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Abstract

In this paper, we report the performance of 9–11-year-old children using a steadystate visual 

evoked potential (SSVEP)-based brain-computer interface (BCI) and provide control data 

collected from adults for comparison. Children in our study achieved much higher performance 

(79% accuracy; average age 9.64 years old) than the only previous investigation of children using 

an SSVEP-based BCI (∼50% accuracy; average age 9.86 years old). Experiments were conducted 

in two phases, a short calibration phase and a longer experimental phase. An offline analysis of the 

data collected during the calibration phase was used to set two parameters for a classifier and to 

screen participants who did not achieve a minimum accuracy of 85%. Eleven of the 14 children 

and all 11 of the adults who completed the calibration phase met the minimum accuracy 

requirement. During the experimental phase, children selected targets with a similar accuracy 

(79% for children versus 78% for adults), latency (2.1 seconds for children versus 1.9 seconds for 

adults), and bitrate (0.50 bits/second for children and 0.56 bits/second for adults) as adults. This 

study shows that children can use an SSVEP-based BCI with higher performance than previously 

believed and is the first to report the performance of children using an SSVEP-based BCI in terms 

of latency and bitrate. The results of this study imply that children with severe motor disabilities 

(such as locked-in syndrome) may use an SSVEP-based BCI to restore/replace the ability to 

communicate.
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1. Introduction

Non-invasive brain-computer interfaces (BCIs) enable users to control external devices (such 

as computer systems [1, 2], prosthetic arms [3, 4], and robotic vehicles [5]) using brain 

activity. The primary application of BCIs is to replace [6] function in those with severe 

motor disabilities that are the result of injury [7] or disease [8, 9]. They also, however, may 

be useful for rehabilitation (such as after a stroke [10]) or to supplement [11] and/or improve 

[12] the natural capabilities of healthy individuals.

Most current BCI systems use electroencephalography (EEG), a non-invasive and relatively 

inexpensive tool, to measure the brain’s naturally generated electrical activity. For example, 

EEG can be used to measure brain activity generated by imagined movement [8], the 

detection of infrequent targets [13], or spatially distinct sounds [14]. Here, we consider 

EEG-based BCIs that use brain activity elicited by repetitive visual stimulations. These brain 

signals are commonly known as steady-state visual evoked potentials (SSVEPs).

SSVEP-based BCIs rely on the fact that repetitive visual stimulation elicits brain activity at 

the same speed (measured in frequency or flashes per second) as the stimulus [15]. In 

addition, the amplitude of the brain activity elicited by the stimulus is dependent on the 

user’s attention [16]. This means that if there are multiple stimuli flashing at different rates, 

the stimulus that the user attends to (the target) will elicit a larger amplitude response than 

the stimuli that the user ignores. In practice, the user’s target is unknown and must be 

inferred through analysis of the EEG data. This analysis, known as classification, outputs a 

guess of the user’s target, called the predicted target. This process of the user attending to 

targets and the classification system predicting targets enables a user to select a specific 

stimulus from the available set of stimuli and is the basis for all SSVEP-based BCIs.

There are three common ways to measure the performance of an SSVEP-based BCI user. 

Accuracy is the proportion of times the predicted target matches the target [17]. Latency is 

the mean time from target onset to classification [18, 2]. Bitrate is the number of bits per 

second that are transmitted, and is often preferred over other measures because it accounts 

for both accuracy and latency. Common ways of quantifying bitrate are the information 

transfer rate (ITR) [19] and the Nykopp bitrate (NBR) [20]. We use NBR to quantify bitrate 

in this paper, since it addresses several well-known limitations of ITR [21].

Given that the goal of most SSVEP-based BCIs is to replace function in those with severe 

motor disabilities and that these disabilities affect many different groups of people (with 

different ages, genders, etc.), it is important to understand how SSVEP-based BCI 

performance varies among these different groups. As an example, consider that SSVEP-

based BCIs are often tested with young adults, but the average age of patients who have 

locked-in syndrome (LIS) is approximately 50 (this estimate is based on the average age of 

151 LIS patients reported by Bruno et al. [22]). Then consider that Lesenfants et al. [23] 

found that only one out of six LIS patients (average age 49 ± 19.7 years) could use their 

SSVEP-based BCI system with better than chance accuracy, but 80% of young adults could 

use their system.
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Prior studies of these demographic differences in the performance of SSVEP-based BCIs 

have reported mixed results. Allison et al. [24] assessed the performance of more than 100 

people between the ages of 18 and 79 at a large computer expo (CeBIT 2008). While 

younger people tended to perform at higher bit rates, there were no significant differences in 

performance between people of different ages or genders. A follow-up paper by Volosyak et 

al [25] also found no differences between people of different ages. Two more recent papers, 

however, have reported differences between young adults and older adults in the context of 

SSVEP-based BCIs. Hsu et al. [26] compared SSVEP amplitudes in young adults, older 

adults, and ALS patients. They found that young adults produced larger SSVEPs with a 

higher signal to noise ratio at an occipital electrode site compared to older adults and ALS 

patients. In addition, Volosyak et al. [18] recently investigated differences in performance 

between young adults (between the ages of 19 and 27) and older adults (between the ages of 

54 and 76) while using an SSVEP-based BCI for text-entry. The results of this study showed 

that younger adults achieved a higher average bitrate than older adults.

While the aforementioned studies have considered adults of different ages, only one 

previous study has investigated the performance of children compared with adults when 

using an SSVEP-based BCI. In this study, Ehlers et al. [17] asked children of different ages 

to use an SSVEP-based BCI for text-entry. Ehlers at al. found that children achieved lower 

accuracy than adults and concluded that children were not yet able to generate a reliable 

SSVEP due to developmental differences. The data presented by Ehlers et al. [17] are an 

important contribution to the literature on SSVEP-based BCIs. However, it is not clear if 

external factors influenced the results. For example, the children were tested in a noisy 

school environment, one that may have distracted them from the task. In addition, it is not 

clear whether the children struggled with the SSVEP-based BCI because it was used for 

text-entry, a task that—even without a BCI—is harder for children than adults [27]. Previous 

cognitive neuroscience research conflicts with the results from Ehlers et al. [17]. For 

example, Birca et al. [28] first reported that there were no differences in SSVEP magnitude 

between children and adults, and later reported that children aged 8–11 had larger SSVEP 

responses over the occipital region than adults [29]. Furthermore, Ehlers et al. [17] only 

reported accuracy, and not the latency or the bitrate of the participants.

