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Abstract

ITK-SNAP is an interactive software tool for manual and semi-automatic segmentation of 3D 

medical images. This paper summarizes major new features added to ITK-SNAP over the last 

decade. The main focus of the paper is on new features that support semi-automatic segmentation 

of multi-modality imaging datasets, such as MRI scans acquired using different contrast 

mechanisms (e.g., T1, T2, FLAIR). The new functionality uses decision forest classifiers trained 

interactively by the user to transform multiple input image volumes into a foreground/background 

probability map; this map is then input as the data term to the active contour evolution algorithm, 

which yields regularized surface representations of the segmented objects of interest. The new 

functionality is evaluated in the context of high-grade and low-grade glioma segmentation by three 

expert neuroradiogists and a non-expert on a reference dataset from the MICCAI 2013 Multi-

Modal Brain Tumor Segmentation Challenge (BRATS). The accuracy of semi-automatic 

segmentation is competitive with the top specialized brain tumor segmentation methods evaluated 

in the BRATS challenge, with most results obtained in ITK-SNAP being more accurate, relative to 

the BRATS reference manual segmentation, than the second-best performer in the BRATS 

challenge; and all results being more accurate than the fourth-best performer. Segmentation time is 

reduced over manual segmentation by 2.5 and 5 times, depending on the rater. Additional 

experiments in interactive placenta segmentation in 3D fetal ultrasound illustrate the 

generalizability of the new functionality to a different problem domain.
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1. Introduction

ITK-SNAP is a software tool that provides a graphical user interface for manual and user-

guided semi-automatic segmentation of 3D medical imaging datasets. ITK-SNAP was 

created to address image segmentation problems for which fully automated algorithms are 

not yet available. Automatic segmentation may be lacking because a given problem has not 

received sufficient attention from algorithm developers; because the problem is too complex 

to be solved without human input; or because there is not yet sufficient expert-annotated data 

to train automated algorithms. Current state-of-the-art automatic medical image 

segmentation algorithms often use machine learning [23, 29], multi-atlas label fusion [21], 

or statistical shape priors [20]. These techniques require training data in the form of tens or 

even hundreds of manually or semi-automatically segmented example images. Furthermore, 

extending fully automatic techniques to new domains (e.g. from adult to pediatric subjects, 

from healthy subjects to subjects with extensive pathology, or from one scanner 

manufacturer to another) requires yet more expert-generated segmentations as additional 

training data and/or validation data. Subsequently, there is a robust need for expert-guided 

medical image segmentation approaches that span multiple imaging modalities and 

application domains.

ITK-SNAP was first developed in the early 2000s to provide an interactive platform for 

segmenting anatomical structures in 3D images both manually (by painting outlines on 2D 

cross-sections of a 3D image) and semi-automatically (by manually setting the parameters 

and initial seeds for two active contour algorithms [8, 38]). Since its introduction, ITK-

SNAP became a popular tool, as evidenced by a large number of citations in the scientific 

literature.1 We analyzed a sample of 50 articles from 2014 that cited ITK-SNAP, and found 

that 86% of the articles used ITK-SNAP for image segmentation, 4% used it as an image 

viewer, and 10% cited ITK-SNAP but did not use it. Among the first group, 42% used ITK-

SNAP only for manual segmentation, 42% used the semi-automatic segmentation features, 

and 16% did not state which approach was used. The relatively modest utilization of semi-

automatic segmentation prompted us to extend ITK-SNAP with more advanced and 

generally applicable semi-automatic segmentation capabilities. These new capabilities 

focused primarily on two areas: enabling the concurrent use of multiple image channels 

during semi-automatic segmentation (such as multiple MRI contrast mechanisms, e.g., T1-

weighted and FLAIR, as done increasingly in fully automatic segmentation) and leveraging 

machine learning to identify foreground and background image regions in the input to active 

contour segmentation (in contrast to the original ITK-SNAP [35], which relies on simple 

thresholding and edge detection). Introducing these capabilities required not only integrating 

new algorithms into ITK-SNAP, but also incorporating a large set of new user interface 

capabilities, for example to support the display and management of multiple image channels.

The present paper serves several aims: (1) to describe the new features introduced in ITK-

SNAP software since the original 2006 publication [35]; (2) to demonstrate that the new 

semi-automatic functionality in ITK-SNAP can be applied to problems where threshold and 

1The number of articles citing the original ITK-SNAP paper [35] reported by Scopus (scopus.com) as of 3/12/2018 was 1,944; the 
number of citations reported by Google Scholar (scholar.google.com) was 2,822.
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edge-based active contour tools are ineffective; (3) to quantitatively compare ITK-SNAP 

semi-automatic segmentation to state-of-the-art specialized automatic segmentation 

algorithms in a widely studied problem; (4) to show that semi-automatic segmentation in 

ITK-SNAP can reduce segmentation time over manual segmentation; and (5) to demonstrate 

that ITK-SNAP segmentation capabilities can be applied in multiple application domains 

and imaging modalities.

