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Abstract

Protein and lipid nanodomains are prevalent on the surface of mammalian cells. In particular, it 

has been recently recognized that ion channels assemble into surface nanoclusters in the soma of 

cultured neurons. However, the interactions of these molecules with surface nanodomains display 

a considerable degree of heterogeneity. Here, we investigate this heterogeneity and develop 

statistical tools based on the recurrence of individual trajectories to identify subpopulations within 

ion channels in the neuronal surface. We specifically study the dynamics of the K+ channel Kv1.4 

and the Na+ channel Nav1.6 on the surface of cultured hippocampal neurons at the single-

molecule level. We find that both these molecules are expressed in two different forms with 

distinct kinetics with regards to surface interactions, emphasizing the complex proteomic 

landscape of the neuronal surface. Further, the tools presented in this work provide new methods 

for the analysis of membrane nanodomains, transient confinement, and identification of 

populations within single-particle trajectories.

I. INTRODUCTION

One of the most striking features of mammalian cells lies in their ability to perform 

extremely intricate functions with a limited number of protein-coding genes. This number is 

much smaller than originally estimated [1,2]. For example, human and mouse genomes have 

merely 19 817 and 21 968 protein coding genes (GENCODE 26 and GENCODE M13 [3]). 

To reach the diversity and complexity required by cells in any mammal, genes can produce 

multiple protein forms, which can further be chemically modified at several locations. As a 

consequence, cells can employ the same protein for remarkably different functions. A 
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particular type of proteins that exhibit exceptional diversity are integral membrane proteins, 

such as receptors and ion channels. It is estimated that approximately 26% of the human 

protein-coding genes code for membrane proteins [4].

Biological systems are often characterized by both static [5] and dynamic [6] 

heterogeneities. However, such disorder cannot be usually probed by ensemble-averaged 

measurements. On the other hand, single-molecule techniques are ideal for observing 

functional heterogeneities and to extract information on the distribution of molecular 

properties. Single-molecule experiments have provided information on functional 

heterogeneities in enzymatic turnover [7], RNA folding [8], Holliday junctions [9], and 

helicase activity [10], to name a few examples. As single-molecule techniques advance, it is 

becoming clear that functional heterogeneity is ubiquitous in the complex realm of 

biological systems [11–13].

In the plasma membrane functional heterogeneities can be employed to exploit the same 

protein in multiple cellular functions or to regulate physiological processes by altering 

intermolecular interactions. For example, besides regulating action potential waveform in 

neurons, the ion channel Kv2.1 has a nontraditional structural role by which it induces 

endoplasmic reticulum-plasma membrane contact sites [14] and alters membrane protein 

trafficking [15]. Identifying heterogeneities and quantifying the distribution of molecular 

properties are important steps in cell biology. Single-particle tracking provides unique 

advantages for the investigation of the dynamics of individual molecules [16–18]. However, 

observing heterogeneous dynamics can be challenging due to the inherent thermal 

fluctuations and experimental noise [19]. Some types of heterogeneous dynamics that have 

been recognized in trajectories in the plasma membrane include hop-diffusion between 

actin-delimited membrane compartments [20–22], confinement in nanoscale membrane 

domains [23–25], and transient tethering to intracellular scaffolds [26,27]. Thus, tools that 

allow both to identify heterogeneous dynamics in single-particle trajectories and to 

distinguish particle-to-particle variations in terms of their dynamics, are necessary. Different 

methods have been developed to identify transition points within intermittent trajectories. 

For example, a system-level maximum-likelihood method has been employed to identify 

periods of confined motion within trajectories exhibiting Gaussian diffusion [28]. This 

method is very effective when dealing with Gaussian-based models. Alternatively, universal 

model-free methods enable the identification of change points in an individual trajectory by 

considering a local functional that transforms the trajectory into a new time series. This new 

time series can then be used to characterize intermittent behavior [29,30]. Examples of local 

functionals that have been employed include the diffusivity [31], convex hull [29], 

anomalous exponent of the local MSD [32], and directional changes [22,33]. In particular, 

the local MSD exponent and the convex hull have been used to detect confinement zones. 