The small number and conflicting results of these prior studies leave open the question of 

whether or not children can use an SSVEP-based BCI with good performance. Resolving 

this question is important if we want to consider the use of SSVEP-based BCIs to replace 

lost function in children with severe motor disabilities, including LIS [30]. To help resolve 

this question, we describe a new study in this paper that compared the performance of 

children (aged 9–11) using an SSVEP-based BCI. Our study consisted of two phases, a short 

calibration phase and a longer experimental phase. Data collected during the calibration 

phase were used to choose parameters for our classifier and to screen out participants with 

low performance (11 of 14 children and 11 of 11 adults met minimum performance 

requirements). Data collected during the experimental phase were used to measure average 

accuracy, latency, and bitrate in each of the two groups.
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2. Method

2.1. Participants

Twenty-six able-bodied volunteers (fifteen 9–11 year olds, Mean = 9.73 and eleven adults 

aged between 19–68, Mean = 39.31) participated in our study. Participants were recruited 

through email bulletins and word of mouth. Two adult participants had previous experience 

with a BCI (S01a and S09a). All subjects had normal or corrected-to-normal vision and no 

prior history of neurological illness ‡. Each participant was compensated with a small gift 

($5.00US or less) for their time. This study was approved by the Institutional Review Board 

at the University of Illinois at Urbana-Champaign.

2.2. EEG recording

EEG signals were recorded from six tin electrodes. The electrodes were placed on the 

surface of the scalp located at 10–5 international sites: PO3, POZ, PO4, O1, OZ, and O2 

[32]. The channels were grounded at the right ear and referenced to the top of the head 

(location CZ). The signals were recorded at impedances of less than 10kΩ. All EEG signals 

were band-pass filtered from 1Hz to 30Hz, amplified using a James Long bioamplifier, and 

digitized at 128Hz (National Instruments Model PCI-6225). BCI2000 [33] was used to 

visualize and record the preprocessed EEG signals.

2.3. Experimental procedures

All experiments were conducted in a cool and sound attenuated room with dim ambient 

lighting. The participants were seated in a comfortable office chair between two speakers 

facing an LED computer monitor (24-inch BenQ XL2420T). All participants were 

approximately 24 inches from the monitor, but no chin rest was used to restrict head 

movement. After completing the consent process, each subject was asked to complete a brief 

survey with basic background questions, based on the questionnaire used by Allison et al. 

[24]. After the survey was completed, the participants completed a short calibration phase 

and a longer experimental phase. After the experiments, participants also completed an 

additional phase that will be discussed as a part of different study. During all experiments 

participants were asked to focus their visual attention on a target presented on the monitor. 

For both the calibration phase and the experimental phase the targets were three white 

circles (5.1cm in diameter) flashing between white and black at 6.2Hz, 7.7Hz, and 10Hz. We 

chose these frequencies based on previous experience [34] and because they are less likely 

to elicit photo-induced seizures. The second of these two reasons is especially important 

when working with younger individuals, who are often unaware that they are photosensitive 

[31].

2.4. Calibration phase

Each participant completed a calibration phase to calibrate the BCI system and to screen 

participants with low performance.

‡For future studies on the development of SSVEP-based BCIs for children, we also recommend excluding participants based on a 
family history of neurological illness. For more guidelines, see Fisher et al. [31].
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Data from the calibration phase was used to set free parameters of the classifier (Appendix 

A; Section 2.6). The participants were given verbal instructions and allowed to start the 

application when they were ready by pressing a key on the keyboard. Once the calibration 

phase started, an arrow specified the target during each trial (Figure 1a) and this target was 

highlighted with a yellow outline. Participants were instructed to overtly focus their attention 

on the target for the entire trial. Each trial lasted five seconds, with a short pause between 

trials. The order of the specified targets was randomized with each of the three frequencies 

specified as the target five times for a total of 15 trials. The calibration phase took no more 

than five minutes. Following the calibration phase, the participants were given time to relax 

while the experimenter calibrated the BCI system with the calibration data.

During the analysis of the calibration data, if the participant never achieved an 85% 

accuracy, they were deemed to be unable to use the SSVEP-based BCI and any data 

collected during the experimental phase was excluded from further analyses.

2.5. Experimental phase

During the experimental phase, users were asked to select a sequence of targets using our 

SSVEP-based BCI. When the experiment was started, a splash screen was displayed while 

the experimenter described the task. After the researcher provided instructions on how to use 

the application, the participant was allowed to press a key on the keyboard to begin the 

experiment.

Similar to the calibration phase, the interface used in the experimental phase displayed three 

stimuli. The target that the participant was supposed to select was the same as in the 

calibration phase, except there was no arrow pointing to it (Figure 1b).

Participants were instructed to select targets by overtly shifting their visual attention. If the 

classifier guessed a target, a check mark was shown at the location of the predicted target 

(Figure 1c) and a tone provided audio feedback that a selection had been made. Participants 

were given up to 5 seconds to select a target during each trial. If no target was selected 

within 5 seconds, the trial ended and the next trial began. The application paused for one 

second between trials. Real-time feedback on the number of trials completed was provided 

at the top of the interface.

The experimental phase consisted of four rounds and a bonus round at the end (data from the 

bonus round will be described as part of a future study). Each round contained 15 trials. The 

order of the targets during each round was randomized. Each of the three stimulation 

frequencies were specified as the target five times during each round. At the end of each 

round, a message was displayed indicating the round number and the system paused for six 

seconds. At the end of the experimental phase a message was displayed to the user, letting 

them know the session was completed.

2.6. Signal processing

A classifier, based on canonical correlation analysis (CCA), was used to determine the 

predicted target. Our algorithm for the classification of SSVEP targets using CCA was 

similar to the one described by Lin et al. [35] with three notable differences:
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(i) We considered only two harmonic frequencies.

(ii) A threshold (τ) was used to enable asynchronous control.

(iii) Two free parameters, the amount of data considered by the classifier (window-

length [t], measured in seconds) and τ were set using data from the calibration 

phase.

For additional details on the classifier used in this study, see Appendix A.

2.6.1. Window-length and threshold—As discussed in Section 2.6, the purpose of 

the calibration phase (Section 2.4) was to set t and τ. After each participant completed the 

calibration phase, individual five-second trials were extracted from the calibration data. 