Towards addressing aims 2, 3 and 4, we apply the new semi-automatic segmentation 

capabilities in ITK-SNAP to the challenging problem of brain tumor segmentation in multi-

modality MRI. This study leverages data from the MICCAI 2013 Multi-Modal Brain Tumor 

Segmentation Challenge (BRATS) [25], a well characterized benchmark dataset. ITK-SNAP 

was used by three neuroradiologists as well as one novice user to label a set of 20 glioma 

cases from multi-modality MRI (pre-contrast T1, post-contrast T1, T2, and FLAIR). We 

hypothesized that users (both novices and neuroradiologists) would label tumors using ITK-

SNAP reliably and in less time than what is required for manual segmentation. Inter-rater 

and intra-rater evaluation, as well as online evaluation by the BRATS system against 

reference manual segmentations were performed to quantify segmentation reliability and 

accuracy.Additionally, towards addressing aims 2, 4, and 5, we apply semi-automatic 

segmentation in ITK-SNAP to the very different problem of placenta segmentation in the 

first-trimester in 3D ultrasound images, and evaluate against manual segmentation in terms 

of accuracy and segmentation time.

2. Materials and Methods

This section describes the main features of ITK-SNAP software. The first part of the section 

(2.1–2.3) briefly summarizes the software design principles and the user interface features 

for image navigation, visualization, and manual segmentation. The remainder of the section 

focuses on the semi-automatic segmentation workflow, including the machine learning 

approach for reducing multi-modality image information to object/background probability 

maps and active contour segmentation.

2.1. ITK-SNAP software design principles

The software development for ITK-SNAP is guided by three simple principles: exclusive 
focus on segmentation; generality of purpose; and ease of use. These principles are applied 

by the developers to prioritize potential new features. Features are excluded if they do not 

directly support the needs of image segmentation, if they are tailored exclusively to specific 

segmentation problems, or if they are largely redundant with existing capabilities. The 

application of these principles has resulted in a feature set that is relatively contained, as 

seen in Table 1, which lists the primary features incorporated into the software since 2011. It 

is possible for new users to learn the primary features of ITK-SNAP in the course of a 90 

minute training session.

ITK-SNAP is open-source software and is distributed under the General Public License [17]. 

It is a cross-platform application written in the C++ language. It leverages the Insight Toolkit 

(www.itk.org) library for image processing functionality, the Visualization Toolkit 

(www.vtk.org) for image and surface visualization, and Qt (www.qt.io) for user interface 
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functionality. The CMake, CTest and CDash tools (cmake.org) are used for cross-platform 

compilation, automated testing, and posting of compilation and test results to a web-based 

dashboard. A web portal (www.itksnap.org) provides source code, pre-complied binaries for 

the Windows, MacOS and Linux platforms, documentation, and user support resources.

2.2. Image Navigation and Visualization in ITK-SNAP

ITK-SNAP allows the user to load image volumes using common 3D medical image 

formats, including DICOM, NIFTI, MetaImage and NRRD. ITK-SNAP recognizes the 

information encoded in the image header on the spatial position and orientation of image 

volumes relative to the scanner physical coordinate system. The first image loaded into ITK-

SNAP is designated as the “main image” and all visualization is performed relative to the 

main image geometry. Additional images can be loaded into ITK-SNAP after the main 

image, and these images can have different dimensions, resolution, and spatial orientation 

than the main image.

As shown in Fig. 1, 3D volumes are visualized as three orthogonal slices (cross-sections). 

The slices are parallel to the axes of the main image. When the main image is acquired non-

obliquely, the slices correspond to the axial, coronal and sagittal planes in physical space. 

The three slices intersect at the center of a single voxel in the main image; the position of 

this voxel is defined as the “3D cursor” position. Crosshairs displayed on each slice visualize 

the 3D cursor position. Moving this crosshair in one slice view adjusts the slices visualized 

in other views. This “linked crosshair” concept provides a convenient way to navigate 

through 3D volumes, with all three views focused on the same location in the 3D image.

Multiple images loaded in ITK-SNAP can be visualized in three ways: (1) a “tiled” layout, 

where the coronal, axial and sagittal slice views each display the same slice through all 

loaded modalities; (2) a “thumbnail” layout, where one modality occupies most of each slice 

view, while others are shown as small thumbnails, clicking on which switches to that 

modality; and (3) a “overlay” mode, in which selected images are shown as semiopaque 

overlays shown on top of the main image and other images.

Images loaded into ITK-SNAP may be scalar images (each voxel holds a single intensity 

value) or multi-component images, such as RGB color images (each voxel holds a red, green 

and blue value), displacement fields (each voxel holds a displacement vector, e.g., from 

deformable registration), diffusion tensor images, or dynamic image sequences. For multi-

component images, the user can select between viewing a single selected component, the 

maximum, average or magnitude of the components. Special visualization modes are 

provided for RGB color images and displacement fields.

The visualization of individual voxels is controlled by a user-controlled intensity remapping 

function, which may be linear (e.g., window/level control) or spline-based; and a color map 

function that maps scalar intensities to display color. Window and level can be set 

automatically based on the image histogram.

Navigation in 3D image space is accomplished by the repositioning of the crosshairs in the 

three slice views with the mouse or keyboard, as well as mouse-based zooming and panning. 
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Multiple redundant user interface widgets are provided to support crosshair repositioning, 

exact zooming and panning.

