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Abstract

Substance use disorders (SUD) are diseases of the brain, characterized by aberrant functioning in 

the neural circuitry of the brain. Resting state functional connectivity (rsFC) can illuminate these 

functional changes by measuring the temporal coherence of low-frequency fluctuations of the 

blood oxygenation level-dependent magnetic resonance imaging signal in contiguous or non-

contiguous regions of the brain. Because this data is easy to obtain and analyze, and therefore 

fairly inexpensive, it holds promise for defining biological treatment targets in SUD, which could 

help maximize the efficacy of existing clinical interventions and develop new ones. In an effort to 

identify the most likely “treatment targets” obtainable with rsFC we summarize existing research 

in SUD focused on 1) the relationships between rsFC and functionality within important 

psychological domains which are believed to underlie relapse vulnerability 2) changes in rsFC 

from satiety to deprived or abstinent states 3) baseline rsFC correlates of treatment outcome and 4) 

changes in rsFC induced by treatment interventions which improve clinical outcomes and reduce 

relapse risk. Converging evidence indicates that likely “treatment target” candidates, emerging 

consistently in all four sections, are reduced connectivity within executive control network (ECN) 

and between ECN and salience network (SN). Other potential treatment targets also show promise, 

but the literature is sparse and more research is needed. Future research directions include data-

driven prediction analyses and rsFC analyses with longitudinal datasets that incorporate time since 

last use into analysis to account for drug withdrawal. Once the most reliable biological markers are 

identified, they can be used for treatment matching, during preliminary testing of new 

pharmacological compounds to establish clinical potential (“target engagement”) prior to carrying 

out costly clinical trials, and for generating hypotheses for medication repurposing.
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Introduction

Substance use disorders (SUD) continue to be a major global public health problem. Many 

of the criteria required for a diagnosis of a SUD, including loss of control of substance use, 

continued use despite negative consequences and craving (American Psychiatric 

Association, 2013) can be explained by abnormalities in brain function. Specifically, 

addictive behavior is, to a significant degree, driven by abnormal functioning in the neural 

circuitry of decision making, impulse control, emotion regulation, stress mitigation, and 

reward learning and seeking (Courtney et al., 2016; Kwako et al., 2015; Tiffany & Wray, 

2012; Wilcox et al., 2014; Wilcox et al., 2016). For this reason, identification of biological 

markers (“biomarkers”) for substance use disorders and other forms addictive behavior that 

are targetable with treatment (“treatment targets”) are important and will focus efforts to 

develop more efficacious therapeutic interventions.

Although there are available treatments to help individuals with SUD reduce their use or 

maintain abstinence, the effects are usually modest. Treating withdrawal (which for most 

drugs lasts only days) is important but does not necessarily prevent relapse or qualify as 

addiction treatment. Repeated relapses are due to long-lasting neurobiological changes in 

decision-making networks, and, to be effective, relapse prevention agents need to restore 

functioning in this circuitry (Kalivas & Volkow, 2005; Koob & Volkow, 2010; Wilcox & 

Bogenschutz, 2013). Treating withdrawal is helpful but not enough. Reviews of available 

relapse prevention medications and evidence-based psychosocial interventions are available 

and outside the scope of this article (Wilcox & Bogenschutz, 2013).

Recent research efforts have focused on identification of treatment targets in the SUD and 

wider mental health field (Insel, 2013; Kwako et al., 2015; Sofuoglu, 2010; Tiffany & Wray, 

2012). A treatment target also furthers understanding of the pathophysiology of the disorder. 

For something to be deemed a treatment target, it would ideally demonstrate several 

qualities: 1) measurable deficits in functionality in a particular domain (e.g. excessive 

craving) would predict later deficits in clinical function (e.g. relapse), 2) it needs to be a state 

rather than a trait measure (needs to be alterable with an intervention) 3) changes in these 

quantifiable measures (e.g. normalization) of the target in the short term with an intervention 

would predict better clinical response (e.g. less relapse) at later time points (Insel, 2013, 

2018; Kwako et al., 2015; Tiffany & Wray, 2012). Successful target engagement with an 

intervention (i.e., modulation of craving) but with no change in substance use suggests that 

the proposed mechanism is not related to outcome (Tiffany & Wray, 2012).

Establishing how treatments work (with an objective marker from functional magnetic 

resonance imaging (fMRI)) can provide essential guidance for treatment development 

(Cabrera et al., 2016; Volkow & Baler, 2013b). For one, once a target is established, effects 

of potential novel treatments can be measured (“target engagement”) in smaller, shorter-term 

trials to determine likelihood of efficacy before running more expensive, and costly large-

scale clinical trials, which is a major push within National Institutes of Mental Health 

(NIMH) (Insel, 2013). In theory, since target engagement is measured closer to the time of 

the intervention, and in the case of neuroimaging, measures underlying physiological 

changes, the target would be altered with greater effect sizes than downstream clinical 
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outcome measures. Second, if a particular target is present in several types of SUD [e.g. both 

in nicotine use disorder (NUD) and alcohol use disorder (AUD)], such knowledge can 

inform hypotheses about whether treatments that work in one SUD (NUD) but are untested 

in another (AUD) are likely to be worthwhile. Although biomarkers have not yet been 

deployed for use in clinical settings in mental health, establishing targets may prove helpful 

for informing clinical decision-making. Once these targets are identified, they can first help 

in risk stratification, assigning individuals that are at higher risk of relapse to more intensive 

treatments or to individualized treatment plans. Furthermore, identification of engagement of 

these markers with a particular treatment could facilitate “treatment matching” or “precision 

medicine”, which is a major priority within the mental health and substance use disorder 

research fields (Dishman, 2018; MATCH, 1997). Knowing which treatments work best on 

which deficits can maximize the efficacy of existing treatments, as, once harnessed with that 

information, providers could recommend treatments targeting an individual’s vulnerabilities.

Resting state functional connectivity (rsFC) is an especially attractive tool to measure 

underlying brain function as it is short, inexpensive, and data-collection methods are easily 

replicable. Recent research has focused on this area within the last ten years utilizing rsFC to 

understand the brain circuitry of SUD (Fedota & Stein, 2015; Sutherland et al., 2012). For 

these reasons, rsFC also holds promise for identification of treatment targets. Other 

advantages of rsFC over task-based fMRI paradigms include 1) data collection is more 

straightforward and easily replicable across sites, 2) subject participation does not require 

intact cognition, and 3) the data is not as susceptible to interference by changes in 

motivation or performance (Fedota & Stein, 2015; Lu & Stein, 2014; Pandria et al., 2016; 

Pariyadath et al., 2016; Sutherland et al., 2012; Wilcox & Claus, 2017). rsFC has advantages 

over genetics (although not necessarily epigenetics) and other more static imaging measures 

like structural imaging because it changes over time and can be utilized to look at treatment 

mechanisms (Lu & Stein, 2014; Pariyadath et al., 2016).