After trial extraction, there were five trials for each of the three target frequencies. Using this 

data, a search was performed to find the parameters that maximized the participant’s NBR 

[20]. The NBR was computed for t = [0.5,0.625,...,5] and for τ = [0,0.01,...,1]. The values of 

t and τ that maximized NBR were subsequently used for classifying targets during the 

experimental phase.

There were two differences in the way that the parameters were calculated for different 

subjects. First, for children, the minimum value of t was set to be 1.250 seconds. For the 

adults, the minimum value of t was set to be 0.5 seconds. Second, for five of the children—

denoted with asterisks in Table S1—the parameters were calculated using three harmonic 

frequencies instead of two. The possible impact of these two differences will be considered 

in the results and discussion (Sections 3 and 4).

3. Results

Of the 26 people who participated in our study, 22 were able to complete the entire 

experiment (average age children = 9.64 years of age, average age adults = 38.00 years of 

age). One child was excluded due to a technical issue (software crash). Three children were 

excluded due to low performance. Two of the children who were excluded appeared 

distracted during the calibration phase. They did not pay attention to the screen or appear to 

attempt the task. Data from participants who did not achieve a minimum accuracy of 85% 

within five seconds of stimulation during the calibration phase (Section 2.4) were excluded 

from further analyses.

In our study, there were three primary measurements of performance.

(i) Accuracy - Accuracy was calculated as the number of times that the predicted 

target was equal to the target divided by the total number of trials.

(ii) Latency - The average amount of time (measured in seconds) that elapsed 

between the onset of the stimuli and the classification of the predicted target.

(iii) NBR - Calculated using the definition of Nykopp [20, 21, 36], a quantity that 

describes the amount of information transmitted over a noisy channel per unit of 

time and reported in terms of bits/second. Our calculation of NBR is based on 

the formulas found in Kronegg et al. [21].
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3.1. Calibration phase

We report our analysis of the calibration data in two ways. First, we describe the t and τ 
values used during the experiment (since there were two differences in the way that t and τ 
were calculated for the participants who were children; Section 2.6.1). Second, we describe 

a post-experiment analysis of the data. In both cases, 11 of the 14 children and all 11 adults 

who completed the calibration phase exceeded our threshold for being able to use an 

SSVEP-based BCI.

3.1.1. Parameters from experiments—The results obtained during the calibration 

phase are given in Tables S1 and S2. Before assessing statistical differences between the 

children and adults in the data from the calibration phase, the assumptions of a two-sample 

t-test were tested. A Shapiro-Wilk test (performed using the MATLAB command swtest by 

Ahmed BenSaïda from the file exchange) was used to test the assumption of normality. This 

test found that the data was normally distributed for τ (p = 0.85), but not for t (p = 0.001). 

Since the data was found to be normally distributed, τ was also tested for outliers (using the 

MATLAB function isoutlier; outliers were defined as being more than three standard 

deviations from the mean; no outliers were found) and for equal variances between the 

groups using Levene’s test (MATLAB function vartestn; p = 0.88). A Mann-Whitney U test 

with no correction for multiple comparisons found that the t values used for classification in 

the participants who were children (Mean = 1.545 seconds, Mdn = 1.375 seconds, SD = 

0.450 seconds) were longer (p = 0.02) than those used for the participants who were adults 

(Mean = 1.227 seconds, Mdn = 1.000 seconds, SD = 0.849 seconds). Although, one adult 

(participant S05a) had a t of 3.625 seconds (Table S2), 1.375 seconds longer than any of the 

children who participated in the study. There was no difference in the τ values calculated for 

children (Mean = 0.57, Mdn = 0.58, SD = 0.15) compared with adults (Mean = 0.60, Mdn = 

0.60, SD = 0.15) using a two-sample t-test (p = 0.63).

3.1.2. Post-experiment analysis—The purpose of the post-experiment analysis of the 

data from the calibration phase was to calculate t and τ in the exact same way for all of the 

participants using the classifier described in Section 2.6. Before assessing statistical 

differences in the data from the calibration phase between the children and adults, the 

assumptions (normally distributed data, no outliers, equal variance) of a two-sample t-test 

were tested. A Shapiro-Wilk test (performed using the MATLAB command swtest) was used 

to test the assumption of normality for each of the variables. This test found that the data 

was normally distributed for τ (p = 0.93), accuracy (p = 0.13), and bitrate (p = 0.33), but not 

for t (p = 0.001) or latency (p = 0.02). A test for outliers (using the MATLAB function 

isoutlier; outliers defined as more than three standard deviations from the mean) did not find 

any outliers in the data. Finally, using Levene’s test for equality of variances, the two groups 

in each of the variables were found to have equal variance. A Mann-Whitney U test (with no 

correction for multiple comparisons) of the calibration data for the included participants 

revealed t would have been shorter (p = 0.035) for the adults (Mean = 1.227, Mdn = 1.000, 

SD = 0.849) than the children (Mean = 1.432, Mdn = 1.250, SD = 0.448). Further statistical 

analyses did not reveal any differences in τ (two-sample t-test; p = 0.77), accuracy (two-

sample t-test; p = 0.11), latency (Mann-Whitney U test; p = 0.19), or NBR (two-sample t-
test; p = 0.08) between children and adults. These data are reported in Tables 1–3. Figure 2 

Norton et al. Page 7

J Neural Eng. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



presents the data from the calibration phase—as calculated in the post-experiment analysis

—for the children and the adults graphically. When the accuracy of classification for a τ = 0 

is plotted as a function of t, we can see that children and adults improve in accuracy as t 
increases (Figure 2a). Figure 2b shows accuracy curves for the children who were excluded 

from the study and the average accuracy of included and excluded children. Unlike the 

included children, the accuracy of excluded children (for τ = 0) does not increase as a 

function of t. Figures 2c (children) and 2d (adults) show accuracy as a function of t (τ = 0) 

for the three stimulation frequencies. Figure 2e shows the t and τ values calculated for each 

child overlaid on an image of the average NBR for each possible value of t and τ. A similar 

image for the adults is shown in Figure 2f.