The advantage of local functional methods lies in the fact that they can be applied without 

prior knowledge of the model

In this paper we study the heterogeneous dynamics of two voltage-gated ion channels in the 

somatic plasma membrane of hippocampal neurons, the K+ channel Kv1.4 and Na+ channel 

Nav1.6. These channels are observed to be transiently confined in nanoscale domains, but 

while some molecules remain confined for minutes, others escape in less than 1 s. We 
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introduce a local functional method based on recurrence analysis to identify regions of 

confinement in the path. Then, we classify trajectories employing a three-step protocol. 

First, a regime variance test quantifies heterogeneity in particle dynamics. Second, a 

silhouette analysis is used to identify the exact number of trajectory classes. And third, a k-

means algorithm is used to set thresholds and separate trajectories into different classes. We 

find that there are two different classes of trajectories for both Kv1.4 and Nav1.6. These 

classes of trajectories have very different residence times within the confined domains. 

While populations that exhibit weak interactions have sojourn times with exponential tails, 

the populations with strong interactions appear to have heavy tails. These results highlight 

the complexity of the neuronal surface and provide tools for the study of static and dynamic 

heterogeneities in the plasma membrane

II. MATERIALS AND METHODS

A. Cell culture, transfection, and labeling

Rat hippocampal neurons were cultured and imaged in glass-bottomed plates as previously 

described [25,34]. Animals were used according to protocols approved by the Institutional 

Animal Care and Use Committee of Colorado State University (Animal Welfare Assurance 

Number A3572–01). Nav1.6 and Kv1.4 constructs were each modified to contain an 

extracellular biotin acceptor domain (BAD) in an extracellular loop. These constructs 

(Nav1.6-BAD and Kv1.4-BAD) were previously functionally validated [34]. Neuronal 

transfections were performed after 6 days in culture forNav1.6 and 7 days in culture for 

Kv1.4, using Lipofectamine 2000 (LifeTechnologies, Grand Island, NY). Cells were 

cotransfected with 1 μg of either Kv1.4-BAD or Nav1.6-BAD and 1 μg pSec-BirA (bacterial 

biotin ligase) to biotinylate the channel. Labeling of the surface channel was performed 

before imaging at DIV10.Neurons were rinsed with neuronal imaging saline [NIS: 126 mM 

NaCl, 4.7 mM KCl, 2.5 mM CaCl2, 0.6 mM MgSO4, 0.15 mM NaH2PO4, 0.1 mM ascorbic 

acid, 8 mM glucose, and 20 mM HEPES (pH 7.4)], to remove the Neurobasal medium. Cells 

were incubated for 10 min with streptavidin conjugated CF640R (Biotium, Hayward, CA) 

diluted 1:1000 in NIS. Streptavidin-CF640R labeling was done at 37◦C in the presence of 

1% bovine serum albumin (Cat. No. A0281, Sigma, St. Louis, MO). Excess label was 

removed by rinsing with neuronal imaging saline.

B. Imaging

Total internal reflection fluorescence (TIRF) images were acquired at 20 frames per second. 

Before TIRF imaging, differential interference contrast (DIC) and wide-field fluorescence 

imaging were used to distinguish transfected neurons from the relatively flat glia.Neurons 

were readily identified based on the characteristic soma morphology and localization of 

Nav1.6 to the axon initial segment. All imaging was performed at 37◦C using objective and 

stage heaters

C. Image processing and single-molecule tracking

Images were background subtracted and filtered using a Gaussian kernel with a standard 

deviation of 0.6 pixels in ImageJ. Tracking of individual fluorophores was then performed in 
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MATLAB using the U-track automated algorithm [35]. Manual inspection confirmed 

accurate single-molecule detection and tracking.