The ITK-SNAP state, i.e., the set of images currently loaded, their layout, intensity 

remapping, color map function, and various other state variables can be saved in lightweight 

XML format workspace files.

2.2.1. Segmentation Representation and Visualization—Segmentations are 

represented in ITK-SNAP as 3D images with the same dimensions and orientation as the 

main image. Each voxel in the segmentation volume is assigned a discrete integer label, with 

the label 0 representing the clear label. Segmentations can be loaded and saved using 

popular 3D image file formats, such as NIFTI. A label description table is maintained 

internally that assigns a name, color, opacity, and other metadata to each label. The label 

table may be edited using a “label editor” UI, and saved in the XML format. Segmentations 

are visualized as color overlays rendered on top of the main and additional image slices; and 

as surfaces in the 3D render view (Fig. 1). These surfaces can be exported to file using 

common 3D geometry formats used in 3D printing and 3D visualization (STL, VTK). The 

3D render view supports navigation by allowing the user to click on the rendered surfaces to 

reposition the 3D cursor.

The approach of representing segmentation as discrete label images limits the resolution of 

the segmentation to that of the main image and disallows partial volume segmentation.2 

However, it simplifies three-dimensional editing of the segmentations, as a change made in 

one slice view is unambiguously translated into changes in the other slice views. The use of 

a common representation for both images and segmentations also facilitates analysis.

2.2.2. Image Registration—ITK-SNAP provides a linear registration mode that makes 

it possible to correct for subject motion between scans, such as head motion between 

multiple MRI scans obtained in the same session. A manual registration mode allows the 

user to rotate and translate images relative to the main image using widgets displayed on top 

of the orthogonal slices and mouse-based panning. An automatic registration mode can be 

used to find locally optimal rigid and affine transformations between the main image and a 

given additional image using common image similarity metric.

2.3. Manual Segmentation

ITK-SNAP provides simple tools for creating manual segmentation and editing semi-

automatic segmentations. The “polygon” tool can be used to draw structure outlines in any 

of the slice views. Polygons can be edited by moving vertices in the slice plane. Once 

accepted, the polygon is assigned the current label and integrated into the 3D segmentation 

volume. The “paintbrush” tool allows quick drawing and touch-up editing using the mouse, 

with masks of different shape and size. An adaptive paintbrush mask is also provided, 

wherein only the neighboring voxels similar in intensity to the voxel clicked on by the user 

are assigned the foreground label. Additionally, the 3D render view provides a “3D scalpel” 

2Note that active contour segmentations of individiual structures generated in the semi-automatic mode can be exported in a way that 
retains partial volume information
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tool that can be used to assign a different label to a part of a structure using a user-specified 

cut plane.

When applying the manual segmentation tools, users select the active label used to perform 

the drawing/painting operation as well as the way in which operations will affect existing 

labels. For the latter, the users may select to paint over all existing labels, only the clear 

label, or only a specific selected label. This allows the user to “protect” previously drawn 

labels during segmentation and editing.

2.4. Semi-Automatic Segmentation

Semi-automatic workflow proceeds in five stages, which are detailed in the sub-sections 

below.

1. The users specifies the region of interest (ROI) in which to perform semi-

automatic segmentation;

2. The user uses one of several available presegmentation modes to transform the 

input image volumes into a single synthetic image volume called the speed 
image. In most presegmentation modes, the speed image represents the 

difference between the probability that a voxel belongs to the object of interest 

and the probability that a voxel belongs to the image background.

3. The user places one or more initial contours inside of the object of interest.

4. The contours evolve in a manner governed by the speed image and a shape 

regularization term.

5. The semi-automatic segmentation result is incorporated into the main ITK-SNAP 

segmentation volume.

2.4.1. ROI Selection for Semi-Automatic Segmentation—The first stage of semi-

automatic segmentation involves defining the rectilinear image domain in which 

segmentation will be performed. It is often desirable for this domain to be smaller than the 

whole main image, so as to reduce computational and memory demands of the segmentation 

algorithm. It is also desirable for the images input to the active contour segmentation 

algorithm to have approximately isotropic voxel size, as noted in Subsection 2.4.3.

In the ROI selection stage, the user defines the corners of a rectilinear ROI that contains the 

object of interest, and can optionally set the voxel size for the ROI to be different from that 

of the main image. All images are then cropped and resampled to the space of the user-

selected ROI. All subsequent operations are performed on these cropped and resampled 

images. We note that while the multiple image layers loaded in a single ITK-SNAP session 

may be in different voxel spaces (i.e., have different resolution and orientation from each 

other), they are brought into a common voxel space for the purpose of semi-automatic 

segmentation.

2.4.2. Intensity-Based Presegmentation—For each voxel x in the ROI, multiple 

intensity values may be available, e.g., if the user applies segmentation to multiple co-
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registered image volumes or to a multi-component image. Presegmentation reduces all the 

image intensity values available at a voxel to a single scalar value. The resulting scalar 

image g(x) is called the speed image. ITK-SNAP offers four presegmentation modes: 

supervised classification, unsupervised classification, soft thresholding, and edge detection.