The first goal of this review is to review the rsFC literature to identify targets for 

SUD.

Biological treatment targets in research can be identified with several different methods. One 

common approach throughout the mental health field is to compare individuals with a 

diagnosis with individuals matched on important characteristics to those without a diagnosis 

(healthy comparisons (HC)) (or simply correlating measures of disease severity with 

measures of brain function) to try to understand underlying functional deficits. Studies like 

this have been done extensively and in a variety of SUD populations as well [for some 

excellent reviews see (Fedota & Stein, 2015; Ieong & Yuan, 2017; Lu & Stein, 2014; 

Moeller et al., 2016; Pandria et al., 2016; Pariyadath et al., 2016; Sutherland et al., 2012; 

Wilcox et al., 2014; Wilcox et al., 2016)]. However, there is a problem with using these data 

when collected in a cross-sectional design if the goal is to identify treatment targets, as 

identified group differences may or may not be causing behavior change. Although some of 

the brain changes observed at a particular time point in someone with a SUD could 

potentially be causing the disorder, they could also simply be a result of the SUD and 

therefore may or may not have anything to do with future perpetuation of the substance use, 

for example resulting from neurotoxic effects of chronic alcohol or drug use, and/or the 
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many downstream negative effects of the lifestyle associated with SUD (e.g. trauma or stress 

exposure). Just because there is a change in brain function does not necessarily provide 

insight into the underlying cause of pathological behaviors that contribute to aberrant 

decision-making and relapse risk. Therefore, we propose to review the literature using a 

variety of alternative angles.

Our first approach will be to focus on the relationships between rsFC and functionality 

within psychological domains that are believed to contribute to vulnerability to relapse or 

excessive use (subjective withdrawal severity, craving, cue reactivity, cognitive and impulse 

control, and anxiety, depression and emotion regulation) within SUD. These domains fall 

into the research domain criteria (RDoc) (positive valence, cognitive systems, negative 

valence) and are widely considered to be important potential targets in SUD (Kwako et al., 
2015). A word of caution about this approach is that, since many of these studies are also 

cross-sectional, they will have some of the same problems as those observed in the SUD vs. 

HC literature, because identified neural markers could simply be due to effects of previous 

substance use (either toxic or environmental exposure), and may not be contributing to the 

underlying behavior driving the disorder, so positive findings will be over inclusive. Results 

will also not indicate the degree to which the identified markers are alterable with an 

intervention; they could be static or dynamic. Finally, whether the psychological constructs 

are definitively linked with future clinical behavior (e.g. relapse) is not yet definitively 

established for these domains, even though they are assumed to be important (Kwako et al., 
2015; Tiffany & Wray, 2012). With these caveats in mind, we felt it useful to review them 

since, to our knowledge, a synthesis of the literature in this area has not been done in the 

past in a review article. If findings from these analyses also carry through into longitudinal 

datasets, they could be given more attention in future hypothesis-driven work.

The second approach will be to identify brain changes associated with the withdrawal state 

or abstinence, relative to the satiated state. Although treatment of withdrawal is only the first 

step for treatment of a SUD, it is still a very important step (Wilcox & Bogenschutz, 2013). 

Treatment of withdrawal not only relieves discomfort, but also helps individuals restrain 

from using their substance of abuse to relieve that discomfort and during the early days of 

treatment-seeking is an important part of helping someone get stabilized. Therefore, 

identifying the neural markers associated with this more vulnerable state could be very 

informative for identifying treatment targets to maximize this aspect of treatment.

Our third and fourth approaches will focus on longitudinal studies which follow patients 

over time. These studies are likely to have more clinical relevance and results will be more 

specifically related to clinical outcome, given that measures of both the hypothetical target 

and clinical outcome are obtained in the same population, and because they are longer term 

studies (weeks), especially important for relapse prevention agents. Our third approach will 

be to summarize the literature with studies that use rsFC and related metrics at a baseline 

time-points to find correlates of future overall relapse vulnerability or treatment outcome. 

Although this approach has an advantage in that markers identified are linked to future 

behavior, these studies will not indicate whether these rsFC markers are alterable with 

treatment. If they are static, and not alterable with any intervention, the marker would not be 

a treatment target. The fourth approach will be to review studies which overcome that 
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limitation by administering an intervention, thus getting at alterable biomarkers, and with 

this we will summarize the effects of interventions (both established and novel) on rsFC.

The second goal of this review will be to discuss future strategies to identify 

reliable treatment targets, and how this information might be used

In this section, we will discuss future research directions. First, we will highlight the need 

for more advanced prediction methods that utilize multivariate, data-driven approaches. 

Second, longitudinal datasets that link treatment outcomes with targeted engagement will 

confirm the translational significance and clinical relevance of this research. Third, we will 

emphasize the importance of controlling for withdrawal state and length of abstinence, and 

of using rsFC to identify moderators of treatment outcome to supplement precision medicine 

and treatment matching efforts.

In summary, this review is distinguishable from previous reviews in this subject area for 

several reasons. For one, we cover a broad range of SUD, not just NUD (Fedota & Stein, 

2015) AUD (Wilcox et al., 2014) or opiate use disorder (OUD) (Ieong & Yuan, 2017; 

Pandria et al., 2016). Second, the majority of previous reviews have included cross-sectional 

studies focused on finding differences between SUD and HC populations (Fedota & Stein, 

2015; Ieong & Yuan, 2017; Lu & Stein, 2014; Moeller et al., 2016; Pandria et al., 2016; 

Pariyadath et al., 2016; Sutherland et al., 2012; Wilcox et al., 2014; Wilcox et al., 2016). In 

this review, by contrast, we only include studies which investigate associations between 

rsFC and behavior within important psychological domains, withdrawal state, and treatment 

outcome in individuals with SUD. By doing so, we aim to more precisely identify potential 

treatment targets and to isolate markers contributing to perpetuation of the disorder from 

those caused by substance use.