D. Identification of transient confinement periods

To identify periods of transient confinement within individual trajectories we developed an 

algorithm based on trajectory recurrence analysis where we evaluate the total number of 

visits to the current site [36]. When a particle is confined within a nanoscale domain, it 

moves in a small area unavoidably visiting the same sites multiple times in a short period. In 

contrast, during free unconfined motion, the random walk is less compact and its exploration 

region in the same time is wider. In the recurrence analysis algorithm, at each particle 

position we calculate the distance to the subsequent point and construct a circle with 

diameter equal to this distance, centered midway between the two consecutive points. Next, 

the number of times the walker position lies within the circle, V′ j, is calculated. Thus, V′ j

denotes the number of visits to site j, where j =1,2, … ,N −1 and N is the number of data 

points in the trajectory. The method by which Vj is found is illustrated in Figs. 1(a) and 1(b) 

for two simulated trajectories. To improve the algorithm reliability and enhance the 

differences between confined and free states, we first segment the data into disjoint windows 

of size n =3 and then sum over the three consecutive V′ j values within each window. For 

example, V1 = V2 = V3 = V′1 + V′2 + V′3 . The identification of states is performed 

according to Vj remaining either above or below a given threshold (Vth). The threshold is 

selected taking under consideration the behavior of the analyzed data and can vary for 

diverse data sets. In our experimental data, the threshold was selected to be Vth =11; and in 

our synthetic data Vth =6. The procedure for threshold selection is further detailed in Sec. 

III.

The statistic Vj is susceptible to statistical noise. Namely, there is a finite, albeit small, 

probability that Vj crosses the threshold in a single window even though there is no real 

change of behavior in the data. Nevertheless, the probability that such events take place in 

two consecutive windows is much smaller. Thus we eliminate most false-positive point 

changes by considering the dwell time within each state. If a particle crosses the threshold 

but the dwell time within the new state is only a single time window, i.e., three points, the 

time series is considered to remain within the same state.

E. Determination of number of classes among particles

We determined the number of different trajectory classes based on the time spent in the 

confined state. After segmentation of trajectories into free and confined states, we calculated 

the total fraction of time φ each trajectory resides within the confined state. For a trajectory i 
with m confined sojourn times τik, the fraction of time in the confined state is

ϕi = 1
T i k = 1

m
τik, (1)
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where Ti is the observation time. Then, we evaluated if there exist at least two types of 

trajectories by employing the regime variance test described in Ref. [37]. Briefly, given M 
trajectories with φ1,φ2, … ,φM fractions of time, we first visually examine trajectory-to-

trajectory fluctuations by constructing the successive summation of φ2,

Ck =
i = 1

k
ϕi

2, k = 1, 2, …, M . (2)

If the fractions φi correspond to a single type of trajectories, then Ck is a linear function with 

respect to k, otherwise a piecewise linear behavior with different slopes indicates there are at 

least two different regimes. Note that the values φi do not need to be ordered and the Ck 

statistics is non decreasing. The regime variance test was shown in Ref. [37] to be effective 

when dealing both with Gaussian and Lévy-stable random variables.

The null hypothesis of the regime variance test corresponds to the case with a single regime. 

To test this hypothesis, first the most likely switching point k׳ is found on the basis of the 

Ck statistic. To find the switching point k׳, we fit two regression lines to the arrays C1, 
… ,Ck and Ck+1, … ,CM and calculate the squared sums of residuals for both lines. The 

switching point k׳is obtained by minimizing the total squared sum of residuals. Next, the 

data ϕi  are divided into two arrays: ϕ1, …, ϕk′ and ϕk′ + 1,   .   .   .  , ϕM . Then, given a desired 

confidence level γ, the quantiles (1 − γ )/2 and γ/2 of the squared data ϕi
2 for the first array 

