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Abstract

Alarmins are endogenous mediators capable of enhancing innate and adaptive immune response 

through induction of concomitant recruitment and activation of antigen-presenting cells. Here we 

provide a brief overview of various alarmins, highlight their critical roles in innate and adaptive 

antimicrobial immunity, and speculate on potential usage of alarmins in combating aspergillosis.
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What are alarmins?

Alarmins are defined as endogenous mediators that can simultaneously induce the 

chemotactic migration and activation of antigen-presenting cells (APC) and consequently 

promote the induction of immune responses [1,2]. At present, alarmins include defensins, 

cathelicidin, eosinophil-derived neurotoxin (EDN, all abbreviations are listed in Table 1), 

and high-mobility group box 1 (HMGB1) protein (Table 2). They belong to several 

structurally distinct superfamilies of proteins that have historically been identified as 

antimicrobial peptides and proteins (AMP), enzymes, or chromosome-binding proteins [3–

6]. Alarmins are present in leukocytes (granulocytes in particular) and various epithelial 

cells (including keratinocytes) as either granule products or nuclear proteins that are rapidly 

released upon microbial invasion or tissue injury. In addition, the expression of most 

alarmins can also be induced in the course of innate host defenses in response to pathogen-

associated molecular patterns (PAMP) such as bacterial LPS or proinflammatory cytokines 

such as IL-1, TNF, and IFN [7].
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Defensins

Defensins were the first mediators to be shown to have alarmin characteristics. Mammalian 

defensins are classified into α-, β-, and θ-subfamilies that differ in the distribution of the six 

conserved cysteine residues that form three distinct intramolecular disulfide bonds. Human 

α-defensin-1~4 are conventionally called human neutrophil peptides (HNP1~4) owing to 

their presence in the primary granules of neutrophils [8]. Mice have no neutrophil α-

defensin, but possess multiple Paneth cell α-defensins called cryptidins, similar to human 

Paneth cell α-defensin 5 and 6 [9]. More than thirty human β-defensins (HBD) and mouse 

β-defensins (MBD) have been identified, which are predominantly generated by epithelial 

cells of various origins, including keratinocytes [10]. θ-defensin is only present in 

nonhuman primates [11]. Most defensins can be induced by proinflammatory stimuli via the 

activation of multiple transcriptional factors such as NF-κB, AP-1, AP-2, NF-IL-6, and IFN-

activated transcriptional activators [12]. Both α- and β-defensins form a compact globular 

structure consisting of three anti-parallel β-sheets constrained by three disulfide bridges [3].

Several α- and β-defensins have been shown to have the dual capability of chemoattracting 

and activating APC (Table 2). HNP1~3 and several β-defensins are chemotactic for various 

subsets of leukocytes including dendritic cells (DC), monocytes, and macrophages [13–20]. 

The chemotactic effect of defensins is mediated by Gαi protein-coupled receptors 

(GαiPCRs) because it can be inhibited by pretreatment of the target cells with a Gαi 

protein-specific inhibitor pertussis toxin [14 16,19]. Certain β-defensins use the CC 

chemokine receptor (CCR) 6 to mediate their chemoattraction of DC and T cells [14,19,21]. 

Since monocytes and macrophages do not express functional CCR6, the GαiPCR(s) 

responsible for β-defensin chemoattraction of monocytes and macrophages remains 

unidentified [18,20]. The GαiPCR(s) used by HNP to chemoattract target cells also remains 

to be characterized [2,7]. In addition to their APC-chemoattracting effects, several defensins 

have the ability to activate leukocytes and epithelial cells. HBD2 and several α-defensins 

can activate mast cells and epithelial cells, leading to the release of prostaglandins and 

histamine and the production of many cytokines and chemokines [22–27]. MBD2 induces 

the three hallmarks of DC activation, including upregulation of DC surface costimulatory 

and major histocompatibility complex (MHC) molecules (CD40, CD86, and I-A/I-E), 

elevation of many cytokines including IL-12, and switch of chemokine receptor from CCR5 

to CCR7, in a TLR4-dependent manner [28]. HBD3 has recently been reported to activate 

APC via a heterodimeric receptor consisting of Toll-like receptor (TLR) 1 and TLR2 [29]. 