3.2. Experimental phase

The performance of participants during the experimental phase is shown in Figure 3. The 

accuracy data from the experimental phase was found to meet the assumptions of the 

twosample t-test. Both latency (p = 0.003) and NBR (p = 0.03) were found to violate the 

assumption of normally distributed data, as measured using the Shapiro-Wilk test 

(performed using the MATLAB command swtest). Further statistical analyses did not reveal 

any differences between the children and adults in terms of accuracy (two-sample t-test; p = 

0.84; Figure 3a), latency (Mann-Whitney U test; p = 0.15; Figure 3b), or NBR (Mann-

Whitney U test; p = 0.45; Figure 3c) in the experimental phase. Both children (Mean = 79%, 

Mdn = 83%, SD = 14%) and adults (Mean = 78%, Mdn = 80%, SD = 11%) achieved similar 

levels of accuracy during the experimental phase and both groups had worse performance 

during the experimental phase than during the calibration phase. In terms of latency, the 

children (Mean = 2.106 seconds, Mdn = 2.073 seconds, SD = 0.48 seconds) were almost 0.2 

seconds slower than the adults (Mean = 1.917 seconds, Mdn = 1.710 seconds, SD = 0.73 

seconds), but the high variance meant that this was not significant. Children (Mean = 0.50 

bits/second, Mdn = 0.49 bits/seconds, SD = 0.20 bits/second) also transmitted information at 

a slightly lower (but not significantly lower) NBR than adults (Mean = 0.56 bits/second, 

Mdn = 0.59 bits/second, SD = 0.25 bits/second).

The data from the experimental phase were also inspected for differences in accuracy and 

latency of the selection of targets by frequency (Figure 4) and round (Figure 5). No 

differences were found.

4. Discussion

This study demonstrated that 9–11-year-old children are able to use an SSVEP-based BCI 

with much higher accuracy than previously reported [17] and is the first work to report the 

performance of children when using an SSVEP-based BCI in terms of latency and bitrate 

(NBR). Furthermore, the accuracies, latencies, and NBRs of the children and adults who 

completed the experimental phase were nearly identical. The remainder of the discussion is 

organized by phase: first we discuss the calibration phase, then we discuss the experimental 

phase, and we conclude by considering future work.
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4.1. Calibration phase

A calibration phase was used to calibrate the BCI system and to screen participants for 

inclusion in the experimental analysis. Data from the calibration phase showed that 11 of the 

14 children (Table S1) and all 11 adults (Table S2) included in this study met the minimum 

threshold for inclusion in the experimental analysis.

Three children did not meet the criteria for their data to be included in the experimental 

analysis. The experimenters noted that two of the excluded children were visibly distracted 

during the calibration phase. The calibration task was relatively boring. Children were asked 

to attend to targets without getting feedback of any kind. It is possible the distracted 

behavior that was observed during the calibration phase could be an indication of a lack of 

engagement during this session. We encourage future research to examine the impact of 

engagement on BCI performance. In addition, an eye-tracker could be used to determine 

where participants are directing their gaze. It is likely that the third excluded child was 

simply one of those people who are unable to use an SSVEP-based BCI [37]. By collecting 

more data, it may be possible to understand differences in BCI “literacy” between children 

and adults, this represents one direction of future work.

The data collected during the calibration phase were also used to compare the performance 

of children with that of adults. This comparison was performed using two separate analyses. 

The first analysis used the same parameters as in the experiments to compare children verses 

adults. In this analysis, the t values for the children were slightly longer than those used for 

the adults. We partially attribute this to (1) the fact that the minimum window-length 

permitted for children was 1.25s while the minimum window-length for adults was 0.5 

seconds and (2) for several of the children, the classifier we used during the calibration 

phase had three harmonics instead of two. Many of the adults (Table S2) had t values of less 

than 1.25 seconds, which may have skewed these results. The second analysis was 

conducted after all of the experiments were completed and used the exact same classifier for 

all participants. When this analysis was performed, the t values calculated for the adults 

were still shorter than the t values calculated for the children. While the difference was 

small, this result may suggest (as proposed by [17]) that there are some differences in the 

ability of children versus adults to generate an SSVEP. It would be interesting to see if this 

difference is exaggerated in even younger children.

4.2. Experimental phase

Data from the experimental phase show that children (9–11-years-old) can use an SSVEP-

based BCI for a target selection task with a similar accuracy, latency, and NBR as adults. It 

is well known that repetitively flickering stimuli elicit an SSVEP in both children [28] and 

adults [38]. While healthy adults are known to be able to use this signal to control an 

SSVEP-based BCI [2, 37, 1, 25, 18], there is only one previous study investigating whether 

children also have this ability [17]. That study observed that children completed the SSVEP-

based BCI task with significantly lower accuracy than adults (median difference 24.4% for 

7–11Hz stimuli) [17]. Thus, the present study (1) provides evidence that children have the 

ability to use SSVEP-based BCIs and (2) suggests that any differences in performance 

between 9–11-year-old children and adults are smaller than previously believed [17]. Since 
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children can generate an SSVEP and use this signal to control an SSVEP-based BCI for a 

target selection task, it is possible that SSVEP-based BCIs could be used as a 

communication devices for children with severe motor disabilities, such as LIS [30].

This is, to the best of our knowledge, the first study to report the performance of 9– 11-year-

old children using an SSVEP-based BCI in terms of latency and bitrate (NBR). By 

considering latency and bitrate (NBR)—in addition to accuracy—our study provides a more 

complete picture of the performance differences between children and adults. This more 

complete picture is important, since it is possible for two users of an SSVEP-based BCI to 

have a similar target selection accuracy, but very different overall performance. For example, 

S03c (see Table S3) and S09a (see Table S4) both had an average accuracy of 88% in the 

experimental phase. However, S03c had an average latency of 3.079 seconds and bitrate of 

0.42 bits/second compared to S09a who had an average latency of 1.256 seconds and bitrate 

of 0.90 bits/second. In other words, while these two participants had identical accuracies, 

S09a communicated twice the information per unit of time—as measured by NBR—as 

S03c. Thus, the reported accuracy results of Ehlers et al. [17] may have been confounded by 

the latency of target selection, which they allowed to vary. Here, we show that the 

performance of children using an SSVEP-based BCI for a target selection task was similar to 

the performance of adults in terms of accuracy, latency, and NBR.

There appear to be differences in classification accuracy between the calibration phase (92% 

for children, 96% for adults) and the experimental phase (79% for children, 78% for adults). 

All of the data collected during the calibration phase was used to set the parameters for the 

experimental phase. This may have caused overfitting, the parameters we chose were 

appropriate for the calibration phase data, but did not generalize well to experimental phase 

data that was subsequently collected. Even with the limited data that was available, this issue 

may have been mitigated using cross-validation when setting the classifier parameters [39]. 

This represents a potential area for improvement in future studies.