Definitions

Resting state fMRI:

FMRI measures the blood oxygenation-level dependent (BOLD) signal in the brain. During 

a resting state scan, participants are asked and to relax and think about nothing in particular, 

usually over 5–12 minutes. It can be obtained during eyes open or eyes closed, but most 

studies use eyes open. New data indicates longer (up to 20 minutes) is better for control of 

motion artifact, and delineation of resting state networks for example, but most published 

data are on shorter scans (Glasser et al., 2013). Data acquired at rest have been shown to 

correlate with both subsequent behavioral performance on a task and activation of brain 

regions that support task performance (Fedota & Stein, 2015).

Connectivity:

Connectivity analyses utilize information about fluctuation in the BOLD signal at low 

frequency over time and identify the degree of synchrony between regions (Fox & Raichle, 

2007; Fox et al., 2005). There are three major types of rsFC analysis: seed-based analyses, 

independent component analysis (ICA), and graph-theoretical analyses (Fedota & Stein, 

2015). Seed-based analyses look at the correlation strength in the BOLD time courses 

between an a priori seed (either the size of a voxel or many voxels) over a particular area of 
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interest and the rest of the brain. Seed based analyses are usually hypothesis driven and 

anatomically-based (Fedota & Stein, 2015). ICA is a data-driven computational method to 

decompose an overall signal into independent, orthogonal components, segmenting the brain 

into large-scale components or networks that are generally well conserved across individuals 

and over time (Calhoun & Adali, 2012; Calhoun et al., 2001). This can be a helpful step to 

reduce the many hundred thousand voxels to a more digestible number of components 

(typically 30, 75, or 100), which are based on functional similarities rather than anatomical 

ones (Calhoun & Adali, 2012; Fedota & Stein, 2015; Sutherland et al., 2012). Correlation 

strengths between time series within these networks can be measured in the same fashion as 

they are done with seed based analyses (often called functional network connectivity rather 

than rsFC) providing analogous information (Allen et al., 2010; Arbabshirani et al., 2013; 

Wilcox, Calhoun, et al., 2017). Analyses using ICA can be hypothesis driven as well as 

exploratory. For both seed-based and network-based analyses, synchrony between two 

regions or networks is usually represented by a positive value, and anticorrelation (or 

negative coupling) by a negative value. Therefore, in cases where there is an positive 

relationship between connectivity and a behavior, that could either indicate greater 

synchrony between two regions, or reduced anticorrelation. This is important because during 

normal brain functioning both correlation and anticorrelation is observed, depending on the 

networks being examined (Fox et al., 2005). Graph-theoretical analyses can be performed at 

the voxelwise or seed-based level, or after parsing the brain activation into components 

(through ICA), and seek to characterize brain network topology to identify how connectivity 

density varies between a region or network and close or far regions of the brain (Fedota & 

Stein, 2015; Konova et al., 2015; Morris et al., 2018; J. Wang et al., 2010). However, 

interpreting the somewhat abstract network parameters (e.g., modularity, small worldness, 

partition coefficient) from graph theory analyses, and relating them to brain systems that 

underlie known cognitive processes can be a challenge (Fedota & Stein, 2015). Global brain 

connectivity gets at a similar underlying process as graph theory analyses, analyzing 

connectivity between a particular region or network and some derived method, like 

averaging, to combine voxels in the whole brain (K. Wang et al., 2014).

Methods:

We used PubMed to perform an extensive literature search using combinations of the 

following search terms: [substance OR cocaine OR methamphetamine OR stimulant OR 

opiate OR opioid OR alcohol OR nicotine OR marijuana OR cannabis OR smoking] AND 

[resting state OR connectivity OR fMRI]. Any intervention study that was either open label 

or placebo-controlled (including medication trials, neurostimulation trials, therapy trials), 

longitudinal studies, repeated measurement studies (i.e. during abstinent or deprived vs. 

satiated states), and studies which were cross sectional but also included in their study a 

measure of cognitive control (neuropsychological testing), impulsivity, anxiety, depression 

and emotion regulation, craving, subjective withdrawal, or evoked BOLD activity during a 

cognitive, cue reactivity, or emotional task) were included in this review. For the cross-

sectional studies relating rsFC with functionality in important psychological domains, we 

focused on articles that have looked within SUD only, instead of including non-SUD, as 

rsFC changes associated with deficits in these domains can differ in SUD compared to HC 
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(Muller-Oehring et al., 2014; Zhai et al., 2015). Moreover, in this section we include 

subjective withdrawal with the craving and cue reactivity constructs because these are 

subjective composite measures of various symptoms which often include questions about 

craving. This is to be distinguished from the ensuing section in which we discuss effects of 

abstinence or deprivation vs. satiety on rsFC, which are different in that this next section 

involves within subjects analyses, and are objectively through an intervention (rather than 

subjectively) in a deprived state. For the studies examining effects of abstinence versus 

satiety, only studies performed in NUD were included (effects of nicotine on rsFC in brain 

function in healthy controls were excluded). To our knowledge, there are no studies in other 

SUD which have examined rsFC alterations during abstinent versus satiated states.

Important brain regions that underlie addictive behavior include the amygdala, hippocampus, 

parahippocampal gyrus, insula, cingulate cortex, prefrontal cortex, posterior cingulate 

cortex, striatum (dorsal and ventral, including caudate, putamen and nucleus accumbens) 

and ventral tegmental area (VTA) (Cabrera et al., 2016; Kalivas & Volkow, 2005; Moeller et 
al., 2016; Pandria et al., 2016; Volkow & Baler, 2013a, 2013b; Wilcox et al., 2014; Wilcox et 
al., 2016). These regions also fall within particular brain networks including the default 

mode network (DMN), the executive control network (ECN), the salience network (SN) and 

the limbic and reward networks. The DMN is centered on nodes in the medial prefrontal 

cortex (mPFC) and the midline posterior cingulate cortex (PCC), and has been implicated in 

ruminations, mind wandering, planning the future, and reflections on the past (Anticevic et 
al., 2012). The ECN is centered on nodes in the dorsolateral prefrontal cortex (dlPFC) and 

the lateral posterior parietal cortex, has been associated with attending to and processing 

exogenous, attentionally driven executive functions (Lerman et al., 2014). The salience 

network (SN) is centered on nodes in the dorsal anterior cingulate cortex (dACC) and mid 

cingulate cortex (MCC) and the insular cortex and has been implicated in the facilitation of 

attentional orientation to internal or external stimuli (Lerman et al., 2014; Muller-Oehring et 
al., 2014). DMN is generally anticorrelated with the SN and ECN (Fox et al., 2005; Lerman 

et al., 2014; Wilcox, Claus, et al., 2017). The reward network for the sake of this review will 

be defined as within striatum (nucleus accumbens, caudate and putamen), midbrain (VTA) 

or subgenual ACC (sgACC)/medial orbitofrontal cortex (mOFC), as has been defined in 

previous work (Janes et al., 2012; Muller-Oehring et al., 2014; Zhai et al., 2015) (M.O-2014, 

Zhai 2015). Also, the sgACC/mOFC often falls into the DMN (Taylor et al., 2013; Wilcox et 
al., 2016) so for the sake of this review when findings are observed in the sgACC/mOFC we 

will label it both as a finding for the DMN network as well as for the reward network. 