Most of the more than thirty human β-defensins have not been studied at the protein level in 

the context of APC chemoattraction and activation, and therefore, it remains to be 

determined whether all β-defensins use TLRs as APC-activating receptors or not.

Cathelicidin

Cathelicidin represents another superfamily of mammalian AMPs that possesses the 

properties of alarmins (Table 2). About 40 cathelicidin members have been identified [30], 

however, humans and mice generate only one cathelicidin, called human cationic 

antimicrobial protein 18 (hCAP18)/LL-37 [31] and cathelin-related antimicrobial peptide 

(CRAMP) [32], respectively. All cathelicidins contain an N-terminal putative signal peptide, 

a conserved cathelin-like domain and a C-terminal antimicrobial domain that varies 
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remarkably in size (ranging from 12–97 amino acid residues) [30]. Cathelicidins are 

predominantly stored constitutively in the secondary granules of neutrophils, however, they 

are also generated by other leukocytes and epithelial cells in response to proinflammatory 

stimuli including cytokines, PAMPs, or tissue injury [33–36]. LL-37 and CRAMP are α-

helical peptides with a wide spectrum of antimicrobial effects [30]. Many cathelicidins are 

chemotactic for various leukocytes [37–41]. LL-37 utilizes the GαiPCR formyl peptide 

receptor-like 1 (FPRL1) as a receptor to chemoattract neutrophils, monocytes and T cells 

[39,40]. CRAMP induces chemotaxis of mouse leukocytes using formyl peptide receptor 2 

(FPR2), the mouse homolog of human FPRL1, as the receptor [42]. Cathelicidins can also 

induce the activation of many types of cells, resulting in the mobilization of intracellular 

calcium in monocytes [39], upregulation of a variety of genes (e.g., IL-8, MCP-1, CXCR2, 

and CCR2) by macrophages [43], release of proinflammatory mediators (e.g., histamine and 

prostaglandins, cytokines) by mast cells and keratinocytes [22,23], and proliferation of 

endothelial and epithelial cells [44,45]. Similar to its chemotactic activity, the angiogenic 

activity of LL-37 is mediated by FPRL1 expressed on endothelial cells [44]. Although the 

capacity of LL-37 to promote IL-1β production by monocytes is reported to be mediated by 

the ionotrophic purinergic receptor P2X7 [46], additional experimental evidence indicates 

that both FPRL1 and P2X7 are responsible for mediating the leukocyte-activating effect of 

LL-37[47]. LL-37 has recently been reported to form a complex with otherwise inert 

mammalian DNA fragments to activate plasmacytoid DC via TLR9 [48].

The direct microbicidal effect of most defensins and cathelicidins can only been seen at 

micromolar concentrations in vitro in buffers that are hypotonic (e.g., 10 mM phosphate 

buffer) and free of protein [3,4,8,9,20]. However, defensins or cathelicidins induce the 

migration and/or activation of leukocytes (including APCs) at nanomolar concentrations, 

even under isotonic and serum protein-containing conditions [13–19]. Therefore, it is 

speculated that the alarmin properties of defensins or cathelicidins may play more prominent 

roles than their direct microbicidal effects in combating invading pathogens in vivo.

