibition of cell migration can be regulated by multiple mechanisms.
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Migratory response against S1P is dependent on the expression of S1P receptor subtypes. 

S1P stimulation induces cell migration of endothelial cells, immune cells, astrocytes, and 

osteoclasts (Ishii et al., 2009; Kimura et al., 2000; Malchinkhuu et al., 2005; Matloubian et 

al., 2004), whereas endothelial migration is suppressed by S1PR2 overexpression (Ryu et 

al., 2002). The anti-migratory effect is observed in cells that express S1PR2 predominantly 

such as vascular smooth muscle and mast cells when exposed to S1P. On the other hand, 

JTE013, an inhibitor of S1PR2, abolished the inhibition of cell migration (Takashima et al., 

2008; Yokoo et al., 2004). Furthermore, among various human gastric cancer cell lines, 

MKN1 and HGC-27 cells, which express high S1PR3, show the S1P dependent activation of 

cell migration, while AZ-521 and MK74 cells, which are expressing higher S1PR2 than 

S1PR3, exhibit anti-migratory effect (Yamashita et al., 2006). As for other cancer cell lines, 

there are numerous in vitro studies that describe S1P inhibition of cell migration in 

melanoma, osteosarcoma, and breast cancer cells (Sadahira, Ruan, Hakomori, & Igarashi, 

1992; Spiegel et al., 1994), while S1P-induced cell migration is observed in pancreatic, 

esophageal, prostate, and ovarian cancer cells (Alfranca et al., 2008; Miller, Alvarez, 

Spiegel, & Lebman, 2008; Pai et al., 2001a, 2001b; Park et al., 2007).

In addition to motility, degradation of extracellular matrix by secreted proteases is an 

important factor for cancer invasion and metastasis. Plasminogen activator system is an 

enzymatic cascade for this degradation process. Plasminogen activators extracellularly 

convert inactive plasminogen to plasmin, a serine protease, which directly degrades various 

extracellular matrix molecules including fibronectin, laminin, vitronectin, proteoglycans, 

and fibrin, as well as activates matrix metalloproteinases (MMPs). S1P signaling through its 

receptors has been shown to upregulate the expression of components of plasminogen 

activator system and MMP2/9 (Bryan et al., 2008; Devine, Smicun, Hope, & Fishman, 2008; 

Young, Pearl, & Van Brocklyn, 2009). Furthermore, the expression of matriptase, another 

serine protease, was induced by S1P signaling probably through S1PR2 and/or S1PR3 

(Benaud et al., 2002). Especially in glioblastoma cells, the S1PR2 inhibitor or siRNA 

treatment abolished the S1P-induced upregulation of plasminogen activator system (Bryan et 

al., 2008), suggesting the contribution of S1PR2 to cancer invasion and metastasis although 

S1PR2 generally shows inhibitory effect in cell migration as mention above. Taken together, 

the S1P signaling through receptors is thought to regulate caner invasion and metastasis by 

regulating cell migration and degradation of extracellular matrix proteins through complex 

mechanisms.

Recently, the involvement of SPNS2, an S1P transporter, in cell migration has been 

proposed. SPNS2, identified by genetic analysis of a cardia bifida zebrafish mutant, exports 

S1P from vascular and lymphatic endothelial cells (Hisano, Kobayashi, Yamaguchi, & Nishi, 

2012; Kawahara et al., 2009). A recent study examined the role of S1P secretion in 

hepatocyte growth factor (HGF)-induced angiogenesis. HGF promotes endothelial cell 

migration through lamellipodia formation, barrier function, and tumor formation. HGF-

induced migration and lamellipodia formation are attenuated by treatment of SPNS2, 

SPHK1, or S1PR1 siRNA, and SPNS2 can associate with S1PR1 and SPHK1 by HGF 

stimulation in lung endothelial cells, suggesting that autocrine pathway of the S1P signaling 

can regulate cell migration (Fu et al., 2016). On the other hand, SPNS2 siRNA treatment 

conversely promotes cell migration in lung cancer cell lines (Bradley et al., 2014). In these 
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cells, SPNS2 knockdown causes accumulation of intracellular S1P as well as activation of 