• In the supervised classification mode, presegmentation estimates the probability 

Pobj(x) of the voxel x belonging to the object of interest and the probability 

Pbkg(x) of it belonging to the background. These probabilities are estimated by 

training a random forest classifier [6, 10] on a set of example voxels identified by 

the user via painting operations. The probabilities are estimated using all 

available image intensity values at x. The speed image has range [−1,1] and is 

defined as the difference between object and background probabilities, g(x) = 

Pobj(x) − Pbkg(x). Fig. 2 shows ITK-SNAP in this presegmentation mode.

• In the unsupervised classification mode, the speed image also estimates the 

difference between object and background probabilities at each voxel. These 

probabilities are also estimated using all available image intensity values at each 

voxel. However, this estimation is obtained without training data using a 

Gaussian mixture model and the Expectation-Maximization (EM) algorithm 

[11]. The user specifies the number of distinct tissue classes in the ROI, and the 

initial parameters for each class are randomly seeded using the k-means++ 

algorithm [2].

• In the soft thresholding mode, the speed image is also of the form g(x) = Pobj(x) 

− Pbkg(x), but the foreground and background probabilities are estimated in a 

more rudimentary way. A soft binary threshold function with user-supplied upper 

and lower threshold values is applied to a single image intensity component 

selected by the user. Intensity values between the lower and upper thresholds are 

assigned positive speed values, and values outside the thresholds map to negative 

speed values. The soft thresholding mode corresponds to the “region 

competition” segmentation approach developed by Zhu and Yuille [37], and its 

implementation within ITK-SNAP is described and evaluated in [35].

• In the edge attraction mode, the speed image has the range [0,1] and the speed 

image is derived from the gradient magnitude of a single image intensity 

component selected by the user. Large gradient magnitude values (strong edges) 

are mapped to small speed values, and vice versa. The edge attraction mode 

corresponds to the “geodesic active contours” approach described by Caselles [7, 

8], and its implementation within ITK-SNAP is described in [35].

The remainder of this section focuses on the supervised classification mode, which is used in 

all evaluation experiments in this paper. In this mode, the user specifies examples of k ≥ 2 

tissue classes present in the segmentation ROI. Examples are specified by painting 

brushstrokes in one or more orthogonal slice views (the polygon tool can also be used). Each 

voxel painted by the user is treated as a separate example {Fj, yj} for training the random 

decision forest classifier, where Fj denotes the vector of features associated with the j-th 

example voxel and yj ∈ {1,…, k} is its tissue class.

Yushkevich et al. Page 7

Neuroinformatics. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



By default, the feature vector Fj consists of all the image intensity values available for the j-
th voxel (i.e., all the components of all the images). However, the feature vector can also be 

made to include all the intensity values in the rectangular patch centered on the j-th voxel, 

with the patch size set by the user. Including neighboring intensities as additional features 

makes it possible for the classifier to learn more complex intensity patterns that separate 

different tissue classes. As illustrated in Fig. 3, patch features make it possible to 

differentiate between image regions based on texture. The feature vector Fj may also be 

made to include the coordinates of the j-th voxel as features. This makes it possible to 

differentiate between image regions that have identical intensity characteristics but distinct 

locations in the image, as illustrated in Fig. 3.

The random forest algorithm [6, 10] is applied to the training data. The algorithm trains an 

ensemble of decision tree classifiers. Each decision tree is trained using a random bootstrap 

sample of the training data, and a random sample of the features [6, 10]. The number of 

decision trees and the depth of each decision tree are user-adjustable parameters (defaulting 

to 50 and 30, respectively).

After training, the random forest classifier is applied to all voxels in the ROI. For each voxel 

x, the feature vector Fx is constructed, and each decision tree in the ensemble is applied to 

Fx, resulting in a set of posterior probability values Px, l
t , where l ∈ {1,…, k} is the class 

index and t ∈ {1,…, T} is the tree index. The ensemble posterior probability for voxel x and 

label l is computed as Px, l = Σt = 1
T Px, l

t .

For the computation of Pobj(x) and Pbkg(x), the user tags one or more segmentation labels as 

corresponding to the object of interest, and the remaining labels are assigned to the 

background. Then we set Pobj(x) = Σl∈obj Px, l and Pbkg(x) = Σl∈bkg Px, l.

The user interface for the supervised classification mode is lightweight. It includes a set of 

buttons for selecting classes (labels) for painting examples, a button to train/retrain the 

classifier, a button to clear all examples, and a list of defined classes in which labels can be 

tagged as object or background. A separate window allows the user to specify how the 

feature vectors are constructed, to set classifier parameters, and to export and import 

examples.

The user interface is also highly responsive in order to allow interactive modification of the 

training data. During presegmentation, the random forest is applied selectively to the input 

image volume, so that only the slices visible to the user are classified. This is much faster 

than applying the classifier to the whole image. If the user moves the 3D crosshair (thus 

changing which slices are shown in the three ITK-SNAP views), the classification is 

recomputed on the fly. This allows the user to repeatedly retrain the classifier until a desired 

classification is accomplished. For example, if a particular area of the object of interest is 

mislabeled, the user can paint some voxels in that area with the object label and retrain the 

classifier. The availability of undo/redo functionality for the painting operations also speeds 

up classifier training.
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2.4.3. Active Contour Segmentation—In the supervised classification, unsupervised 

classification, and soft thresholding modes, positive values of the speed image correspond to 

parts of the image that have higher probability of being the object than the background. 