EDN. EDN is a member of eosinophil-associated ribonuclease (EAR) superfamily that also 

includes eosinophil cationic protein in humans as well as multiple orthologous EARs in 

murine and other species [5]. EDN is a 134-amino acid residue protein with heavy 

glycosylation [49]. Structurally, EDN shows a V-shaped two-lobe folding typical of 

members of ribonuclease super-family, each consisting of three anti-parallel β-strands and 

one α-helix with two additional α-helices positioned between the two lobes [50]. EDN is 

stored in eosinophil granules and expressed by liver, spleen, neutrophils, and activated 

monocytes/macrophages [5,51,52]. Aside from its ribonuclease activity, EDN has antiviral 

effect against respiratory syncytial virus and HIV [53,54] and possesses alarmin properties 

(Table 2). EDN and its mouse ortholog mEAR2 are selectively chemotactic for human and 

mouse DC [55]. EDN treatment of DC induces DC activation as evidenced by an increase in 

the phosphorylation of extracellular signal-regulated kinases (ERK), production of numerous 

inflammatory cytokines, and expression of surface costimulatory (CD80, CD86) and MHC 

molecules by DCs [55,56]. Although the GaiPCR responsible for EDN’s chemotactic effect 

is unidentified, the receptor that mediates EDN’s DC-activating effect has recently been 

identified as TLR2 [56].
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HMGB1. HMGB1 is a member of the high-mobility group (HMG) chromatin-binding 

protein superfamily. HMGs are divided into three subfamilies based on their distinct N-

terminal functional domains: HMGBs contain two box domains, HMGNs possess a 

nucleosome-binding domain, while HMGAs have several ‘AT-hooks’ (AT-hook is a small 

DNA-binding protein motif that binds selectively to AT-rich DNA sequences) [6]. All HMGs 

have a C-terminus rich in acidic amino acids and play important roles in development and 

control of expression of numerous genes by regulating the structural changes of chromatin 

fibers. HMGB1 consists of 215 amino acid residues and is released by dying cells as a result 

of injury or by monocytes, macrophages, and NK cells in response to danger signals such as 

PAMPs [57–62]. Extracellular HMGB1 acts as an alarmin (Table 2) because it also 

possesses the dual capability of chemoattracting and activating APCs [63–67]. The 

chemotactic effect of HMGB1 on mesoangioblasts, monocytes and DC can be inhibited by 

pretreatment of target cells with pertussis toxin, indicative of the usage of a GαiPCR 

[63,65,68]. However, neutralizing antibody against receptor for advanced glycation end-

products (RAGE) also reduces the chemotactic activity, suggesting both RAGE and an 

unidentified GαiPCR are somehow involved [63,65]. HMGB1 activation of macrophages 

and DC has been shown to be mediated by RAGE, TLR2, TLR4, and/or TLR9 [66,69–71]. 

Since HMGB1 has a great propensity to form complexes with DNA, LPS, and certain 

lipoproteins, activation of TLR2, 4, or 9 by the resultant complexes may account for the 

capacity of HMGB1 to induce cell activation.

Alarmins and antimicrobial immunity

Alarmins play important roles in galvanizing antimicrobial innate immunity (Fig. 1). Upon 

the entry of microorganisms into the host, alarmins (e.g., defensins, cathelicidins, EDN, or 

HMGB1) are rapidly released by epithelial cells and local resident leukocytes in response to 

cell death or stimulation by PAMPs. These alarmins, based on their antimicrobial activities 

may directly kill bacteria, fungi, parasites, and inactivate viruses or toxins, therefore, would 

greatly reduce the burden of invading pathogens and the pathogenic effects of toxins 

[3,5,30,72,73]. In addition, alarmins also contribute to the recruitment of phagocytes and 

APC (e.g., granulocytes, monocytes, and DC) owing to their chemotactic effects [2,13–

20,37–41,55,63,65,68]. Furthermore, activation of local epithelial cells and leukocytes by 

alarmins would lead to enhanced phagocytosis and generation of inflammatory mediators 

(e.g., cytokines, chemokines, histamine, prostaglandins, etc) that further amplify local 

inflammatory innate immune responses [22–29,43,66,69–71]. Invading pathogens are 

contained/eliminated by these orchestrated actions of alarmins and other components of the 

innate immune response.