PI3K/Akt and Jak/Stat3 pathway, which are crucial for cell migration. Indeed, SPNS2 
mRNA level is significantly reduced in lung cancer tissues from patients with stage 2B and 

stage 3 disease compared with the adjacent normal tissues, indicating downregulation of 

SPNS2 is a potential risk factor for lung cancer (Bradley et al., 2014). The mechanism by 

which SPNS2 negatively regulates cell migration in these cell lines remains unclear and 

further studies are required for developing this concept for potential therapeutic strategy for 

cancer metastasis. In this context, Spns2 was recently identified as a major metastatic 

regulatory gene from an unbiased screen for mouse melanoma spread to the lung. The 

authors suggested that SPNS2 acts via immunological mechanisms to promote antitumor 

immunity (van der Weyden et al., 2017).

4. Sphingosine 1-phosphate and angiogenesis

Angiogenesis performs a critical role in the growth and spread of cancers by enhancing 

nutrients and oxygen supply as well as providing a conduit for distant metastasis. 

Pathological angiogenic process is regulated by the tumor microenvironment comprised of 

extracellular matrix molecules, tumor cells, endothelial cells, fibroblasts, and immune cells. 

These cells can interact each other using signaling molecules thus promoting angiogenesis 

and metastasis (Martin, Fukumura, Duda, Boucher, & Jain, 2016). Numerous studies have 

been carried out to show the involvement of S1P signaling in vascular development. 

Pioneering studies from the Proia laboratory showed that S1pr1 knockout mice are 

embryonic lethal because of vascular defect and severe hemorrhage (Liu et al., 2000). 

Among five S1P receptors, S1PR1/2/3 expression is detected in endothelial cells (Lee et al., 

1999). S1PR2 and S1PR3 are also involved in vascular development because S1pr1/2/3 
triple knockout mice exhibit earlier and more severe hemorrhage although single depletion 

of S1PR2 or S1PR3 does not cause any vascular developmental defects (Ishii et al., 2002; 

Kono et al., 2004). Furthermore, analyses of endothelial specific S1pr1 knockout mice have 

revealed that endothelial S1PR1 plays a key role in maintaining vascular stability by 

suppressing excessive sprouting and promoting barrier function (Ben Shoham et al., 2012; 

Gaengel et al., 2012; Jung et al., 2012). The endothelial hypersprouting phenotype is also 

observed in S1PR1-knockdown zebrafish by morpholino oligonucleotides, but not in genetic 

knockout zebrafish (Ben Shoham et al., 2012; Gaengel et al., 2012; Hisano et al., 2015; 

Mendelson, Zygmunt, Torres-Vazquez, Evans, & Hla, 2013). Interestingly, in addition to 

S1P in the blood, fluid shear stress, which occurs due to blood flow, can activate endothelial 

S1PR1, which increases adherens junction stability and promotes vascular barrier function 

(Jung et al., 2012).

VEGF is one of most prominent angiogenic growth factors, and regulates both angiogenesis 

and vasculogenesis by binding to tyrosine kinase receptors, VEGFRs. In contrast to the 

hypersprouting phenotype of S1pr1 deletion, inducible Vegfr2 deletion in endothelial cells 

causes strongly reduced endothelial sprouting and vessel density (Gavard & Gutkind, 2006). 

Vascular endothelial (VE)-cadherin is a major determinant of permeability of the 

endothelium, composing adherens junctions, the loss of which causes retinal hypersprouting 

phenotype similar to S1pr1 knockout mice (Gaengel et al., 2012). While the S1PR1 

activation induces stabilization of VE-cadherin localization at endothelial junctions (Lee et 
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al., 1999), the VEGF signal promotes VE-cadherin destabilization at endothelial junctions 

and triggers its subsequent internalization (Gavard & Gutkind, 2006). Indeed, VEGF was 

initially discovered by Dvorak and co-workers as vascular permeability factor (VPF) (Senger 

et al., 1983). These studies propose a functional antagonism between S1PR1 and VEGFR2 

signaling, which regulates the VE-cadherin localization and endothelial junctional stability. 