Limbic networks will include amygdala, hippocampus, and parahippocampus. In Tables 1–4 

(where results are presented), we report findings that occur either in one of our networks of 

interest, or, if the findings occur in a particular region, we simply report them as occurring 

within one of the networks of interest. For example, if there is a finding in the insula, we 

simply put it in our table as a finding relating to the SN. Likewise, we will also utilize the 

term “rsFC” in the text when grouping both seed-based rsFC and FNC measures, but the 

table indicates which studies utilized which approach.

Studies showing less anticorrelation or “reduced negative coupling” will be listed as 

“increased connectivity” in the tables, as this would be defined by a less negative number 

during connectivity analyses. This approached allowed for pooling of studies that did not 
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explicitly report whether a positive result came from reduced negative coupling or increased 

connectivity with those that were explicit. Therefore, when explicitly defined as reduced 

anticorrelation in a paper, we report this simply in the table as “Up”. When many results are 

reported (Muller-Oehring et al., 2014; Zhu et al., 2017), we only report the significant 

findings after correction for multiple comparisons.

We excluded studies which included only adolescents, and results related to task-related 

connectivity changes, non-connectivity based measures of resting state fMRI [for example 

fractional amplitude of low-frequency fluctuations (fALFF)], or within region connectivity. 

We did not review the literature on rsFC-based deficits which predate substance use, which 

has been reviewed in other work (Squeglia et al., 2017). Finally, we only focused on graph-

theory analysis in the text (no tabular representation) secondary to the paucity of studies.

Results:

Relationships between rsFC and functionality in relevant psychological domains (Table 1)

Cognitive control and impulsivity (Table 1):

Studies that examined relationships between self-reported impulsivity and concentration 

(Cole et al., 2010; Contreras-Rodriguez et al., 2016; Hobkirk et al., 2018; Kohno et al., 
2016; McHugh et al., 2013; Zhai et al., 2015; Zhu et al., 2017) performance on tasks of 

cognitive control (Berlingeri et al., 2017; Camchong et al., 2013b; Camchong et al., 2013c; 

Contreras-Rodriguez et al., 2015; McHugh et al., 2017; Motzkin et al., 2014; Muller-

Oehring et al., 2014; Pujol et al., 2014; Whitfield-Gabrieli et al., 2017), delay discounting 

(Contreras-Rodriguez et al., 2015; Zhu et al., 2017) activation during cognitive control tasks 

(Lerman et al., 2014) or activation during risky decision making (Kohno et al., 2014) were 

reviewed. Reduced within ECN connectivity (Camchong et al., 2013c; Cole et al., 2010; 

McHugh et al., 2017; Zhai et al., 2015) was found to relate to impaired functioning in these 

domains. Furthermore, elevated connectivity between DMN and both SN and ECN 

(Camchong et al., 2011; Cole et al., 2010; Lerman et al., 2014; Muller-Oehring et al., 2014; 

Whitfield-Gabrieli et al., 2017; Zhu et al., 2017) was observed. That elevated connectivity 

between DMN and ECN was associated with impairment is important because 

anticorrelation between DMN and ECN occurs during cognitive tasks, and reduced 

anticorrelation or impaired “negative coupling” would be reflected by a more positive 

connectivity value reflecting reduced functionality (Sutherland et al., 2012). Furthermore, 

results show that reduced SN-ECN connectivity (Lerman et al., 2014; Muller-Oehring et al., 
2014) was also associated with impairment, which is supported by findings from an 

additional study that did not fit criteria for inclusion in our review but, utilizing seed-regions 

derived from a group (NUD vs. healthy controls) contrast during a cognitive control task, 

also demonstrated reduced connectivity between insula (SN) and DLPFC (ECN) in smokers 

compared to controls (Fedota et al., 2016). Finally elevated within reward network, within 

DMN, and between reward network and DMN connectivity (Berlingeri et al., 2017; 

Camchong et al., 2013c; Contreras-Rodriguez et al., 2015; Contreras-Rodriguez et al., 2016; 

Kohno et al., 2014; Kohno et al., 2016; Pujol et al., 2014; Whitfield-Gabrieli et al., 2017; 

Zhai et al., 2015) was associated with higher levels of impairment. The only study that 
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conflicted, was a study in AUD (Zhu et al., 2017), which showed reduced connectivity 

between mOFC (DMN and reward network in our methods) and both DMN and ECN, as 

well as elevated connectivity between SN and ECN in more impulsive individuals. However, 

this was a fairly small sample of AUD (n=25) and participants had been abstinent for a much 

shorter period of time (mean 16 days) compared to the other studies of AUD in this table 

(months of abstinence) (Camchong et al., 2013b; Camchong et al., 2013c; Muller-Oehring et 
al., 2014).

Subjective withdrawal, craving and cue reactivity (Table 1):

Several studies have examined relationships between rsFC and subjective withdrawal 

severity (Cole et al., 2010; Hobkirk et al., 2018; Wilcox, Calhoun, et al., 2017), craving (Bi 

et al., 2017; Janes et al., 2014; Kohno et al., 2017; Lerman et al., 2014; Sutherland, Carroll, 

Salmeron, Ross, & Stein, 2013; Yang et al., 2017) and degree of drug cue reactivity while 

undergoing fMRI (Janes et al., 2015). Elevated connectivity between ECN and both limbic 

and reward networks (Hobkirk et al., 2018; Kohno et al., 2017; Wilcox, Calhoun, et al., 
2017; Yang et al., 2017) during higher levels of subjective craving or withdrawal is probably 

the most replicated finding. Except for one study (Sutherland, Carroll, Salmeron, Ross, & 

Stein, 2013) elevated connectivity of SN to both reward network and DMN is also associated 

with craving and subjective withdrawal (Bi et al., 2017; Janes et al., 2014; Kohno et al., 
2017; Lerman et al., 2014; Wilcox, Calhoun, et al., 2017), which would fit nicely with 

posited models that during craving or withdrawal states, the SN biases attention away from 

networks involved in staying on task (ECN) and towards other networks involved in 

processing interoceptive experience, (DMN), or wanting (reward network) (Lerman et al., 
2014; Sutherland et al., 2012).