(i = 1, … ,k׳) are calculated. Here, for the sake of simplicity, we assume the variance of the 

first array is smaller than the second one; otherwise the quantiles are computed for the 

second array. The core of the regime variance test is the number of observations B from the 

data ϕi
2 in the second array j = k′ + 1, …, M  that fall into the constructed quantiles 

interval. The null hypothesis of both regions having the same distribution implies that B has 

binomial distribution P B = k′ = B
M − k′

pB 1 − p M − k′ − B, where p = γ . Therefore, the p 

value of the test is equal to the cumulative distribution function of this distribution evaluated 

at B. A large p value of the test (greater than the confidence level γ ) indicates the null 

hypothesis is not rejected.

After confirming the existence of at least two types of trajectories with respect to sojourn 

times in the confined states, we determined the number of classes on the basis of the 

silhouette criterion [38]. For a fixed number of classes c the silhouette statistic assigns value 

sc(i) to the observation φi, given by

sc i =
b ϕi − a ϕi

max a ϕi , b ϕi
, i = 1, 2, …, M, (3)

where a(φi ) is the average distance to all values in the allocated class and b(φi ) is the 

distance to the nearest neighbor class. For each number of classes c, all possible divisions 
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into c classes are considered and the optimal division is the one that maximizes the 

silhouette statistic sc. The silhouette criterion then takes a value

silc =
i = 1

M
sc i /M, (4)

that varies from 0 to 1. The optimal number of classes maximizes sil c.

F. Classification of trajectories

To classify trajectories according to their fractions of time being in the confined state φi, we 

used a clustering method based on the k-means algorithm [39] implemented in MATLAB. 

The k-means clustering partitions the set of M observations into k clusters in a way that each 

observation belongs to the cluster with the nearest mean. The assignment of φi into a cluster 

is thus based on the minimization of the average Euclidean distance between the points in 

that cluster and the cluster mean. This method yields a partitioning of the data space into 

Voronoi cells.

G. Statistics

In the experimental data analysis we compared the distributions of different characteristics 

corresponding to confinement states for classified trajectories. To evaluate if two data sets 

have the same distribution we used the Kolmogorov-Smirnov (KS) test for two samples [40]. 

The KS statistic for two data sets with cumulative distribution functions F1(x) and F2(x) is

KS = supx F1 x − F2 x , (5)

where supx is the supremum. A large p value of the KS test indicates the H0 hypothesis is 

not rejected and the two data sets have the same distribution.

III. VALIDATION OF CONFINEMENT IDENTIFICATION METHOD

In this section we evaluate the effectiveness of the confinement identification method. As the 

toy model we analyze intermittent fractional Brownian motion (FBM). FBM is a stochastic 

process driven by stationary Gaussian, but power-law correlated noise [41,42]. It is one of 

the classical anomalous diffusion processes for which the mean-square displacement (MSD) 

〈x2(t ) 〉 = Kαtα, with generalized diffusion coefficient Kα and anomalous exponent α. In 

terms of the commonly used Hurst exponent, H = α/2. The process is superdiffusive when α 
> 1 and subdiffusive when 0 < α < 1. As α decreases, the random walk becomes more 

compact. In particular, when α is close to zero, the FBM resembles confinement in a domain 

with a small drift

To illustrate the recurrence analysis, we present two short FBM trajectories (N = 50 points) 

with α = 0.1 and α = 0.9 in Figs. 1(a) and 1(b), respectively. Given that a FBM with α = 0.1 

is a very compact random walk, it resembles motion in a confined domain. FBM with α = 
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0.9 is a good model for unconfined sub diffusion. We expect the number of visits Vj to have 

larger values in the regions with α = 0.1. Thus, the number of visits provide a metric to 

segment the trajectory according to its recurrence. For both cases two consecutive 

observations are marked in Figs. 1(a) and 1(b). The constructed circle in the trajectory with 