However, simply thresholding the speed image at 0 usually fails to provide a satisfactory 

segmentation. Firstly, there may be multiple objects of interest in the image (e.g., left and 

right caudate, or multiple lesions) that need to be assigned different labels; and there may be 

parts of the background that have nearly identical appearance to the object of interest. 

Secondly, the speed image may be noisy due to imaging noise and due to the fact that 

presegmentation is applied independently to each voxel. In ITK-SNAP, presegmentation is 

followed by a more geometric active contour segmentation step, in which seeds are placed 

inside of the specific object of interest and grown in a way that balances adherence to the 

speed image with a geometric regularization term [37, 8, 28, 34].

The active contour evolution algorithm implementation in ITK-SNAP was described 

previously in [35], and we only provide a brief summary here for completeness. Let t be 

time, and let Ct be a smooth contour in ℝ3, i.e., there exists a continuous, smooth function 

ϕt : ℝ3 → ℝ such that Ct = {x ∈ ℝ3 : ϕ(x) = 0}. The contour evolves according to the 

differential equation

dCt
dt = [g(Ct) + α ⋅ κCt

] ⋅ NCt
, (1)

where g(x) is the speed function, κCt is the mean curvature of the contour Ct, and NCt is the 

unit outward normal to the contour Ct, and α is a scalar parameter set by the user. Under this 

evolution equation, the contour expands into regions where the speed function is positive 

(and contracts where the speed function is negative), while also contracting at points where 

curvature is high. The evolution equation (1) corresponds to the variational gradient descent 

of an energy function that maximizes the energy

E[C] = ∫c
g(x)dx − ∫ℝ3\𝒞

g(x)dx + α∫C
dA,

where 𝒞 denotes the interior of the contour C, and dA is the element of area. Numerically, 

the contour evolution (1) is solved using the level set method [28], which expresses all terms 

of (1) in terms of the function ϕt and uses a robust finite difference scheme to approximate 

derivatives. An efficient extreme narrow banding method that only computes ϕt at a set of 

nodes adjacent to the zero contour [34] is used for computational efficiency. The 

requirement for approximately isotropic voxels in active contour segmentation stems from 

the fact that the surface normal and mean curvature of C are approximated from the partial 

derivatives of ϕ, and the approximation is inaccurate when voxels have large aspect ratios 

(e.g., 1:2 or greater).

The workflow for active contour segmentation consists of selecting an active label for the 

segmentation (in the supervised classification mode, this label is pre-populated as the first 

“object” tissue class); placing spherical seeds in the ROI; and supervising the active contour 
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evolution. The user can choose to advance the evolution by fixed step size, or continuously, 

until pressing “stop”. The evolving contour is visualized in real time in 2D slices and in 3D 

if enabled by the user.

As the last step, the user “accepts” the segmentation. The active contour segmentation is 

then resampled into the space of the ITK-SNAP main image and integrated into the overall 

segmentation image.

2.4.4. Segmentation of Multiple Structures in Supervised Classification Mode
—The supervised classification mode can be used to define multiple tissue classes in the 

image (e.g., edema, non-enhancing tumor core, enhancing tumor core, necrosis, healthy 

tissue, etc. in the case of glioblastomas), whereas the active contour segmentation only 

segments a single object at a time. To facilitate the segmentation of all relevant objects in the 

image, ITK-SNAP retains the classifier training data after active contour segmentation is 

completed. To segment additional objects in the ROI, the user re-enters the semi-automatic 

segmentation mode, assigns a different combination of tissue classes as object and 

background, and applies active contour evolution; all without having to re-train the random 

forest classifier.

3. Experiments and Results

The overall goal of the evaluation experiments is to show that ITK-SNAP can be used to 

perform complex image segmentation tasks in multi-modality image data quickly and 

reliably.

3.1. Brain Tumor Segmentation in Multi-Contrast MRI

The primary evaluation is carried out in the context of semi-automatic segmentation of high-

grade and low-grade gliomas in multi-contrast MRI from the 2013 MICCAI Brain Tumor 

Segmentation (BRATS) challenge [25], BRATS challenge data has been used to evaluate 

dozens of brain tumor segmentation algorithms, so it offers a well-established benchmark 

for evaluating ITK-SNAP segmentation performance. The reliability of “ground truth” 

manual segmentation in BRATS data is also known [25, Figure 5].

Our evaluation uses data from the 25-subject “leaderboard” subset of the 2013 BRATS 

dataset [25]. For each patient, four MRI scans are provided: precontrast Tl-weighted, T2-

weighted and FLAIR scans, as well as a gadolinium contrast enhanced Tl-weighted scan 

(TICE). All four scans are co-registered by BRATS organizers and resampled to 1mm × 

1mm × 1mm resolution. Most high-grade gliomas have four distinct tissue classes: edema, 

which appears bright on T2 and FLAIR; enhancing tumor core (EC), which appears bright 

on T1CE; non-enhancing tumor core (NEC), which is abnormal in T2 but appears as normal 

gray/white matter in T1CE; and necrosis, which appears dark in T1. However not all classes 

are present in all subjects and appearance can be variable. Low-grade gliomas typically do 

not have EC or necrosis.