Emotion regulation, anxiety and depression (Table 1):

Very few studies have been done in this area. Reduced connectivity between ECN and SN 

(similar to the impulsivity and cognitive control literature summarized in Table 1) (Muller-

Oehring et al., 2014) and reduced connectivity between reward and limbic networks, 

between SN and reward, and between SN and DMN (Muller-Oehring et al., 2014; 

Sutherland, Carroll, Salmeron, Ross, & Stein, 2013) are associated with impaired emotion 

regulation (alexithymia) (Sutherland, Carroll, Salmeron, Ross, & Stein, 2013) or higher 

levels of depression and anxiety (Muller-Oehring et al., 2014). More work in this area needs 

to be done to draw any definitive conclusions about the rsFC correlates of emotion 

regulation and anxiety/depression within SUD.

Effects of nicotine abstinence on rsFC in smokers (Table 2)

Many studies have been performed in smokers to determine how rsFC changes during 

nicotine abstinence vs. satiety, by comparing individuals receiving nicotinic receptor 

agonists (such as nicotine or varenicline) with those receiving placebo (Cole et al., 2010; L. 

Hong et al., 2009; Sutherland, Carroll, Salmeron, Ross, Hong, et al., 2013), by comparing 

individuals who have recently smoked a cigarette with those who were in a deprived state 

(Bi et al., 2017; Cole et al., 2010; Ding & Lee, 2013; Hobkirk et al., 2018; Huang et al., 
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2014; Lerman et al., 2014; Sweitzer et al., 2016), or through correlating changes in craving 

and changes in connectivity from abstinence to satiety (Cole et al., 2010; Janes et al., 2014).

There appear to be some common themes across studies. Abstinent states are associated with 

reductions in connectivity between SN and ECN or within ECN (Cole et al., 2010; Ding & 

Lee, 2013; L. Hong et al., 2009; Lerman et al., 2014) and increases in connectivity between 

ECN and DMN (Cole et al., 2010; Ding & Lee, 2013; Hobkirk et al., 2018; Huang et al., 
2014) (the latter, perhaps, again, reflecting impaired anti-correlation). Moreover, abstinence 

is associated with elevated connectivity within the reward network and DMN networks, as 

well as between reward network and DMN (Cole et al., 2010; Ding & Lee, 2013; Hobkirk et 
al., 2018; Huang et al., 2014; Janes et al., 2014). These findings mirror those observed in the 

“cognitive control and impulsivity” section above. The only exception was seen in a study 

showing increases in connectivity between anterior and posterior hubs (sgACC/frontal pole/

rostral ACC and PCC) of the DMN (L. Hong et al., 2009) on nicotine compared to placebo, 

which could just have been spurious as it was a relatively small study (19 smokers). Finally, 

elevated connectivity between SN and both DMN and reward network is observed in 

numerous studies (Bi et al., 2017; Ding & Lee, 2013; Hobkirk et al., 2018; Huang et al., 
2014; Janes et al., 2014; Lerman et al., 2014; Sutherland, Carroll, Salmeron, Ross, Hong, et 
al., 2013), again, nicely mirroring those observed in the “subjective withdrawal, craving and 

cue reactivity” section above. That rsFC changes associated with nicotine abstinence are 

similar to those seen with impaired cognitive control, impulsivity, craving or subjective 

withdrawal are not surprising, given the known beneficial effects of nicotine agonists on 

functioning within these psychological domains (Ashare & McKee, 2012; Atzori et al., 
2008; Barr et al., 2008; Heishman et al., 2010; L. E. Hong et al., 2011; Kleykamp et al., 
2011; McClernon et al., 2016; Rhodes et al., 2012), and given that many of the studies in 

Table 1 were also in Table 2. Still, it is reassuring to see patterns replicate, and indicates we 

may be tapping into a true signal with these rsFC measurements.

On the whole, findings summarized in this section nicely support a theory that was proposed 

in the literature some years before much of these data were published, which posits that, 

during abstinence “…the insula” (SN) “interacts with DMN regions in the service of 

orienting attention to resolve this inner tumult and return the system to homeostasis, thereby 

shifting network dynamics and biasing processing towards the DMN and away from the 

ECN. This hypothesized shift in network dynamics during abstinence would result in one or 

more of the following observable changes in rsFC: 1) enhanced rsFC between insula and 

DMN; 2) reduced rsFC between insula and the ECN; 3) enhanced rsFC within the DMN; 4) 

reduced rsFC within the ECN; and 5) a breakdown in negative coupling between the DMN 

and ECN” (Sutherland et al., 2012). In summary, these would seem to be important potential 

candidates for treatment targets for nicotine withdrawal. Whether these are also targets in 

other SUD remains to be explored.

One other study deserves mention whose methods were not directly applicable to those 

utilizing more traditional analysis approaches. This study indicated that withdrawal states 

were associated with higher global brain connectivity in the insula and superior frontal gyrus 

(K. Wang et al., 2014). Future work could also explore this as a biomarker marker of 

withdrawal.
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Baseline correlates of clinical outcome (Table 3)

Many studies have measured whether or not rsFC relates to treatment outcome at later time 

points, in an effort to find risk markers for increased lapse or relapse (Addicott et al., 2015; 

Adinoff et al., 2015; Berlingeri et al., 2017; Camchong et al., 2013a; Contreras-Rodriguez et 
al., 2015; Janes et al., 2010; Li et al., 2015; McHugh et al., 2014; McHugh et al., 2017; 

Sweitzer et al., 2016; Wilcox, Calhoun, et al., 2017) greater substance use following 

treatment (Wilcox, Calhoun, et al., 2017) or treatment dropout (Kohno et al., 2017; Vaughn 

R Steele et al., 2017), for example. These studies show that reduced connectivity within 

ECN or between SN and ECN relates to worse treatment outcome in a few studies 

(Camchong et al., 2013a; Janes et al., 2010; McHugh et al., 2017; Wilcox, Calhoun, et al., 
2017). This mirrors what we saw in our section on “cognitive control and impulsivity” and 

“effects of nicotine abstinence on rsFC in smokers” above, which could indicate that this 

(reduced connectivity within ECN or between SN and ECN) might be a treatment target at 

various stages of recovery (during acute withdrawal and longer-term relapse prevention). 