α = 0.1 encloses 17 points and the circle in the trajectory with α = 0.9 encloses only one 

point

We analyze an intermittent FBM where the anomalous diffusion exponent alternates 

between α = 0.1 and α = 0.9. For simplicity the random walk is defined as a renewal process 

where the process correlations are reset when α changes. We simulate the intermittent FBM 

with five segments of different lengths. The first, third, and fifth segments correspond to α = 

0.1 while the second and fourth to α = 0.9. Figure 1(c) shows four simulated intermittent 

FBM realizations together with the results of the recurrence analysis method. The parts of 

the trajectories identified as confined motion are marked in red. The recurrence analysis 

takes under consideration two-dimensional trajectories but we present one-dimensional time 

series for clarity. The two-dimensional trajectories are shown to the right of the time traces. 

The vertical dashed lines correspond to the switching points between the two FBMs. The 

time series of the number of visits Vj for these four simulated trajectories are presented in 

Fig. 1(d). Again, the vertical dashed lines correspond to the true switching points between 

the two regimes of intermittent FBMs. As seen in Fig. 1(d), the time series Vj remains for 

long times at low values that correspond to free diffusion and high Vj values corresponding 

to confined motion. Thus, it is possible to discriminate between different phases of motion 

by employing a threshold on the Vj time series. The choice of the threshold value for 

segmentation of the trajectories depends on the character of the data but it can be effectively 

chosen by visual inspection. Here, we chose a threshold Vth = 6. However, as can be seen in 

Fig. 1(d) the method is prone to statistical noise: in the free regions we observe falsely 

identified short periods of confinement and vice versa. Therefore, there is need to correct the 

method to overcome the falsely identified regions with short dwell times. As explained in 

the methods, this correction is introduced by eliminating all transitions where the dwell time 

is a single time window, that is three points.

IV. RESULTS

A. Detection of Kv1.4 transient confinement

We have imaged hippocampal neurons expressing Kv1.4- CF640R and Nav1.6-CF640R and 

tracked their motion on the somatic surface. Figure 2(a) shows 92 Kv1.4-CF640R 

trajectories obtained in a typical cell. The trajectories are highly heterogeneous with some 

trajectories being very compact while others explore large regions. However, this 

heterogeneity does not appear to be related to the location of the molecules within the cell. 

Figure 2(b) shows a zoom on the trajectory indicated by an arrow. As we have previously 

reported [32], Kv1.4 ion channels exhibit intermittent behavior with periods of confinement 

and periods of free diffusion.

We employ recurrence analysis based on the number Vj of visits to site j, to segment the 

trajectory according to being in either a confined or free state. Figure 2(c) shows a histogram 

of the number of visits Vj at each site as defined in our algorithm for identification of 
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confinement. The trajectories are next segmented using a threshold Vth = 11. Figure 2(d) 

shows the time series Vj of the trajectory shown in Fig. 2(b). We add the number of visits 

within three consecutive circles and thus our temporal resolution is 150 ms in this analysis. 

The confined regions are found as the periods with Vj≥Vth and are colored in red in Figs. 

2(b) and 2(d). The x(t ) and y(t ) time series of the same trajectory are shown in Figs. 2(e) 

and 2(f), also with the confined regions colored in red.

B. Kv1.4 are classified according to their surface interactions

We have observed that Kv1.4 channels exhibit periods of transient confinement and the 

instantaneous state of the protein can be determined by recurrence analysis. Further, visual 

examination of the trajectories in Fig. 2(a) suggests the data are markedly heterogeneous. 

Thus, we study whether there are more than one class of particles using the regime variance 

method according to the fraction of time φ that each particle spends in the confined state. 