The BRATS leaderboard dataset includes 21 scans of patients with high-grade gliomas and 4 

scans of patients with low-grade gliomas. These include 15 cases (11 high-grade, 4 low-

Yushkevich et al. Page 10

Neuroinformatics. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



grade) that were used for off-site evaluation both in BRATS 2012 and BRATS 2013, and 10 

additional cases that were used only in the 2013 challenge (Figure 4). The 15-case subset 

(subset B in Figure 4) was used to compare 20 tumor segmentation methods in the report on 

BRATS 2012 and 2013 by Menze et al. [25].

Gliomas were segmented in ITK-SNAP using the following protocol. In the supervised 

classification presegmentation mode, seven tissue classes were available: edema, EC, NEC, 

necrosis, normal brain tissue, cerebrospinal fluid (CSF), air/background. In most 

segmentations the first five classes were marked by the raters, and CSF was marked when 

tumors were adjacent to the CSF. Active contour segmentation was performed repeatedly, 

starting from the whole tumor and working inwards, as illustrated in Fig. 5. First, the 

combined tumor region (edema+NEC+EC+necrosis) is segmented; then (NEC+EC

+necrosis); then (EC+necrosis); and finally necrosis only. This sequence takes advantage of 

the fact that in most tumors necrosis lies within the EC, which is within the NEC, which in 

turn is within the edema, and minimizes the need to label structures with holes.

The whole BRATS 2013 leaderboard dataset was segmented twice by a non-expert rater 

(AP) who had no previous experience with image segmentation or brain tumor 

segmentation. After studying the BRATS manual segmentation protocol [22] and ITK-SNAP 

tutorials, this rater practiced on a set of 20 cases with available segmentations from the 

BRATS “training” subset for about one week. The rater then segmented the 25-case 

leaderboard dataset sequentially over the course of 10 days. Following a one-month delay, 

the rater segmented each dataset again. The total segmentation time (from loading a 

workspace file in ITK-SNAP to saving final segmentation) was recorded for each 

segmentation attempt. The strokes used to train the random forest classifier were also saved 

as an image volume.

Additional segmentation was performed independently by three expert neuroradiologists 

(JES, JMS, SM) who had no prior experience with ITK-SNAP. The neuroradiologists 

performed segmentation in a subset of 20 cases (16 high-grade, 4 low-grade), designated as 

subset C in Figure 4. Subset C includes the 15-case subset B used for the comparison 

methods in the BRATS 2012 and 2013 challenges [25, Figure 7]. A smaller subset of 5 

images (3 high-grade, 2 low-grade) were segmented twice by each neuroradiologist after a 

delay of at least two weeks. The neuroradiologists attended a two-hour training session from 

ITK-SNAP developers, watched ITK-SNAP training videos online, and practiced on the 20-

subject training subset until they felt comfortable with the tool and the segmentation 

protocol.

Segmentations performed by different raters, as well as repeat segmentations by the same 

rater, were compared in terms of the Dice similarity coefficient [12] and volume. These 

measurements were conducted in a manner consistent with evaluations in the BRATS 

challenge [25]. Specifically, Dice coefficient was computed and reported for the “complete 

tumor” (edema+NEC+EC+necrosis), “tumor core” (NEC+EC+necrosis) and “enhancing 

core” (EC) for high-grade gliomas and “complete tumor” and “tumor core” for low-grade 

gliomas. Dice coefficient is a measure of relative overlap between segmentations, defined as 
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the ratio of the volume of the intersection between two segmentations to the average volume 

of the two segmentations, and ranging between 0 and 1.

3.1.1. Results: Intra-Rater and Inter-Rater Reliability—The intra-rater reliability 

for the non-expert rater is summarized in Table 2. There is a substantial difference between 

the mean and median Dice coefficient, driven in part by zero Dice coefficient for one subject 

(high-grade 137), for which the rater labeled a completely different part of the image as 

tumor. The intra-rater reliability for low-grade gliomas is much lower than for high-grade 

gliomas, particularly for the tumor core. Overall, the median intra-rater Dice coefficient for 

our non-expert rater in subset B (0.92 for complete tumor, 0.81 for tumor core, 0.78 for 

enhancing region) compares favorably with the inter-rater reliability of the ground truth 

BRATS manual segmentation reported in [25, Figure 5] for the same set of cases (0.85 for 

complete tumor, 0.84 for tumor core, 0.72 for enhancing region). Mean intra-rater Dice for 

our non-expert rater (0.83 for complete tumor, 0.63 for tumor core, 0.64 for enhancing 

region) compares less favorably with [25, Figure 5] (0.81 for complete tumor, 0.77 for tumor 

core, 0.68 for enhancing region), which is likely driven by the lower performance of the non-

expert rater on low-grade cases and the outlier high-grade case 137.