VEGFR2 signaling plays a critical role at the early process of the angiogenic program 

followed by S1PR1 signaling stimulates stabilization of newly formed vasculature at the 

later phase. This mechanism may be a critical in the formation of a primary vascular 

network.

S1PR1 expression level is induced in the vasculature upon the implantation of tumor cells, 

and its suppression by siRNA reduces tumor angiogenesis and vascular maturation, resulting 

in less primary tumor growth (Chae, Paik, Furneaux, & Hla, 2004). Furthermore, repeated 

administration of anti-S1P antibody inhibits proangiogenic effect of VEGF in vivo and 

tumor progression in multiple murine models (Visentin et al., 2006). These studies suggest 

that the S1P signaling plays a proangiogenic role in tumors, but S1PR1 is expressed in 

almost cell types including endothelial, stromal and cancer cells, which are likely inhibited 

by S1pr1-siRNA and anti-S1P antibody. Thus, the function of endothelial S1PR1 for the 

pathological angiogenic process remains to be further defined.

Interleukin-8 (IL-8), a chemokine produced from various cell types (macrophages, vascular 

smooth muscle cells (VSMCs), and endothelial cells), activates CXCR1 receptors on 

endothelial cells to promote an angiogenic response (Li et al., 2005; Li, Dubey, Varney, 

Dave, & Singh, 2003). IL-8 is upregulated in various cancers including breast, pancreatic, 

prostate, gastric, bladder, ovarian, lung, and melanoma. In addition, a positive correlation 

between ectopic IL-8 expression and poor prognosis exists for ovarian, pancreatic, and lung 

cancers (Chen et al., 2003; Chen, Chen, Chou, & Lin, 2012; Li et al., 2003). Furthermore, 

S1P stimulation promotes the IL-8 signaling by upregulating its expression and release of 

this chemokine from ovarian and breast cancer cell lines in vitro (Boucharaba et al., 2009; 

Schwartz et al., 2001). The studies using specific inhibitors in epithelial cells show that the 

expression and secretion of IL-8 are regulated independently; the S1PR1 signaling induces 

IL-8 expression while the S1PR2 signaling via NF-κB and Rac1 might regulate IL-8 

secretion from cells (Brunnert, Piccenini, Ehrhardt, Zygmunt, & Goyal, 2015; O’Sullivan, 

Hirota, & Martin, 2014).

Moreover, angiogenesis is induced by hypoxia, which is commonly seen in rapidly growing 

tumors. Hypoxia-induced angiogenesis is predominantly mediated by the hypoxia-inducible 

factors (HIFs), which are oxygen-dependent transcriptional activators. Hypoxia induces 

SPHK1 expression via HIF-2α, which directly binds the SPHK1 promoter region in glioma 

cells, resulting in increased S1P release to the medium (Anelli, Gault, Cheng, & Obeid, 

2008). Adenocarcinoma cells show hypoxia dependent induction of SPHK2 expression and 

S1P release (Schnitzer, Weigert, Zhou, & Brune, 2009). Although S1P release mechanism 

from these cancer cells remains unknown, S1P transporters likely function in these cancer 

cells because even when SPHKs are overexpressed, S1P transporters are needed to release 

S1P (Hisano, Kobayashi, Kawahara, Yamaguchi, & Nishi, 2011). Recently, it has been 

reported that SPHK1 expression is upregulated in 786–0 renal cancer cells, which is 
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abolished by HIF-2α siRNA treatment, suggesting HIF-2α is an upstream regulator of 

SPHK1 as shown in glioma cells (Salama et al., 2015), while another study using different 

renal cancer cells (CAKI-1 and A498) showed that hypoxia-induced HIF-2α upregulation is 

abolished by SPHK1, SPNS2, or S1PR1 siRNA treatment, suggesting that SPHK1/SPNS2/

S1PR1 signaling axis acts as a regulator of HIF-2α expression (Watson et al., 2010). Further, 