Innate immune responses not only efficiently contain infection, but also set the stage for the 

induction of antigen-specific adaptive immune response that is required to completely 

eliminate many types of pathogens and to generate immunologic memory. The process of 

adaptive antimicrobial immune response is initiated at the sites of pathogen entry where 

APC (in particular DC) engulf microbial antigens. Alarmins enhance antigen uptake by 

recruiting DCs into sites of pathogen entry (Fig. 1). After antigen uptake, DCs need to 

mature while processing antigens in order to acquire the capacities of trafficking to 

secondary lymphoid organs and presenting antigens to naïve T cells [2,74]. Alarmins rapidly 
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activate DC to mature, which plays a critical role in the induction of adaptive immune 

response (Fig. 1). This has been established by the capacity of various alarmins to enhance 

antigen-specific immune responses to a number of antigens when the antigen is administered 

together with a single alarmin or as an alarmin-antigen fusion product 

[19,28,42,63,67,75,76]. In addition to enhancing the development of antigen-specific 

immune response, alarmins also regulate the type of immune responses by controlling the 

activation of DCs (Fig. 1). For example, MBD2 and HMGB1 polarize T cell responses 

predominantly in a Th1 direction [19,28,67,76]. Thus, DC activated by MBD2 and HMGB1 

generate high amount of IL-12p70, a cytokine critical for Th1 polarization [28,63,64,67]. In 

contrast, EDN-activated DC generate more IL-10 without much IL-12p70 and polarizes 

immune responses predominantly into a Th2 type, resulting in the production of large 

amount of IL-5, IL-13, and IL-10 by antigen-specific T lymphocytes [56].

Thus, alarmins play critical roles in host antimicrobial immunity by initiating and 

augmenting both innate and adaptive immune responses through multiple mechanisms. The 

importance of alarmins to mammalian antimicrobial immunity is validated by various animal 

models. Knockout of matrilysin, an enzyme required for the generation of mature mouse 

cryptidins, renders mice more susceptible to Salmonella typhimurium infection due to the 

lack of functional Paneth cell α-defensins [77]. Knockout of MBD1 or mouse cathelicidin 

results in reduced resistance to several bacterial infections [78–80]. Conversely, 

overexpression of α-defensin HD5 and cathelicidin by transgenic technique or adenovirus-

mediated gene transfer enhances antibacterial defenses of mice [81–83]. Furthermore, the 

requirement of recruited leukocytes to participate in the in vivo anti-bacterial effect of HNP1 

[84], together with the simultaneous induction of Th1-type cytokines (IL-12 and IFNγ), 

leukocyte infiltration, and resistance to Bordetella pertussis challenge in the piglet lung 

tissue by intra-pulmonary administration of porcine β-defensin 1, provide additional support 

for the participation of alarmins in both innate and adaptive antimicrobial immunity.

Potential implication of alarmins in combating Aspergillus infection

Aspergillosis due to infection by Aspergillus fumigatus has become a serious clinical 

problem in immunocompromised patients [85]. Aspergillus fumigatus infection is initiated 

by inhalation of A. fumigatus spores (conidia) that germinate to form hyphae, resulting in 

the destruction of affected tissues. Macrophages can kill conidia whereas hyphal invasion is 

predominantly controlled by neutrophils [85–87]. Cytokines capable of mobilizing and 

activating phagocytes and DC (e.g., GCSF and GM-CSF, M-CSF) as well as mounting an A. 
fumigatus-specific Th1 immune response (e.g., TNF and IFNγ) are also critical to the 

combat against infection [85,88,89]. The ideal approach for preventing the occurrence of 

aspergillosis would be vaccination, however, there is no such a vaccine available at present. 