Average intra-rater reliability for each of the three radiologists and average inter-rater 

reliability between all pairs of radiologists are reported in Table 3. Intra-rater reliability is 

consistently higher than inter-rater reliability, as would be expected, since inter-rater 

disagreements may include differences in the in-terpretation of underlying anatomy, while 

intra-rater disagreements, in principle reflect difficulty in applying a given set of anatomical 

rules consistently. Additionally, Table 4 compares the average inter-rater reliability of three 

radiologists using ITK-SNAP and the average inter-rater reliability of three raters who 

provided reference manual segmentation in [25] in the same set of images. Compared with 

[25], the ITK-SNAP inter-rater reliability is lower for high-grade cases and higher for low-

grade cases; the average over all cases is lower for ITK-SNAP, particularly for the tumor 

core.

The intra-class correlation coefficients (ICC, [30]) in Table 3 display a wide range, and 

higher ICC values do not always correspond to higher inter-rater and intra-rater Dice 

coefficient. Figure 6 uses Bland-Altman plots [5] to plot the between-rater and within-rater 

disagreement in volume. Large range of ICC values is likely explained by very different 

ranges of volume for the different regions. For example, for the enhancing tumor region, the 

between-rater and within-rater error is approximately the same in absolute terms, but the 

range of volumes is very small for the set of 3 high-grade cases in which intra-rater ICC is 

computed, resulting in a very low ICC (0.1).

3.1.2. Results: Comparison to BRATS Reference Segmentation—
Segmentations by the three experts and the non-expert were uploaded to the online BRATS 

evaluation system, which reports the Dice coefficient between each segmentation and the 

BRATS reference segmentation, which is a consensus segmentation derived from combining 

multiple manual segmentations [25]. Table 5 reports the mean and median overlap for each 

rater on the set of 20 cases that were segmented by all four raters (Subset C in Figure 4). The 

non-expert’s agreement with the BRATS reference is generally on par with the experts for 
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the high-grade gliomas, but lower than that of the experts on the low-grade gliomas. 

Combining across low-grade and high-grade gliomas, Expert 2 has the highest agreement 

with the BRATS reference of all four raters.

Table 6 estimates how the ITK-SNAP segmentations by the four raters compare to the 20 

brain tumor segmentation techniques evaluated in the BRATS 2012 and 2013 challenges [25, 

Figure 7]. The “Rank” columns of Table 6 indicates where the segmentation by each expert 

would rank with respect to the 20 methods evaluated in [25, Figure 7]. The best overall 

ranking is achieved by Expert 2, with Experts 1, 3 and the non-expert having very similar 

ranking profiles. However, for low-grade gliomas, Expert 3 has the best ranking. If the Dice 

coefficient across all three regions is averaged, then ITK-SNAP segmentation by experts 2 

and 3 comes out in the first place relative to the 20 methods in [25, Figure 7] and in the 

second place for Expert 1 and the non-expert.

The BRATS online evaluation system is open and new methods are continually added. The 

online system ranks methods based on average Dice coefficient relative to the BRATS 

reference segmentation across the 25-case leaderboard dataset (Subset A in Figure 4). As of 

April 2017, the segmentation produced by the non-expert was given overall rank 5 of 45 by 

the online system. The dataset combining segmentations by Expert 2 for subset C and non-

expert segmentation for the remaining 5 leaderboard cases, was given overall rank of 4 of 

45.

3.1.3. Segmentation Effort—The distribution of segmentation times for each rater, 

separated by tumor grade, is plotted in Figure 7. The mean segmentation time for the non-

expert across all cases was 12.3 min, while the mean segmentation for the three experts was 

higher: 24.1 min, 24.3 min, and 16.2 min, respectively. We used the Wilcoxon signed rank 

test to determine whether the differences in segmentation time between pairs of raters were 

statistically significant. Significant differences were found between Expert 1 and non-expert 

(p < 0.001), Expert 2 and non-expert (p < 0.001), Expert 2 and Expert 3 (p = 0.005); a trend 

toward significance was found between Expert 2 and Expert 3 (p < 0.06).

Figure 8 plots the number of training voxels labeled by each rater for each tissue class 

during supervised classification. The average number of training voxels per case was 

greatest for Expert 1, followed by the non-expert, Expert 2, and Expert 3. Differences in the 

number of training voxels were statistically significant on the Wilcoxon signed rank test 

between all pairs of raters (p < 0.01), except between Expert 2 and the non-expert.

For the non-expert rater, who has the most training data available for analysis, and whose 

training examples were consistently drawn on disjoint slices, we estimated the number of 

training strokes by performing 1-voxel morphological erosion on each x, y and z slice, and 

counting the number of connected components. The number of training strokes correlated 

significantly with segmentation time (R = 0.51, p = 0.01) and with Dice coefficient on 

BRATS evaluation (R = 0.52, p = 0.01) . These correlations remained significant if only 

high-grade gliomas were considered. However, segmentation time was not significantly 

correlated with Dice coefficient on BRATS evaluation (R = 0.25, p = 0.26).
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3.2. Placenta Segmentation

A secondary evaluation of ITK-SNAP semi-automatic segmentation was performed in the 

context of segmenting the placenta in 3D ultrasound (3DUS) images taken during the first 

trimester of pregnancy. The placenta is difficult to segment in 3DUS because of non-uniform 

intensity within the placenta, high levels of noise, and weak intensity contrast between the 

placenta and surrounding uterine tissue. A dataset of 25 first-trimester (11–14 weeks) 3DUS 

scans acquired with the GE Voluson E8 ultrasound machines was used in this study. Images 

were exported in cartesian format with isotropic resolution, ranging from 0.34mm × 0.34mm 

× 0.34mm to 0.61mm × 0.61mm × 0.61mm.