S1PR2-signaling is also reported to positively regulate HIF-1α expression by increasing the 

protein stability (Michaud, Robitaille, Gratton, & Richard, 2009). Taken together, the S1P 

signaling via S1PR1 and/or S1PR2 might be potential targets to suppress hypoxia-induced 

angiogenesis. In addition, about 65% of plasma S1P is associated with HDL (high density 

lipoprotein) which contains several lipoproteins and various lipids including sterols, 

triglycerides, vitamins, and sphingolipids. As reviewed by Tan et al. (Tan, Ng, & Bursill, 

2015), serum HDL level is elevated in physiological ischemia and HDL plays a role in 

hypoxia-driven angiogenesis by regulating HIF-1α expression via SR-BI, HDL receptor 

(Tan et al., 2014). HDL containing S1P also activates S1PR1 on endothelial cells and its 

downstream signaling pathways (Galvani et al., 2015; Sato & Okajima, 2010; Swendeman et 

al., 2017), suggesting that S1PR1 and SR-BI cooperatively regulate hypoxia-induced 

angiogenesis.

5. Lysophosphatidic acid and angiogenesis

Similar to S1P, lysophosphatidic acid (LPA) is a bioactive lysophospholipid, regulating 

proliferation, migration, and survival of many cell types through its specific GPCRs. Based 

on primary sequence similarity, LPA receptors are classified into two subfamilies, 

endothelial differentiation gene (Edg) family and non-Edg (P2Y) family. LPAR1/2/3 

comprise the Edg family with five S1P receptors, and other LPA receptors (LPAR4/5/6, 

GPR87, and P2Y10) are classified into non-Edg (P2Y) family.

LPA exists in plasma as a circulatory lipid mediator. The secreted lysophospholipase D 

enzyme called autotaxin (ATX), encoded by the Enpp2 gene, is mainly responsible for LPA 

production from lysophosphatidylcholine. In heterozygous Enpp2+/– mice, which do not 

show obvious abnormal phenotypes, protein expression and enzymatic activity of ATX in 

plasma is about half of wild-type mice as well as the plasma LPA level is also reduced to 

half of wild-type mice (Tanaka et al., 2006; van Meeteren et al., 2006). Homozygous 

Enpp2–/– mice die at embryonic day 9.5–10.5 due to severe vascular phenotype in the yolk 

sac and embryos, as well as neural tube defects (Koike et al., 2011; Tanaka et al., 2006; van 

Meeteren et al., 2006). In zebrafish, enpp2-knockdown causes developmental vascular 

defects (Yukiura et al., 2011). Furthermore, transgenic mice overexpressing ATX also 

exhibit severe vascular defects causing embryonic lethality at embryonic day 9.5 (Yukiura, 

Kano, Kise, Inoue, & Aoki, 2015a). Taken together, ATX-derived LPA plays an essential 

role in angiogenesis and need to be strictly regulated. In zebrafish, single LPA receptor 

knockdown by morpholino oligonucleotides do not cause vascular defects, while lpar1 and 

lpar4 double knockdown embryos exhibit similar vascular defects as enpp2-knockdown 

(Yukiura et al., 2011). On the other hand, some of Lpar4 knockout mice are embryonic lethal 

due to hemorrhages and edema although their phenotypes are not as severe as Enpp2 
knockout mice (Sumida et al., 2010). These studies suggest that ATX is an indispensable 

factor and LPAR4 plays a key role in angiogenesis in cooperation with other LPA receptors.
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LPA treatment of various cancer cell lines promotes the expression and release of IL-8, 

which is a potent angiogenic factor as mentioned above (Boucharaba et al., 2009; Chen, 

Chen, et al., 2012; Schwartz et al., 2001; Shida et al., 2003). Ovarian and cervical cancer 

cells express LPAR1/2/3, and knockdown of LPAR2 and/or LPAR3 results in abolishment of 

LPA-induced IL-8 production while LPAR1 knockdown did not result in a similar effect 

(Chen, Chen, et al., 2012; Yu et al., 2008). Indeed, when cervical cancer cells with different 