This study demonstrates that children can use an SSVEP-based BCI much better than 

previously reported, although there are differences between our study and the only previous 

investigation of SSVEP-based BCIs for children. Ehlers et al. reported children (mean 9.86 

years old) achieved an accuracy of approximately 50% (based on visual analysis of Figure 2 

in [17]). The children in our study, on the other hand, achieved an average of 79% accuracy. 

There are a number of methodological differences between the two studies that could 

explain this difference:

• The environments in which the children completed the experiments were 

different. In Ehlers et al. [17] children performed the experiments in a noisy 

school environment, while in our experiments they were in a quiet laboratory 

environment. There is value in testing the performance of children under 

different environmental conditions. Clinical and/or home environments may be 

noisy in some cases (like in the experiments of Ehlers et al. [17]) and quiet in 

others (like the experiments reported here). Detailed investigations of the effect 

of environment and distraction on the performance of children using an SSVEP-

based BCI may inform the design of clinical/home systems.
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• The tasks were different. The children in our study used the SSVEP-based BCI 

to complete a target selection task. In Ehlers et al. [17], children completed a 

text-entry task. Text-entry is a very common platform for SSVEP-based BCI 

experiments [2, 1], but may not be appropriate for children [27].

• Our experiments used slightly different stimulation frequencies. The frequency 

of stimulation is known to impact the amplitude of the elicited SSVEP [1].

• We conducted a calibration phase to set two classifier parameters before the 

experimental phase.

• After low performance in the calibration phase, three children were excluded 

from the experimental phase of our study. Ehlers et al. [17], however, did not 

exclude any children from their results. Figure 2b shows—using the data from 

the calibration phase—that grouping the included and excluded children together 

may have reduced average performance. This suggests two things. First, it is 

important to consider the performance of individuals in these studies and identify 

outliers. Second, excluding the three children may have caused the differences in 

performance between our study and Ehlers et al. [17] to appear larger than they 

really are.

It is possible that any of these methodological differences could explain why the children in 

our study had higher performance than the similar age group of children in the study by 

Ehlers et al. [17].

One potential limitation of the current study is that the parameters used in the classifier were 

slightly different for some of the children than they were for the adults. As discussed in 

Section 4.1, we performed a post-experimental analysis of the calibration data to assess the 

impact of this difference. This analysis showed that there would have been a slight 

difference in the t value used for the children if the parameters used in the classifier were 

identical. The t values calculated for the adults, however, were lower than the t values 

calculated for children in either analysis. Even though there were small differences in the 

way the parameters t and τ were set for children versus the adults, it is most likely that these 

differences lowered the performance of children compared with adults (i.e., children may 

perform even better than we report here).

4.3. Future work

Given the high performance of 9–11-year-old children observed in this study, we encourage 

the investigation of SSVEP-based BCIs for younger groups of children. Data collected 

during the experiments of Ehlers et al. [17] did not reveal any significant differences 

between groups of children with average ages of 6.73, 8.08, or 9.86 years. Their data suggest 

a slight downward trend in accuracy with low-frequency stimuli as a function of age. In a 

study of SSVEPs elicited using 5Hz simulations, Birca et al. [29] show that both the 

magnitude and phase alignment of SSVEPs (generally) increase with age. This study, 

however, was limited in how it defined SSVEPs (first harmonic response only) and the 

stimulation frequencies tested (5Hz only). An earlier study by Birca et al. [29] used a wider 

range of stimulation frequencies (5, 7.5, 10, and 12.5Hz). The results of this study showed 
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that younger children (6–9 years old) had lower amplitude SSVEPs than adults for 12.5Hz 

stimuli, but there were no other significant differences between SSVEP amplitude and age. 

As an additional confound, neither of these studies considered the effect of attention on the 

amplitude of the elicited SSVEPs. It seems likely—based on our results and these previous 

studies—that younger groups of children should also be able to use SSVEP-based BCIs. 

There may, however, be differences in accuracy as a function of age for specific stimulation 

frequencies.

Another area of future work could include the development of a more engaging interface. 

Both the target selection task used in our study and the speller used by Ehlers et al. [17] may 

have been viewed by the participants as boring. We propose that adding elements of games

— called gamification—may increase the engagement of children with the SSVEP-based 

BCI and improve their performance. The use of gamification in lab studies has allowed 

researchers to improve their ability to conduct studies with children [40].

5. Conclusion

In summary, our data make several contributions to the development of SSVEP-based BCIs 

for children. We report that of the fourteen 9–11-year-old children who were included in our 

study, 11 of them achieved an 85% accuracy or above during a short calibration phase. 

Furthermore, of the 11 children who completed the longer experimental phase, they achieved 

an average accuracy of 79% in 2.1 seconds, which was very similar to data collected from 

adults using the same SSVEP-based BCI. This study is also the first to report the 

performance of children using an SSVEP-based BCI in terms of latency and bitrate. The 

results of this study imply that children with severe motor disabilities (such as LIS) may use 

an SSVEP-based BCI to restore/replace the ability to communicate. We encourage future 

research to follow these results by continuing to explore SSVEP-based BCI research with 

children.
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Appendix A. Classification of the predicted target

These equations are based on the original description the canonical correlation for 

classification of SSVEP targets by Lin [35]. Assuming k stimuli at frequencies f1...fk, CCA 

considers two sets of variables X and Yk and finds two weight matrices wX and wyk that 

maximize the correlation ρk between them.

ρk =
wx

TΣXYk
wyk

T

wx
TΣXXwxwyk

T ΣkkYk
wyk

(A.1)
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When CCA is used to detect an SSVEP, X represents a matrix of EEG data (m channels by n 
samples) and Yk represents a matrix of sine and cosine reference waves (r reference waves 

by n samples) at harmonic h frequencies of stimulus k.

Yk =

sin(2π f t1)
cos(2π f t1)

⋮
sin(2π f th)
cos(2π f th)

(A.2)

ρk is initially a vector with a length equal to the smaller of m and r, however, here we 

consider ρk = max(ρk). If

max(ρ) > τ (A.3)

then the classifier’s best guess (the predicted target) is

k = argmax(ρ) (A.4)

Each trial of the calibration phase was analyzed in the following way. The analysis of each 

trial started at time 0, the time of stimulus onset. The data from time 0 to time t was then 

considered, if the max(ρk) does not exceed the threshold, then the window slid in steps of 

0.125 seconds. After the window is moved, ρk is recomputed and compared to the threshold 

again. This process continues until ρk exceeds τ or until t extends beyond the end of the trial. 

In the case that ρk exceeded the threshold, k  is then compared to the target x⋆. If ρk does not 

exceed τ before the end of the trial, then this was modeled in the calculation of NBR as an 

erasure.