From a physiological perspective such different types of molecules could be the result of 

post-translational modifications that alter molecular interactions. Figure 3(a) shows a 

histogram of the fractions of time spent in the confined state where the counts indicate 

number of trajectories. These fractions of time vary from φ = 0.02 up to φ = 1. Figure 3(b) 

shows the regime variance statistic Ck versus trajectory number k [(Eq. 2)]. Using this 

metric with a confidence level γ = 0.05, we find that there are at least two distinct classes of 

trajectories in the Kv1.4 data (p = 10−3). Using the silhouette criterion, we find that there are 

two classes of trajectories as silc is maximized by c = 2 (sil2 = 0.9 and sil3 = 0.8). As a 

simple control of the regime variance test, we apply it to the simulated trajectory set of 

intermittent FBM that was presented in Fig. 1. The regime variance test for the simulated 

trajectories does not reject the hypothesis of a single class [p = 0.29, inset of Fig. 3(b)].

Kv1.4 trajectories are classified according to their fraction of time in the confined regime φ. 

The k-means algorithm yields class division according to φ < 0.69. Figures 3(c) and 3(d) 

show examples of trajectories in each of the classes, where the confined states are marked in 

red. To characterize the differences in the behavior of particles belonging to each class we 

study the distributions of residence times within the confined state. Figure 3(e) shows the 

complementary cumulative distribution function (CCDF) of the residence time, i.e., P[T >t] 
for particles in each of the classes. The Kolmogorov-Smirnov two-sample test rejects the 

null hypothesis of the same distribution of the residence time for two classes with p = 

10−108. For the trajectories with φ < 0.69 we find that the sojourn times have an exponential 

distribution tail with a characteristic decay time τ = 0.43 ± 0.05 s.

C. Characterization of Kv1.4 confining domains

The confining domains were found from the periods within the trajectories, in which the 

particles exhibit confined motion. However, only regions where the particle remains 

confined for at least 10 frames were analyzed. In the cases that the particle was confined for 

more than 20 frames, only the first 20 points are employed in the analysis to avoid any 

potential problems related to drift of the confining domain. Radii of gyration were found 

along the major and minor principal axes and the domain was approximated as an ellipse 

with these major and minor semiaxes, respectively, as shown in the inset of Fig. 4(a). The 

radius of gyration along the u direction is defined for a trajectory of N points as 
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Ru
2 = k

N uk − u 2, where uk is the distance of the kth point to the corresponding principal 

axis. Figures 4(a) and 4(b) show the cumulative distribution function and box plots of the 

elliptical area of the confining domains for both classes of trajectories. Figures 4(c) and 4(d) 

show the characterization of the same domains in terms of the major semiaxis. The majority 

of domain sizes are much larger that the particle localization uncertainty. These data show 

that even though the interactions of distinct pools of Kv1.4 with these domains are different 

according to their sojourn times, the confining domains for both classes share similar 

morphological characteristics.

D. Characterization of Nav1.6 motion

Nav1.6 ion channels were previously also found to exhibit periods of transient confinement 

[25]. Nav1.6 trajectories in a representative cell are shown in Fig. 5(a). Regime variance test 

also shows that there exist at least two classes of Nav1.6 trajectories and the silhouette 

criterion indicates the number of classes equals two (sil2 = 0.89 and sil3 = 0.75). Application 

of a k-means algorithm yields a fraction of times threshold φ =0.74 for classifying 

trajectories. The distributions of sojourn times in the confined state are shown Fig. 5(b). 

Again, as seen for Kv1.4 channels, the distributions of times in the two states are markedly 

different. The sojourn times in the class with φ < 0.74 are exponentially distributed with 

characteristic decay time τ = 0.93 ± 0.04 s.

The characterization of confining domains for Nav1.6 according to the radii of gyration 

along the principal axes is shown in Figs. 5(c)–5(f). The Kolomogorov-Smirnov two sample 

test rejects the null hypothesis of the same distribution of confinement sizes for two classes 

with p = 0.007 but the characteristics of both populations are similar.

V. DISCUSSION AND CONCLUSIONS

The dynamics of membrane proteins is often characterized by a high degree of 

heterogeneity. In general, these fluctuations can arise from two very different mechanisms. 