Several studies have also found that lower connectivity between reward network (primarily 

striatum) and ECN correlate with worse treatment outcome (Berlingeri et al., 2017; Kohno et 
al., 2017; Sweitzer et al., 2016). However, a single study found the opposite to be true, but 

only when measured in individuals with heightened subjective withdrawal at the time of the 

scan (Wilcox, Calhoun, et al., 2017), highlighting the possibility that state effects may 

sometimes trump or override the trait effects from being properly measured, and should 

always be properly controlled for. Only a single study in SUD has used truly state of the art 

“prediction methods” (machine learning with cross validation), which is more likely to give 

accurate information on how the model will generalize to an independent dataset (Vaughn R 

teele et al., 2017) but its results did not easily fit into the patterns from the other studies. One 

study which utilized methods precluding it from inclusion in the table demonstrated that 

relapse was associated with higher levels of eigenvector centrality in the DLFPC and 

cerebellum (Shen et al., 2017). In summary, low connectivity within ECN and between SN 

and ECN could be explored further as possible markers.

rsFC changes as markers of treatment mechanisms in SUD treatment (Table 4)

Probably the most definitive way to determine whether something is a treatment target is to 

identify markers which, when altered, result in beneficial changes in behavior. Changes in 

rsFC in response to interventions which also cause reductions in clinically significant 

endpoints (substance use, dropout, or even craving) may indicate treatment targets. Many of 

the treatments which act as relapse prevention agents are also agonists at the same receptors 

on which the drug of abuse acts (or they act with the same directionality on the 

neurotransmitter systems of interest), and alleviate withdrawal Examples of these include 

many of the relapse prevention treatments for nicotine use disorder (varenicline, nicotine 

replacement therapy) and opioid use disorder (methadone). Therefore, several of the studies 

which were reviewed in Table 2 are brought back down here into this section if they were 

studies looking at effects of either nicotine replacement or varenicline on rsFC. Other 

relapse prevention medications and interventions work via different mechanisms, and these 

are included in this table as well.
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Pooling together studies measuring effects of treatments (Wilcox & Bogenschutz, 2013) 

which are either established relapse prevention agents (in these cases nicotine replacement 

therapy or varenicline) (Cole et al., 2010; L. Hong et al., 2009; Sutherland, Carroll, 

Salmeron, Ross, Hong, et al., 2013) or which are under investigation (Froeliger et al., 2017; 

Karch et al., 2015; Konova et al., 2013; X. Li et al., 2017; Wilcox et al., 2015; Yang et al., 
2017) nicely mirror some of our previous findings and models. When identified, treatment 

was consistently associated with increases in connectivity within ECN and between ECN 

and SN (Cole et al., 2010; L. Hong et al., 2009; Karch et al., 2015). Furthermore, reduced 

connectivity between DMN and ECN was observed in two studies in NUD (Cole et al., 
2010; X. Li et al., 2017). These consistent with theoretical models that reduced connectivity 

in ECN and between ECN and SN and reduced anticorrelation between DMN and ECN are 

treatment targets (Sutherland et al., 2012). Although by no means definitive, converging 

evidence support the possibility that changes in these particular markers in these directions 

may also portend clinical improvement.

Two additional studies to mention here are those looking at effects of long-term abstinence. 

Abstinence breeds abstinence, such that recovery in brain function contributes to greater 

ease staying abstinent or maintaining control (Wilcox et al., 2014) and could in a sense be 

considered an intervention promoting recovery. In AUD and StimUD abstinence is also 

associated with increasing connectivity within ECN (Camchong et al., 2013c; McHugh et 
al., 2017) and decreasing connectivity within reward network (Camchong et al., 2013c) or 

between nodes of the DMN (Ipser et al., 2018) consistent with many the treatment effect 

findings mentioned above.

Two studies using alternative analysis approaches did not make it into the table. One was a 

study of the effect of naltrexone in AUD, and showed that treatment normalized heightened 

local efficiency (clustered and segregated network processing) associated with an AUD 

diagnosis (Morris et al., 2018). Another study using similar methods in cocaine use disorder 

(Konova et al., 2015) utilized global and local connectivity. Across participants, 

methylphenidate decreased short-range (local) functional connectivity density (FCD) in the 

thalamus/putamen, and decreased long-range (global) FCD in the supplementary motor area 

and postcentral gyrus. Therefore both of these studies indicate reductions in local efficiency 

to be associated with treatment, and [now bringing down a third study from the withdrawal 

section (K. Wang et al., 2014)] combined with our knowledge that heightened global 

connectivity is associated with withdrawal these three studies together indicate that 

heightened global and local connectivity may be treatment targets across SUD.

Unfortunately too few studies have been done looking at effects of efficacious treatments on 

rsFC, and more work linking brain changes during treatment with downstream clinical effect 

of treatments is sorely needed. The field would benefit greatly from studies looking at 

changes in rsFC resulting from treatments which are known to work (naltrexone in AUD, 

varenicline in NUD, suboxone or methadone in OUD as examples) (Wilcox & Bogenschutz, 

2013) and which also measure whether these rsFC changes mediate the effects of treatments 

on clinical outcome. This would establish which rsFC markers should be utilized in target 

engagement studies to test the potential efficacy of new compounds (e.g. which changes are 

true treatment targets).
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Summary

In conclusion, we have found many studies that replicate important findings which can be 

used to focus future work in developing rsFC as a biomarker to inform addition treatment 

studies and perhaps (one day) deploying for use in clinical practice. First, deficits in 

cognitive control and impulsivity are associated with reduced connectivity within ECN and 

between ECN and SN, elevated connectivity between DMN and ECN (perhaps reflecting 

reduced anticorrelation), elevated connectivity between SN and both reward network and 

DMN, and elevated within reward network, within DMN and between reward network and 

DMN. Second, craving and subjective withdrawal are associated with elevated connectivity 

between ECN and both the reward and limbic networks, and elevated connectivity between 

SN and both DMN and reward network. Except for elevated ECN to limbic/reward network 

connectivity, these same findings are observed during abstinent or deprived states in 

individuals with NUD compared to satiated states, which is consistent with the known fact 

that nicotine withdrawal is associated with impairments in cognitive control and impulsivity 

as well as craving. Third, reduced connectivity within ECN and between SN and ECN at 

baseline also correlate with poorer treatment outcome in longitudinal studies. Finally, 

relapse prevention treatments which reduce substance use also tend to increase connectivity 

within the ECN, between the ECN and SN, and reduce (possibly reflecting increased 

anticorrelation) connectivity between the ECN and DMN. Converging evidence indicates 

that increasing connectivity within ECN, between SN and ECN, and possibly increasing 

anticorrelation between ECN and DMN could be associated with a healthier brain in SUD 

and better treatment outcomes. These patterns are consistent with the known roles of these 

networks in mediating cognitive control (Anticevic et al., 2012; Lerman et al., 2014).