Appendix B. Supplemental information

Table S1:

Data from Calibration Phase (Included Children)

Subject t τ Accuracy NBR

S01c* 1.375 0.75 0.87 0.57

S02c* 1.250 0.77 0.87 0.78

S03c 2.500 0.43 0.87 0.47

S04c 1.375 0.47 1.00 1.01

S05c* 1.250 0.57 0.94 0.94

S06c 2.250 0.35 0.87 0.46

S07c* 1.375 0.58 0.93 0.71

S08c 1.250 0.58 0.93 0.78

S09c 1.250 0.64 0.93 0.78
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Subject t τ Accuracy NBR

S10c 1.875 0.36 0.87 0.62

S11c* 1.250 0.72 1.00 0.78

Mean 1.545 0.57 0.92 0.72

Mdn 1.375 0.58 0.93 0.78

SD 0.450 0.15 0.05 0.18

*
- Denotes that 3 harmonics and erasure were used for calculation of window-length and threshold.

Table S2:

Data from Calibration Phase (Included Adults)

Subject t τ Accuracy NBR

S01a 1.000 0.60 0.93 1.14

S02a 1.375 0.51 0.93 0.75

S03a 1.125 0.57 1.00 0.85

S04a 0.750 0.70 1.00 0.88

S05a 3.625 0.27 0.93 0.35

S06a 1.625 0.42 0.93 0.62

S07a 0.750 0.68 0.93 1.12

S08a 0.750 0.74 0.93 0.93

S09a 0.875 0.66 0.93 1.11

S10a 0.625 0.82 1.00 1.20

S11a 1.000 0.60 1.00 0.91

Mean 1.227 0.60 0.96 0.90

Mdn 1.000 0.60 0.93 0.91

SD 0.849 0.15 0.04 0.25

Table S3:

Data from the Experimental Phase (Children)

Subject Accuracy Latency NBR

S01c 0.92 2.211 0.62

S02c 0.82 2.432 0.49

S03c 0.88 3.079 0.42

S04c 0.85 1.522 0.67

S05c 0.87 1.402 0.84

S06c 0.47 2.513 0.14

S07c 0.78 2.282 0.41

S08c 0.73 1.749 0.43

S09c 0.83 1.858 0.57

S10c 0.60 2.044 0.26

S11c 0.93 2.073 0.64
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Subject Accuracy Latency NBR

Mean 0.79 2.106 0.50

Mdn 0.83 2.073 0.49

SD 0.14 0.48 0.20

Table S4:

Data from the Experimental Phase (Adults)

Subject Accuracy Latency NBR

S01a 0.83 1.424 0.73

S02a 0.85 1.602 0.66

S03a 0.80 1.900 0.46

S04a 0.90 1.467 0.85

S05a 0.57 3.913 0.14

S06a 0.63 2.028 0.30

S07a 0.73 1.947 0.44

S08a 0.67 2.266 0.35

S09a 0.88 1.256 0.90

S10a 0.90 1.569 0.77

S11a 0.80 1.710 0.59

Mean 0.78 1.92 0.56

Mdn 0.80 1.71 0.59

SD 0.11 0.73 0.25

7. References

[1]. Volosyak Ivan. SSVEP-based bremen–BCI interface—boosting information transfer rates. Journal 
of Neural Engineering, 8(3):036020, 5 2011. [PubMed: 21555847] 

[2]. Akce Abdullah, Norton James J. S., and Bretl Timothy. An SSVEP-based brain computer interface 
for text spelling with adaptive queries that maximize information gain rates. IEEE Transactions 
on Neural Systems and Rehabilitation Engineering, 23(5):857–866, 9 2015. [PubMed: 25474810] 

[3]. Horki Petar, Solis-Escalante Teodoro, Neuper Christa, and Müller-Putz Gernot. Combined motor 
imagery and SSVEP based BCI control of a 2 DoF artificial upper limb. Medical & Biological 
Engineering & Computing, 49(5):567–577, 2011. [PubMed: 21394652] 

[4]. Yanagisawa Takufumi, Hirata Masayuki, Saitoh Youichi, Goto Tetsu, Kishima Haruhiko, Fukuma 
Ryohei, Yokoi Hiroshi, Kamitani Yukiyasu, and Yoshimine Toshiki. Real-time control of a 
prosthetic hand using human electrocorticography signals: technical note. Journal of 
Neurosurgery, 114(6):1715–1722, 6 2011. [PubMed: 21314273] 

[5]. Doud Alexander J., Lucas John P., Pisansky Marc T., and He Bin. Continuous three-dimensional 
control of a virtual helicopter using a motor imagery based brain-computer interface. PLoS ONE, 
6(10):e26322, 10 2011. [PubMed: 22046274] 

[6]. Wolpaw Jonathan and Wolpaw Elizabeth Winter. Brain–computer interfaces: principles and 
practice. Oxford University Press (OUP), 1 2012.

[7]. Birch Gary E, Bozorgzadeh Ziba, and Mason Steve G. Initial on-line evaluations of the LF-ASD 
braincomputer interface with able-bodied and spinal-cord subjects using imagined voluntary 

Norton et al. Page 15

J Neural Eng. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



motor potentials. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 10(4):
219–224, 12 2002. [PubMed: 12611359] 

[8]. Kübler Andrea, Nijboer Femke, Mellinger Jürgen, Vaughan Theresa M., Pawelzik Hannelore, 
Schalk Gerwin, McFarland Dennis J., Birbaumer Niels, and Wolpaw Jonathan R.. Patients with 
ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology, 64(10):
1775–1777, 5 2005. [PubMed: 15911809] 

[9]. Sellers Eric W. and Donchin Emanuel. A P300-based brain–computer interface: initial tests by 
ALS patients. Clinical Neurophysiology, 117(3):538–548, 3 2006. [PubMed: 16461003] 

[10]. Sitaram Ranganatha, Veit Ralf, Stevens Birte, Caria Andrea, Gerloff Christian, Birbaumer Niels, 
and Hummel Friedhelm. Acquired control of ventral premotor cortex activity by feedback 
training an exploratory real-time fMRI and TMS study. Neurorehabilitation and Neural Repair, 
26(3):256–265, 9 2012. [PubMed: 21903976] 