LPA receptor expression patterns are injected into mice to assess tumorigenicity, the 

microvessel density and tumor size are suppressed in the LPAR2/3 double knockdown cells, 

which is as low as the LPAR1/2/3 triple knockdown cells (Chen, Chen, et al., 2012). The 

promoter region for IL-8 harbors AP-1 and NF-κB transcription factor-binding sites. Both of 

these transcription factors synergistically activate the LPA-dependent IL-8 expression in 

ovarian cancer cells, while only NF-κB transcription factor is involved in cervical cancer 

cells (Chen, Chen, et al., 2012; Fang et al., 2004). Among colon cancer cell lines, LPAR1 

activation induces IL-8 release from DLD1 cells, while other colon cancer cells (HT29 and 

WiDR) predominantly expressing LPAR2 but not LPAR1 also have an ability to release IL-8 

(Shida et al., 2003). Even in normal cell lines including endometrial stromal cells, placental 

trophoblasts, and chondrocytes, the LPA signaling through some of LPA receptors induces 

IL-8 production in a NF-κB-dependent manner (Chen et al., 2008, 2010; Chuang et al., 

2014). Taken together, angiogenesis mediated by IL-8 in both normal and cancer cells may 

be regulated by the activation of LPA signaling in which several LPA receptor subtypes are 

involved in a cell-type-specific manner.

Extracellular S1P and LPA are converted to sphingosine and monoacylglycerol, respectively 

by dephosphorylation at the cell surface via LPPs (lipid phosphate phosphatases), membrane 

proteins, which interrupts the activation of S1P or LPA receptors. Endothelial-specific Lpp3 
knockout mice also exhibit lethal vascular leakage and hemorrhage (Chatterjee, Baruah, 

Lurie, & Wary, 2016; Panchatcharam et al., 2014) as observed in S1pr1 knockout, Enpp2 
knockout, and Enpp2 overex-pressing mice. The vascular barrier defect caused by LPP3 

deficiency seems to be associated with LPA receptor signaling, because the LPARs 

antagonist administration into Enpp2 knockout mice attenuated endothelial barrier defect 

(Panchatcharam et al., 2014). In vitro experiment assessing the monolayer cell barrier 

function showed not S1P signaling but LPA signaling decreases the endothelial barrier 

function (Ren et al., 2013; Singleton, Dudek, Chiang, & Garcia, 2005). Furthermore, it has 

been reported that LPP3 localizes in specific cell–cell contact sites where LPAR6 signaling 

is activated and suppresses its signaling (Yukiura, Kano, Kise, Inoue, & Aoki, 2015b). The 

Lpp3 deficiency in endothelial cells does not affect blood LPA level but disrupts barrier 

function (Panchatcharam et al., 2014). Taken together, LPP3 might localize closely with 

LPA receptors and regulate the LPA amount in some specific space that would be recognized 

by LPA receptors. Additionally, several tumors are highly expressing LPP3, and the 

inhibitory antibody against LPP3 suppresses bFGF and VEGF induced capillary formation 

and tumor growth (Chatterjee, Humtsoe, Kohler, Sorio, & Wary, 2011; Wary & Humtsoe, 

2005), suggesting LPP3 as a potential therapeutic target.
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6. Prostaglanoid signaling and angiogenesis

Prostaglandin E2 (PGE2) is known as another proangiogenic lipid mediator. Three distinct 

PGE synthases generate PGE2 from PGH2, which is also a precursor for other prostanoids 

including PGI2, PGF2, PGD2, and thromboxane A2 (TXA2). The cyclooxygenase (COX) 

enzymes contribute to PGH2 production from arachidonic acid, which is derived from 

membrane phospholipids. Intracellularly produced PGE2 is secreted by its specific 

transporter (PGT/OATP2A1/SLCO2A1) (Chan, Satriano, Pucci, & Schuster, 1998), which 

allow autocrine and/or paracrine signaling via four GPCRs which are named EP (E-type 

prostanoid) receptors (EP1–4).