Future directions

More robust prediction models needed for risk stratification:

The studies reviewed in Table 3 have advantages over cross sectional correlational analyses 

or group comparisons for treatment target identification and risk stratification because they 

are time-lagged, with the target being measured antecedent to the outcome. However these 

studies are still essentially correlational in nature and not true “prediction” studies (Abbott et 
al., 2016). In the mental health field at large, studies which use standard regression or 

correlation analyses to investigate relationships between baseline signals and treatment 

outcomes, dubbed “post correlation” studies, are being called into question because they 

may inflate relationships if they are not retested in independent samples and are known to be 

overly optimistic about how a finding in a given data set will generalize to a new data set 

(for example, another set of patients), thereby lacking adequate sensitivity and specificity for 

clinical use (Abbott et al., 2016; Vaughn R Steele et al., 2017). The goal of cross validation 

is to define a dataset to “test” a predictive model in the training phase (i.e., the validation 
set), and then to investigate the predictive value of the model in a different sample, in order 

to limit problems like overfitting, and give an insight on how the model will generalize to an 

independent dataset. Testing generalizability can be accomplished by having larger patient 

groups in which a model developed for one group transfers usefully to a second, 

independent group (out of sample cross validation) (Whitfield-Gabrieli et al., 2016). 
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However, this can be inefficient and requires large sample sizes. More efficient methods 

such as those that utilize leave one out cross-validation are gaining popularity. Leave-one out 

cross-validation loops through a sample and each subject is involved in both the model 

building and the testing phase (Vaughn R Steele et al., 2017). Random forest methods 

achieve similar goals (Gowin et al., 2015). Machine learning, support vector machine 

Gaussian process classification, and support vector regression are multivariate approaches 

that can be used in combination with cross validation (Kim et al., 2015; Vaughn R Steele et 
al., 2017). Studies using these kinds of state-of-the-art methods to predict substance use 

treatment outcomes are few (V. R. Steele et al., 2014; Vaughn R Steele et al., 2017), whereas 

other areas of mental health research have done much more work using these kinds of 

methods (Abbott et al., 2016; Drysdale et al., 2017; Jiang et al., 2018; Kim et al., 2015; 

Whitfield-Gabrieli et al., 2016).

Data driven and multimodal approaches:

Most of the studies cited in this review employed seed-based analyses and are often 

hypothesis-driven. This leaves out significant amounts of data from analyses, and this 

excluded data may have predictive importance. In future studies using resting state analyses, 

more whole brain and data-driven approaches should be utilized. When done so, in 

combination with true “predictive” models as described above like with multivariate pattern 

analysis (Vaughn R Steele et al., 2017; Thijssen et al., 2017; Whitfield-Gabrieli et al., 2016) 

we are likely to identify more reliable and generalizable markers, with a higher potential for 

clinical utility. Integrating other measures in with self-report, neurocognitive, DTI, 

structural, task-based fMRI and/or task-based functional connectivity or task-based network 

analyses (multimodal approaches) could also improve accuracy of prediction models 

(Drysdale et al., 2017; Kim et al., 2015) although the more data-collection is necessary, the 

less clinical applicability it may have, due to increasing complexity. Genetic markers may 

influence rsFC, and so interaction effects may need to be taken account to optimize 

predictive models (S. Li et al., 2017; Zhu et al., 2015).

Other ways to analyze resting state data:

Other analysis approaches which have not been utilized in SUD can also be explored, which 

may reveal different underlying functional changes. These kinds of analyses include fALFF 

(X. Li et al., 2017) power spectra (Thijssen et al., 2017) and dynamic FNC (Pariyadath et al., 
2016; Vergara et al., 2018).

More longitudinal datasets:

The argument to use healthy controls to understand pathological brain function in 

psychiatric disease is to control for rsFC variability and to establish a normal reference 

range. However, cross-sectional studies comparing healthy controls to SUD are problematic 

for treatment target identification because findings are over-inclusive. However, studies 

comparing SUD to HC could provide more important insights especially if they utilize 

longitudinal designs, by assessing several SUD groups at different time points since last use, 

as has been done in some studies (K. Wang et al., 2014). Many investigations have assessed 

the relationship between changes in NUD deprivation state and rsFC. However, the literature 

linking these changes with treatment outcomes or relapse risk is still sparse. Furthermore, 
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aside from a few studies in the each of the other SUD drug classes, few studies have 

investigated the impact of withdrawal treatment or relapse prevention treatment on rsFC or 

focused on defining the rsFC markers which relate most strongly to treatment outcome.

rsFC for precision medicine in SUD:

In other medical fields, such as internal medicine, laboratory tests (objective markers) can be 

used to guide treatment decision making. For this reason, internists can identify people more 

likely to respond to one treatment over another and stratify risk. Furthermore, the sensitivity 

and specificity of these tests are often well-established. Within mental health, biomarkers 

have yet to be useful for clinical decision making. Precision medicine is now a major 

priority within NIH and the general psychiatry and SUD treatment fields (Dishman, 2018). 

Within other mental health disorders, simply finding a biomarker to help determine 

diagnosis may be all that is needed to guide treatment selection and improve efficacy. 