[11]. Lin Chin-Teng, Chen Yu-Chieh, Huang Teng-Yi, Chiu Tien-Ting, Ko Li-Wei, Liang Sheng-Fu, 
Hsieh Hung-Yi, Hsu Shang-Hwa, and Duann Jeng-Ren. Development of wireless brain computer 
interface with embedded multitask scheduling and its application on real-time driver’s 
drowsiness detection and warning. IEEE Transactions on Biomedical Engineering, 55(5):1582–
1591, 2008. [PubMed: 18440904] 

[12]. Bigdely-Shamlo Nima, Vankov Andrey, Ramirez Rey R, and Makeig Scott. Brain activity-based 
image classification from rapid serial visual presentation. IEEE Transactions on Neural Systems 
and Rehabilitation Engineering, 16(5):432–441, 10 2008. [PubMed: 18990647] 

[13]. Farwell LA and Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing 
event-related brain potentials. Electroencephalography and Clinical Neurophysiology, 70(6):510–
523, 12 1988. [PubMed: 2461285] 

[14]. Johannes Höhne, Martijn Schreuder, Blankertz Benjamin, and Tangermann Michael. A novel 9-
class auditory ERP paradigm driving a predictive text entry system. Frontiers in Neuroscience, 
5:99, 2011. [PubMed: 21909321] 

[15]. Vialatte François-Benoît, Maurice Monique, Dauwels Justin, and Cichocki Andrzej. Steady-state 
visually evoked potentials: focus on essential paradigms and future perspectives. Progress in 
Neurobiology, 90(4):418–438, 4 2010. [PubMed: 19963032] 

[16]. Morgan ST, Hansen JC, and Hillyard SA. Selective attention to stimulus location modulates the 
steadystate visual evoked potential. Proceedings of the National Academy of Sciences, 93(10):
4770–4774, 5 1996.

[17]. Ehlers Jan, Valbuena Diana, Stiller Anja, and Gräser Axel. Age-specific mechanisms in an 
SSVEP-based BCI scenario: evidences from spontaneous rhythms and neuronal oscillators. 
Computational Intelligence and Neuroscience, 2012:1–9, 2012.

[18]. Volosyak Ivan, Gembler Felix, and Stawicki Piotr. Age-related differences in SSVEP-based BCI 
performance. Neurocomputing, 250:57–64, 8 2017.

[19]. Wolpaw Jonathan R., Ramoser Herbert, McFarland Dennis J., and Pfurtscheller Gert. EEG-based 
communication: improved accuracy by response verification. IEEE Transactions on 
Rehabilitation Engineering, 6(3):326–333, 1998. [PubMed: 9749910] 

[20]. Nykopp Tommi. Statistical modelling issues for the adaptive brain interface. Helsinki: Helsinki 
University of Technology, 2001.

[21]. Kronegg Julien, Voloshynovskiy Svyatoslav, and Pun Thierry. Analysis of bit-rate definitions for 
braincomputer interfaces. In Proceedings of the Conference on Human-Computer Interaction 
(HCI), 2005.

[22]. Bruno Marie-Aurélie, Bernheim Jan L, Ledoux Didier, Pellas Frédéric, Demertzi Athena, and 
Laureys Steven. A survey on self-assessed well-being in a cohort of chronic locked-in syndrome 
patients: happy majority, miserable minority. BMJ open, 1(1):e000039–e000039, 2 2011.

[23]. Lesenfants Damien, Habbal Dina, Lugo Z, Lebeau M, Horki P, Amico E, Pokorny C, Gómez F, 
Soddu A, Müller-Putz G, et al. An independent SSVEP-based brain–computer interface in 
locked-in syndrome. Journal of Neural Engineering, 11(3):035002, 5 2014. [PubMed: 24838215] 

[24]. Allison Brendan, Thorsten Lüth Diana Valbuena, Teymourian Amir, Volosyak Ivan, and Gräser 
Axel. BCI demographics: How many (and what kinds of) people can use an SSVEP BCI? IEEE 

Norton et al. Page 16

J Neural Eng. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Transactions on Neural Systems and Rehabilitation Engineering, 18(2):107–116, 4 2010. 
[PubMed: 20083463] 

[25]. Volosyak Ivan, Valbuena Diana, Lüth Thorsten, Malechka Tatsiana, and Gräser Axel. BCI 
demographics II: how many (and what kinds of) people can use a high-frequency SSVEP BCI? 
IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19(3):232–239, 6 2011. 
[PubMed: 21421448] 

[26]. Hsu Hao-Teng, Lee I-Hui, Tsai Han-Ting, Chang Hsiang-Chih, Shyu Kuo-Kai, Hsu Chuan-Chih, 
Chang Hsiao-Huang, Yeh Ting-Kuang, Chang Chun-Yen, and Lee Po-Lei. Evaluate the 
feasibility of using frontal SSVEP to implement an SSVEP-based BCI in young, elderly and ALS 
groups. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(5):603–615, 5 
2016. [PubMed: 26625417] 

[27]. Kinney-Lang E, Auyeung B, and Escudero J. Expanding the (kaleido) scope: exploring current 
literature trends for translating electroencephalography (EEG) based brain–computer interfaces 
for motor rehabilitation in children. Journal of Neural Engineering, 13(6):061002, 10 2016. 
[PubMed: 27762234] 

[28]. Birca A, Carmant L, Lortie A, and Lassonde M. Interaction between the flash evoked SSVEPs 
and the spontaneous EEG activity in children and adults. Clinical Neurophysiology, 117(2):279–
288, 2 2006. [PubMed: 16376144] 

[29]. Birca Ala, Carmant Lionel, Lortie Anne, Vannasing Phetsamone, Sauerwein Hannelore, Robert 
Manon, Lemay Louise, Wang Xiao-Ping, Piper Dominique, Donici Valentina, et al. Maturational 
changes of 5hz SSVEPs elicited by intermittent photic stimulation. International Journal of 
Psychophysiology, 78(3):295–298, 12 2010. [PubMed: 20849892] 

[30]. Bruno Marie-Aurélie, Schnakers Caroline, Damas François, Pellas Frédéric, Lutte Isabelle, 
Bernheim Jan, Majerus Steve, Moonen Gustave, Goldman Serge, and Laureys Steven. Locked-in 
syndrome in children: report of five cases and review of the literature. Pediatric Neurology, 41(4):
237–246, 10 2009. [PubMed: 19748042] 

[31]. Robert S Fisher Graham Harding, Erba Giuseppe, Barkley Gregory L, and Wilkins Arnold. 
Photic-and pattern-induced seizures: a review for the epilepsy foundation of america working 
group. Epilepsia, 46(9):1426–1441, 2005. [PubMed: 16146439] 

[32]. Oostenveld Robert and Praamstra Peter. The five percent electrode system for high-resolution 
EEG and ERP measurements. Clinical Neurophysiology, 112(4):713–719, 4 2001. [PubMed: 
11275545] 

[33]. Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, and Wolpaw JR. BCI2000: A general-
purpose brain-computer interface (BCI) system. IEEE Transactions on Biomedical Engineering, 
51(6):1034–1043, 6 2004. [PubMed: 15188875] 

[34]. Akce Abdullah, Norton James, and Bretl Timothy. A brain-machine interface to navigate mobile 
robots along human-like paths amidst obstacles. In 2012 IEEE/RSJ International Conference on 
Intelligent Robots and Systems IEEE, 10 2012.