In the first situation, proteins perform a random walk in a heterogeneous landscape while, in 

the second, proteins undergo post-translational modifications so that they interact in 

substantially different ways with the same complexes. The first situation has been studied 

both experimentally and theoretically. Heterogeneous diffusion landscapes can yield 

intriguing results that involve population splitting and nonergodicity [43,44]. Besides 

analysis of individual trajectories, the diffusion landscape of membrane proteins has been 

studied using single-particle tracking photo activated localization microscopy (sptPALM) 

[45] and universal points-accumulation for-imaging-in-nanoscale-topography (uPAINT) 

[46], which yield high-density surface maps. Furthermore, these high density maps can be 

accurately evaluated using Bayesian inference tools, which provide information on both 

diffusion and energy landscapes [47].

We have previously employed sptPALM in combination with Bayesian inference tools to 

show that Nav1.6 channels are clustered into nanoscale domains [25]. However, one of the 

interesting aspects of those observations lies in the fact that Nav channels exhibit a marked 

heterogeneity in their interaction with the nanoclusters. Therefore, we set to study the 
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molecule-to-molecule heterogeneity in the neuronal surface. We raise the question, can we 

unravel distinct molecule subpopulations according to interactions with nanoclusters? To 

this end we develop a methodology by which we segment the trajectories into regions of 

transient confinement and regions of free motion and we identify two distinctive 

subpopulations both in the Nav1.6 and in the Kv1.4 dynamics. These subpopulations exhibit 

different types of interactions with their respective membrane nanodomains. In one 

population the trajectories are mostly in the free state while in the second population, the 

trajectories exhibit long periods under transient confinement. The size of the confined 

regions are characterized from the motion of the molecules and it is found these regions have 

a mean diameter that is ten times the localization accuracy. Therefore, the trapping events 

cannot be considered to be immobilization due to binding as is the case for Kv2.1 channels 

in HEK cells [27,48]

The interactions of one of the populations with the confining nanodomains exhibit a 

“normal” type of statistics with sojourn times that are exponentially distributed. Therefore, 

the system can be considered to be Markovian, i.e., to have no memory. Surprisingly, the 

second population exhibits a heavy-tail, nonexponential sojourn-time distribution. This 

behavior brings up the hypothesis of complex behavior with the possibility of ergodicity 

breaking and aging in the dynamics of the ion channels. Consistent with these observations, 

we have recently found that the dynamics of the majority of Kv1.4 and Nav1.6 trajectories in 

the somatic plasma membrane exhibit nonergodic dynamics according to dynamical 

functional tests [32]

The tools developed in this work can be employed in the study of membrane nanodomains, 

which are widespread among mammalian cells. Further, these domains can play important 

physiological roles. In B and T lymphocytes, reorganization of signaling nanodomains leads 

to cell activation [49]. In neurons, nanoclustering of membrane proteins has key functions in 

synaptic transmission [50]. We apply four time-series analysis tools to extract specific 

information on heterogeneous interactions with nanodomains: (i) A recurrence analysis is 

used to find transitions in the diffusive behavior. This analysis has the advantages of 

providing high temporal resolution that can be applied to both Markovian and non- 

Markovian processes. (ii) A regime variance test quantifies the heterogeneity in the sojourn 

times. (iii) A silhouette algorithm finds the number of different classes according to protein 

dynamics. (iv) A k-means algorithm is used to set thresholds and separate trajectories into 

different classes. By using the algorithms provided in the Supplemental Material [36] we 

identified and characterized distinct behaviors of the same proteins expressed in the neuronal 

soma, which had not been distinguished with previous analyses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
Method for identification of confined motion based on number of visits to current site. The 

method is validated using numerical simulations. (a) FBM with α = 0.1, i.e., Hurst exponent 

H = 0.05. At each successive points pair, such as those marked in red, a circle is drawn as 

indicated in the figure. In this case there are 17 points (visits) found within the circular area. 

(b) FBM with α = 0.9. Here the tracer visits the region within the selected circle only once. 