However, SUD are heterogeneous, even within drug categories. Biomarkers that identify an 

overall vulnerability for relapse, or relapse risk for a specific treatment, will inform and 

individualize treatment plans. What might be a treatment target for one SUD subtype may 

not be for another (Kwako et al., 2015). Several studies in SUD using non-rsFC based 

markers have been published and show some success in identifying possible treatment 

matching characteristics (Bogenschutz et al., 2009; Haass-Koffler et al., 2017; Mann et al., 
2014; Roos et al., 2017; Wilcox & Bogenschutz, 2013), although validation of these findings 

in independent samples and determination of sensitivity and specificity is needed before 

deployment into clinical practice. Future work might employ methods that have been 

performed previously, such as investigating whether rsFC moderates response to a 

medication relative to placebo (Wilcox, Calhoun, et al., 2017) or define subtypes by using a 

clustering procedure on rsFC to then see whether membership in a particular cluster predicts 

differential response to one medication over another (Drysdale et al., 2017). Continued 

efforts to identify biological mechanisms of treatment (Table 4) will contribute to future 

treatment matching study hypotheses as well. For example, a medication that improves 

cognitive control or related biomarkers (i.e. within ECN rsFC) would hypothetically work 

best in someone with impaired executive control (reduced within-ECN rsFC) at baseline.

Controlling for withdrawal state and length of abstinence:

As we have seen in this review, abstinence, or the withdrawal state, in NUD is associated 

with changes in rsFC, and these changes are remarkably consistent across studies. Therefore, 

our review shows that withdrawal state absolutely needs to be controlled for during scanning 

in NUD, and whenever possible homogeneous groups with specific criteria regarding time 

since last use should be recruited, as connectivity is clearly altered between abstinent and 

satiated states and these effects may obscure important treatment targets (Wilcox, Calhoun, 

et al., 2017). Unfortunately, other than in NUD, none of the other SUD neuroimaging 

research has explored this relationship between withdrawal state and changes in rsFC. In 

many of the other SUD (e.g. alcohol, stimulant) individuals are often some days or weeks 

abstinent or score low on withdrawal scales at the time of their scans. However, studies in 

AUD show that not only withdrawal but also time abstinent (over weeks) should be taken 

into account as rsFC changes over longer time periods as well (Camchong et al., 2013c). 

Regarding the similarity between rsFC during deprived states in NUD and impaired 
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functioning within psychological domains like impulsivity, cognitive control, and craving, it 

is reasurring to see findings converge. However, because of the overlap, it will still be 

essential to control for withdrawal state when trying to isolate the rsFC markers of craving, 

cue reactivity, cognitive control and impulsivity in future work, which only some studies in 

this area have done up to now. In order to be methodical about developing new treatments, 

neural changes related to acute withdrawal (and easily reversible with either time abstinent 

or with available treatments like the nicotine patch in NUD or methadone in OUD and other 

direct agonists) will need to be distinguished from those that persist following treatment of 

withdrawal and requiring treatment with a longer-term relapse prevention agent.

rsFC to parse one SUD drug class from another and to identify characteristics that bridge 
drug classes:

Certain aspects of susceptibility to addiction are independent of the type of drug (Agrawal & 

Lynskey, 2008) and the mesocorticolimbic system may play a similar role in the 

development of SUDs involving all classes of drugs (Koob & Volkow, 2010; Pariyadath et 
al., 2016). This is mirrored in the treatment literature, in that some medications appear to 

work in several SUD (topiramate/zonisamide, varenicline) whereas others are drug-specific 

(methadone) (Litten et al., 2013; Wilcox & Bogenschutz, 2013). Acknowledging that there 

may be neural alterations both unique to each drug class and that span drug classes, there has 

been a growing push to both compare individuals with different SUD profiles to one another, 

while also looking at overlapping effects (Vergara et al., 2017; Vergara et al., 2018). Results 

from work in this area indicate hypo-connectivity among salience, sensory, and visual 

networks in both AUD and NUD, but increased connectivity in AUD compared to controls 

within the reward system, and hypo-connectivity between thalamus and putamen and hyper-

connectivity between precuneus and left angular gyrus in NUD compared controls (Vergara 

et al., 2017). Doing a similar type of analysis but to predict treatment outcome rather than 

diagnostic category alone could help inform hypotheses about treatment targets that are 

cross-class versus unique to one class, and could inform treatment development.

Issues of clinical applicability:

Whether imaging results provide additional predictive value above and beyond that available 

with clinical data remains to be seen, and this is necessary to justify the additional cost of 

imaging. For example, although higher connectivity between dACC and insula had been 

identified in several studies as a marker of better treatment outcome if NUD severity was 

controlled for using the Fagerstrom test of nicotine dependence, when baseline smoking 

quantity was used as a covariate instead (Addicott et al., 2015; Heatherton et al., 1991; Janes 

et al., 2010; Wilcox, Calhoun, et al., 2017), the relationship between dACC to insula rsFC 

and treatment outcome disappeared, indicating that the imaging did not add additional 

predictive value.

Limitations

There are several limitations to note regarding our approach. First, in order to try to simplify 

and identify replicating patterns, we chose to group regional findings into particular 

networks. Some of our choices were necessarily somewhat arbitrary (this was not a meta-
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analysis) and could be challenged. For example, including mOFC/sgACC into both DMN 

and reward networks may not have been an approach that others would have advocated 

(other research has considered this region its own network) (Zhu et al., 2017). However, in 

the end, our approach identified replicating patterns across sections of the paper, and for this 

reason was probably a successful strategy and provided some insight into our main questions 

of interest. Furthermore, we did not focus on some potentially important regions and regions 

including the primary and premotor cortex, primary somatosensory cortex, cerebellum, 

visual areas, inferior frontal gyrus and thalamus which may play important roles in SUD 

severity (Addicott et al., 2015; Janes et al., 2010; Moeller et al., 2016; Muller-Oehring et al., 
2014; Pandria et al., 2016).

Conclusions

In summary, through our review of the literature, reduced ECN-SN connectivity and within 

ECN rsFC show promise as being treatment targets for SUD. Furthermore, although less 

consistent, elevated within DMN, within reward network, and DMN to reward network 

rsFC, elevated DMN-SN connectivity, as well as reduced anticorrelation between DMN and 

ECN, are possible treatment targets. Replication and validation of findings in independent 

datasets, more longitudinal studies in all SUD, more state-of-the-art data-driven and 

generalizable prediction analyses, and consistent controlling for withdrawal state and time 

abstinent are needed to move the field forward.
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Highlights

• Resting state functional connectivity (rsFC) is altered in substance use 

disorder

• Reduced rsFC within executive control network (ECN) may be a treatment 

target

• Reduced rsFC between ECN and salience network (SN) may be a treatment 

target

• Withdrawal state profoundly affects rsFC and needs to be controlled for in 

research

• More research using data-driven longitudinal prediction analyses are needed
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