[35]. Lin Zhonglin, Zhang Changshui, Wu Wei, and Gao Xiaorong. Frequency recognition based on 
canonical correlation analysis for SSVEP-based BCIs. IEEE Transactions on Biomedical 
Engineering, 54(6):1172–1176, 6 2007. [PubMed: 17549911] 

[36]. Schlogl Alois, Kronegg Julien, Huggins J, and Mason S. 19 evaluation criteria for BCI research. 
Toward brain-computer interfacing, 2007.

[37]. Guger Christoph, Allison Brendan Z., Großwindhager Bernhard, Prückl Robert, Hintermüller 
Christoph, Kapeller Christoph, Bruckner Markus, Krausz Gunther, and Edlinger Günter. How 
many people could use an SSVEP BCI? Frontiers in Neuroscience, 6:169, 2012. [PubMed: 
23181009] 

[38]. Adrian Edgar D. and Matthews Bryan H. C.. The interpretation of potential waves in the cortex. 
The Journal of Physiology, 81(4):440–471, 7 1934. [PubMed: 16994555] 

[39]. Lemm Steven, Blankertz Benjamin, Dickhaus Thorsten, and MÃijller Klaus-Robert. Introduction 
to machine learning for brain imaging. NeuroImage, 56(2):387–399, 5 2011. [PubMed: 
21172442] 

[40]. Brewer Robin, Anthony Lisa, Brown Quincy, Irwin Germaine, Nias Jaye, and Tate Berthel. Using 
gamification to motivate children to complete empirical studies in lab environments. In 

Norton et al. Page 17

J Neural Eng. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Proceedings of the 12th International Conference on Interaction Design and Children - IDC ‘13, 
pages 388–391. Association for Computing Machinery (ACM), 2013.

Norton et al. Page 18

J Neural Eng. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
Graphical representations of the experimental interface. (a) Shows how targets were 

identified with an arrow during the calibration phase. (b) Shows how the target was 

highlighted during the experimental phase. (c) Shows the feedback given to the user after the 

classifier guessed the predicted target. Note that the size of the targets and text have been 

enlarged to improve readability.
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Figure 2: 
Performance of participants from data collected during the calibration phase based on the 

post-experiment analysis. Accuracy of (a) included children versus included adults, (b) 

included children versus excluded children and the average of all of the children, (c) 

included children for each stimulation frequency as a function of t and τ = 0, and (d) 

included adults for each stimulation frequency as a function of t for τ = 0. Images showing 

bitrate calculated for each t and τ for (e) included children and (f) included adults. The t and 

τ values used for each participant in the experimental phase are denoted by a white dot.

Norton et al. Page 20

J Neural Eng. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Performance of participants during the experimental phase in terms of (a) accuracy, (b) 

latency, and (c) NBR. The variations in the x-axis are random noise that has been added to 

reduce overlap in the data points and increase readability.
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Figure 4: 
Performance of included children versus included adults during the experimental phase by 

stimulation frequency in terms of (a) accuracy and (b) latency. The variations in the x-axis 

are random noise that has been added to reduce overlap in the data points and increase 

readability.
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Figure 5: 
Performance of included children versus included adults during the experimental phase by 

round in terms of (a) accuracy and (b) latency.
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Table 1:

Post-Experiment Analysis of Data from Calibration Phase (Included Children)

Subject t τ Accuracy Latency NBR

S01c 1.375 0.75 0.87 2.40 0.51

S02c 1.125 0.70 0.87 1.38 0.79

S03c 2.125 0.40 0.87 2.41 0.44

S04c 1.375 0.47 1.00 1.57 1.01

S05c 0.875 0.75 1.00 1.58 1.00

S06c 2.250 0.35 0.87 2.60 0.46

S07c 1.125 0.63 0.93 2.14 0.69

S08c 1.250 0.58 0.93 1.70 0.78

S09c 1.250 0.64 0.93 1.70 0.78

S10c 1.875 0.36 0.87 1.92 0.62

S11c 1.125 0.73 1.00 1.83 0.86

Mean 1.432 0.58 0.92 1.93 0.72

Mdn 1.250 0.63 0.93 1.83 0.78

SD 0.448 0.16 0.06 0.40 0.20
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Table 2:

Post-Experiment Analysis of Data from Calibration Phase (Excluded Children)

Subject t τ Accuracy Latency Bitrate

E01c 0.500 0.00 0.40 0.50 0.42

E02c 0.500 0.00 0.40 0.50 0.98

E03c 0.500 0.00 0.60 0.50 1.05

Mean 0.500 0.00 0.47 0.50 0.82

Mdn 0.500 0.00 0.40 0.50 0.98

SD 0.000 0.00 0.12 0.00 0.35
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Table 3:

Post-Experiment Analysis of Data from Calibration Phase (Included Adults)

Subject t τ Accuracy Latency Bitrate

S01a 1.000 0.60 0.93 1.17 1.14

S02a 1.375 0.51 0.93 1.76 0.75

S03a 1.125 0.57 1.00 1.86 0.85

S04a 0.750 0.70 1.00 1.80 0.88

S05a 3.625 0.27 0.93 3.76 0.35

S06a 1.625 0.42 0.93 2.13 0.62

S07a 0.750 0.68 0.93 1.12 1.18

S08a 0.750 0.74 0.93 1.43 0.93

S09a 0.875 0.66 0.93 1.19 1.11

S10a 0.625 0.82 1.00 1.33 1.20

S11a 1.000 0.60 1.00 1.74 0.91

Mean 1.227 0.60 0.96 1.75 0.90

Mdn 1.000 0.60 0.93 1.74 0.91

SD 0.849 0.15 0.03 0.74 0.26
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