COX-1 encoded by the Ptgs1 gene is constitutively and ubiquitously expressed while COX-2 

encoded by the Ptgs2 gene is an inducible iso-form by various stimulations such as 

inflammation and pathological conditions (Hla & Neilson, 1992). Indeed, basal level of 

PGE2 is mostly diminished in Ptgs1 knockout mice, while lipopolysaccharide (LPS)-induced 

PGE2 synthesis is not observed in Ptgs2 knockout mice and elevated expression of COX-2 

leads to an increase in PGE2 level in the isolated peritoneal macrophages (Brock, McNish, & 

Peters-Golden, 1999; Langenbach et al., 1995; Morham et al., 1995). Ptgs1 or Ptgs2 single 

knockout mice can be grown to adulthood with some phenotypes such as parturition 

problems, peritonitis, kidney malfunction, and female infertility (Langenbach, Loftin, Lee, 

& Tiano, 1999; Lim et al., 1997; Morham et al., 1995). Angiogenic defects during 

development are not observed even in Ptgs1 and Ptgs2 double knockout mice although they 

die in the postnatal period because of premature closure of the ductus arteriosus (Loftin et 

al., 2001; Reese et al., 2000), suggesting prostaglandins generated by COX-1/2 are not 

essential for developmental angiogenesis. Meanwhile, a large number of studies suggest that 

PGE2 generated by COX-2 is a key factor promoting tumor-associated angiogenesis. COX-2 

expression is upregulated in neovasculature cells of various tumor including the lung, colon, 

prostate, and breast (Masferrer et al., 2000; Soslow et al., 2000). When the lung carcinoma 

cells are engrafted into mice, the tumor growth and vascular density are decreased in Ptgs2 
knockout mice and COX-2 inhibitor-treated mice, but not in Ptgs1 knockout mice (Amano et 

al., 2009; Williams, Tsujii, Reese, Dey, & DuBois, 2000). In addition, overexpression of 

human PTGS2 gene in the mammary glands of transgenic mice results in the formation of 

mammary adenocarcinoma in multiparous mice which are completely inhibited by NSAIDs 

and COXIBs. These data suggest that prostaglandins secreted from the COX-2 pathway 

cooperate with other mechanisms to promote tumor development. In addition, the induction 

of angiogenic switch by PGE2 receptor EP2 appears to be important in this model (Chang, 

Ai, Breyer, Lane, & Hla, 2005; Chang et al., 2004; Chang, Liu, Wu, & Hla, 2005; Liu et al., 

2001). The gene deletion for EP3 also suppresses tumor growth and angiogenesis (Amano et 

al., 2003; Amano et al., 2009). The Ptgs2 gene deletion in the model mice of familial 

adenomatous polyposis dramatically reduces the polyp growth and vascular density (Oshima 

et al., 1996; Seno et al., 2002). The resemble phenotypes are observed in the mice deleting 

the gene encoding EP2 but not EP1 and EP3 receptors in this model mice (Seno et al., 2002; 

Sonoshita et al., 2001). Furthermore, there is a report that the selective agonist for EP4 

receptor promotes angiogenesis in vivo (Rao et al., 2007), presenting that the COX-2/PGE2 
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signaling pathway via EP receptors plays a critical role in promoting tumor-associated 

angiogenesis.

As mechanisms of COX-2/PGE2-mediated angiogenesis, VEGF production is increased in 

response to COX-2 and/or PGE2 in various cell types, and this induction is attenuated by the 

treatment of inhibitors for COX-2 or PGE synthase (Eibl et al., 2003; Finetti et al., 2012; 

Miura et al., 2004; Murono et al., 2001; Pai et al., 2001a, 2001b). In addition, the COX-2 

expression is also stimulated by VEGF (Hernández et al., 2001; Wu et al., 2006), indicating 

the positive feedback loop between COX-2/PGE2 and VEGF pathway to amplify these 

angiogenic effects.On the other hand, the VEGF-independent pathway in COX-2/PGE2-

mediated angiogenesis has been proposed in colon tumors, which are resistant to VEGFR2 

inhibitors (Fischer et al., 2007; Xu et al., 2014). Both the COX-2 inhibitor and COX-2 

overexpression do not affect the VEGF production and VEGFR2 activation, as well as 

VEGFR2 inhibitory antibodies cannot block COX-2-induced angiogenesis. Taken together, 

simultaneous blocking both pathways might be an effective therapy in tumors where 

angiogenesis are promoted by VEGF and COX-2/PGE2 independently (Xu & Croix, 2014).