(c) y coordinate of two-dimensional intermittent FBM with α = 0.1 (first, third, and fifth 

segment) and α = 0.9 (second and fourth segment). The vertical dashed lines show the true 
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switching points. The parts of the trajectories identified as confined (low α) are marked in 

red. The two-dimensional trajectories are presented on the right. (d) Vj statistic, i.e., number 

of recurrent visits, as a function of time. Again, the vertical dashed lines show the true 

switching points. The threshold for finding confined regions in this example is Vth = 6.
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FIG. 2. 
Segmentation of Kv1.4 trajectories. (a) 92 individual Kv1.4 trajectories in one hippocampal 

neuron. (b) Zoom of the trajectory indicated with a thin black arrow. The periods of 

confinement within this trajectory are shown in red. (c) Histogram of the number of visits to 

current site, Vj (117,195 sites; 649 trajectories).As explained in the text, the sites are 

determined by the exploration in 150 ms. This metric is used to evaluate how compact the 

random walk is and to identify regions of confinement. (d) Time series of number of visits 

Vj for the trajectory in panel (b). When the number of visits is above the threshold Vth = 11, 
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the particle is considered to be in the confined state. At 4.6 s, Vj drops below the threshold 

during three points in the time series. However, because the dwell time is not longer than 

three points, i.e., a single time window, this region is considered to remain in the confined 

state. This region is indicated by a thick yellow arrow in panel (b). (e, f) time series of 

localization along x and y for the trajectory shown in panel (b). The regions that are detected 

to be confined are shown in red and the identified switching point marked by dashed vertical 

line.
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FIG. 3. 
Determination of number of distinct classes among Kv1.4 trajectories (649 trajectories, 9 

cells). (a) Histogram of fraction of the observation time that a particle spends in the confined 

state. (b) Regime variance test statistic Ck = i = 1
k ϕi

2 . The regime variance test rejects the 

hypothesis of a single regime with p = 10−3. The inset shows the regime variance test 

applied to 500 realizations of numerical simulations of the type shown in Fig. 1. In these 

simulations, the test does not reject the hypothesis of a single class of trajectories (p = 0.29). 

(c, d) Examples of Kv1.4 trajectories in the two distinct classes. The fraction φ is given for 
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each example. (e) Complementary cumulative distribution function of the residence times in 

confined states for each of the two classes (Class 1: 1 659 sojourn times, 575 trajectories; 

Class 2: 575 sojourn times, 74 trajectories).
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FIG. 4. 
Confining regions are the same for the Kv1.4 channels in both classes. (a) Cumulative 

distribution function and (b) box plots for the confining regions area for particles in both 

classes. Box plots show5–95% quantiles as whiskers together with quartiles and median 

(Class 1: 1 165 domains; Class 2: 113 domains). The inset in panel (a) shows the 

characterization of the confining domain in a sample trajectory using the radii of gyration 

along the principal axes. The first 20 points of the confining domain are employed to find 

the radii of gyration. The obtained confining ellipse is shown together with the principal 

Sikora et al. Page 20

Phys Rev E. Author manuscript; available in PMC 2018 December 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



axes. (c) Cumulative distribution function and (d) box plots for the confining major 

semiaxes.
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FIG. 5. 
Nav1.6 channels in the soma of hippocampal neurons (386 trajectories, 4 cells). (a) 

Trajectories of Nav1.6 in one example cell (79 trajectories). (b) Residence times in confining 

regions for the two classes found using the silhouette method (Class 1: 915 times, 307 

trajectories; Class 2: 706 times, 79 trajectories). (c) Cumulative distribution function (CDF) 

and (d) box plots of the confining regions area for particles in both classes. Box plots show 
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5–95% quantiles as whiskers together with quartiles and median (Class 1: 605 domains; 

Class 2: 171 domains). (e) CDF and (f) box plots of the confining major semiaxes.
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