Given their critical roles in antimicrobial immunity, alarmins may potentially be utilized in 

various ways for the prevention and/or treatment of Aspergillus fumigatus infection. One 

simple approach would be to directly use certain alarmins as antibiotics against Aspergillus 
fumigatus. Although many alarmins, particularly defensins and cathelicidins, have been 

shown to directly kill various fungi such as Candida albicans and Cryptococcus neoformans, 

most alarmins have not been tested against Aspergillus fumigatus [3,20,30,90]. The 

identification of a human defensin with selective killing against Aspergillus spp. offers some 
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optimism in this regard [91]. Alternatively, alarmins may be delivered into infected tissues to 

promote anti-Aspergillus fumigatus immune defense based on their capabilities to induce the 

recruitment and activation of phagocytes. Because certain alarmins (e.g., MBD2, HMGB1, 

etc) can selectively induce Th1-polarized antigen-specific immune response, they may 

potentially be used as molecular adjuvants for vaccine development or to enhance 

therapeutic interventions against aspergillosis.
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Fig. 1. 
Schematic illustration of the roles and mechanisms by which alarmins enhance host 

antimicrobial immunity. Microorganisms enter the tissue during infection and/or tissue 

injury. In infected tissue, various alarmins are released by cells of the innate immune system, 

such as epithelial cells (Ep, including keratinocytes) and infiltrating leukocytes including 

neutrophils (N), basophils (Ba), eosinophils (Eo), monocytes/macrophages (Mo/Mϕ), NK, 

and NKT cells. Alarmins contribute to innate antimicrobial defense by directly killing and/or 

inactivating microorganisms (), activating phagocytes that, in turn, destroy microorganisms 

(⊄), and/or recruit additional phagocytes into infected tissue (⊂). In addition, alarmins 

induce the recruitment of immature DCs (iDC) into the infected tissue, which would 

promote the uptake of microbial antigens (⊂). Alarmins also stimulate the maturation of 

DCs that have engulfed microbial antigens into fully activated mature DCs (mDC), which 

not only enhances the antigen-presenting capacity, but also enable the resulting DCs to 

migrate into the secondary lymphoid organs for inducing the activation of antigen-specific B 

and T lymphocytes (⊆). Furthermore, alarmins can regulate the types (e.g., Th1 vs Th2) of 

adaptive antimicrobial immune responses through controlling the characteristics of DC 

maturation (∈). The products of the adaptive immune responses contribute to the elimination 

of the invading microorganisms either directly (e.g., CTLs) or indirectly by facilitating 

innate effector cells (e.g. antibodies and cytokines).
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Table 1

Abbreviations used in this paper

AMP Antimicrobial peptide or protein

AP-1 Activator protein 1

AP-2 Activator protein 2

APC Antigen-presenting cell

CCR CC chemokine receptor

CD Cluster of differentiation

CRAMP Cathelin-related antimicrobial peptide

CTL Cytotoxic T lymphocyte

CXCR CXC chemokine receptor

DC Dendritic cell

EAR Eosinophil-associated ribonuclease

EDN Eosinophil-derived neurotoxin

ERK Extracellular signal-regulated kinase

FPR2 Formyl peptide receptor 2

FPRL1 Formyl peptide receptor-like 1

GαiPCR Gαi protein-coupled receptor

G-CSF Granulocyte colony-stimulating factor

GM- Granulocyte macrophage colony-stimulating factor

CSF

HBD Human beta (β)-defensin

HMG High-mobility group protein

HMGB1 High-mobility group box 1 protein

HNP Human neutrophil (α-defensin) peptide

I-A/I-E Mouse class II MHC antigen encoded by the A and E lololoci

loci of the I region

IFN Interferon

IL Interleukin

LPS Lipopolysaccharide

M-CSF Macrophage colony-stimulating factor

MBD Mouse beta (β)-defensin

MCP Monocyte chemoattractant protein

MHC Major histocompatibility

NF-IL-6 Nuclear factor-interleukin-6

NF-κB Nuclear factor kappa (κ) B

NK Natural killer cell

NKT Natural killer T cell

PAMP Pathogen-associated molecular pattern

RAGE Receptor for advanced glycation endproducts

TLR Toll-like receptor
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