7. Anti-angiogenic lipid mediators

In contrast to proangiogenic mediators mentioned above, several lipid mediators are reported 

to have anti-angiogenic effects. Lipoxin A4 (LXA4), one of arachidonic acid metabolites, 

can be a ligand for a GPCR called ALXR/FPRL-1 (Fiore, Maddox, Perez, & Serhan, 1994). 

LXA4 treatment reduces the production of proangiogenic factors such as PGE2, IL-8, and 

VEGF in vitro and in vivo (Jin et al., 2009; Marginean & Sharma-Walia, 2015; Xu, Zhao, 

Lin, Chen, & Huang, 2012). In addition, LXA downregulates the VEGFR2 signaling by 

dephosphorylating the tyrosine residues of VEGFR2 and translocating from lipid raft which 

facilitates efficient signal transduction by recruiting multiple signaling complexes in close 

proximity (Baker, O’Meara, Scannell, Maderna, & Godson, 2009; Marginean & Sharma-

Walia, 2015). Furthermore, ALXR stimulation with a LXA4 analog suppresses VEGF-

promoted corneal angiogenesis (Jin et al., 2009).

Resolvin D1 (RvD1) and E1 (RvE1) produced from docosahexaenoic acid (DHA) and 

eicosapentaenoic acid (EPA), respectively, also have an anti-angiogenic activity in vivo. 

Treatment with these lipid mediators suppresses corneal and retinal angiogenesis in 

pathological lesion (Connor et al., 2007; Rajasagi et al., 2011). Dietary intake of DHA and 

EPA can suppress retinal angiogenesis probably due to their metabolites, RvD1 and RvE1 

without alteration in the VEGF level (Connor et al., 2007), while topical subconjunctival 

injection causes VEGF transcriptional reduction (Jin et al., 2009). Thus, an involvement of 

VEGF in these pathways is still unclear, and further analysis is awaited.

8. Concluding remarks

Receptors expressed on cell surface are the most readily targeted in current pharmacologic 

strategies. In fact, FTY720, an S1P analogue, has been approved as oral therapy for multiple 

sclerosis, and many compounds targeting lipid mediator receptors are under development as 

potential new medicine. On the other hand, upstream molecules in signaling pathways such 
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as metabolizing enzymes and transporters have been also reported as important factors in 

several cancers (Bradley et al., 2014; Umezu-Goto et al., 2004; van der Weyden et al., 2017), 

although targeting these upstream molecules would affect additional pathways that act 

through multiple receptors. A lipid mediator can be a ligand for multiple receptors, enabling 

diverse and complex cellular responses in different cell types. Furthermore, in the case of 

GPCRs, because each receptor can associate with multiple heterotrimeric G protein α 
subunits and has differential affinities, activation of same receptor may result in different 

cellular responses. In addition, many of lipid mediator receptors described above are 

expressed in various cell types including endothelial cells, stromal cells, immune cells, and 

cancer cells. A receptor subtype-selective drug targeting the receptor that is expressed on 

both cancer cells and stromal cells surrounding the tumor has a possibility causing different 

or opposite pharmacological effects. Thus, characterization and comprehensive 

understanding about each receptor subtype, receptor-associated proteins, and expression 

profiles of those molecules in each cell type is needed for predicting undesired side effects 

and maximizing therapeutic effects.
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HDL high density lipoprotein

EPA eicosapentaenoic acid

HGF hepatocyte growth factor

HIF hypoxia-inducible factor

IL-8 interleukin-8

LPA lysophosphatidic acid

LPP lipid phosphate phosphatase

LPS lipopolysaccharide

MMP matrix metalloproteinase

SPHK sphingosine kinase

SPP S1P phosphatase

S1P sphingosine 1-phosphate
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TNF tumor necrosis factor

VE vascular endothelial

VEGF vascular endothelial growth factor

VPF vascular permeability factor

VSMC vascular smooth muscle cell
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