Manual segmentation was performed in ITK-SNAP in collaboration between a non-expert 

rater (NY) and an expert obstetrician with over 10 years of experience in prenatal ultrasound 

imaging and placenta segmentation (NS). The expert supervised training for the non-expert 

and inspected and approved each segmentation. The non-expert traced the placental outline 

in approximately every fifth slice in all three orthogonal slice planes. The resulting sparse 

segmentations were reviewed by the expert, and if needed, sent back to the non-expert rater 

for correction. Sparse segmentations were interpolated to create a smooth 3D placental 

volume, which was reviewed and corrected if necessary. Although segmentation time was 

not recorded, it took over ten hours of total segmentation time per case with the correction 

and editing.

A semi-automatic placenta segmentation protocol was developed using a subset of 13 

“training” images for which he had access to manual segmentations. Images were first 

processed using the 3 × 3 × 3 voxel median filter to reduce speckle noise. The supervised 

classification mode in ITK-SNAP was used to define examples of seven tissue classes: 

placenta, anterior uterine muscle, posterior muscle, amniotic fluid, fetus, fat and other. The 

feature set for supervised classification included both patch intensity features (with patch 

radius 2, i.e., 5 × 5 × 5 voxel patches) and coordinate features. The coordinate features 

helped define placental boundaries in regions where there was little or no contrast between 

the placenta and the adjacent structures. An example of placenta presegmentation is shown 

in Fig. 9.

A non-expert rater (AP) applied this protocol to a “testing” set of 12 placenta 3DUS images 

for which manual segmentation were available. The mean Dice coefficient between the 

manual and semi-automatic segmentation was 0.88±0.04, and the median Dice coefficient 

was 0.89. The average segmentation time using the ITK-SNAP semi-automatic protocol was 

27.8 ± 7.0 min per case.

4. Discussion

4.1. Brain Tumor Segmentation

The evaluation in BRATS data illustrates the ability of ITK-SNAP to label complex multi-

label structures quickly and effectively. Semi-automatic segmentation by the non-expert rater 

required only 12.5 min per case on average, compared with 60 min per case for the manual 

segmentation used to generate the BRATS ground truth [25]. Experts took longer to perform 

segmentation (from 16 to 24 min, on average), and experts 2 and 3 had better overall 
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accuracy relative to the BRATS reference than the non-expert. ITK-SNAP segmentation by 

Experts 2 and 3 (Table 6) was very competitive with the 20 methods evaluated in [25], 

achieving first and second ranks in almost all categories in Table 6 Segmentation by the non-

expert and expert 1 was also competitive, ranking just behind the top methods in [25]. When 

new methodology development since 2013 is taken into account, tumor segmentation by 

ITK-SNAP remains competitive, ranking 4th or 5th (depending on the rater) in the online 

BRATS leaderboard evaluation system.

A caveat in the comparison with [25] is that most of the methods participating in the BRATS 

challenges were either fully automatic or required minimal seeding to initialize [25], 

whereas ITK-SNAP is a highly interactive method that required raters to spend 10–15 

minutes training the classifier. Indeed, the fact that intra-rater reliability of ITK-SNAP is in 

the 0.7–0.9 Dice coefficient range for most combinations of region/grade (Tables 2 and 3) 

indicates the significant impact that user input plays in determining the ITK-SNAP 

segmentation result. This can be viewed as both a drawback and a strength. The drawback is 

operator bias: just as in manual segmentation, results produced by one user may not be 

reproduced well by another user. The strength, compared to fully automatic segmentation, is 

that the expert is largely in control of the anatomical definitions applied during 

segmentation. Differences between the experts’ segmentations are driven, at least in part, by 

differences in their interpretations of the underlying anatomy. As demonstrated in a typical 

example shown in Figure 10, the experts and the non-expert frequently disagreed as to what 

constituted different parts of the tumor. Crucially, the neuroradiologists did not study and try 

to mimic the manual segmentation protocol used in [25], but instead applied their individual 

understanding of what constitutes the edema, enhancing and non-enhancing core, and 

necrotic components of the tumors.

The successful methods in BRATS were specialized to the problem of brain tumor 

segmentation and incorporated machine learning classifiers trained on a dataset of 30 

annotated cases. Menze et al. [25] conclude that “a majority of the top ranking algorithms 

relied on a discriminative learning approach, where low-level image features were generated 

in a first step, and a discriminative classifier was applied in a second step, transforming local 

features into class probabilities with MRF regularization to produce the final set of 

segmentations”. By contrast, ITK-SNAP is a general-purpose tool, and the Random Forest 

[6, 10] classifiers used in ITK-SNAP were trained using the input images themselves, 

without a need for a separate annotated dataset. This suggests that ITK-SNAP is a viable 

alternative to manual segmentation in “novel” problems where annotated training data has 

not yet been generated.

The inter-rater reliability between the experts using ITK-SNAP was below that of the inter-

rater reliability of BRATS reference segmentation [25, Figure 5] for high-grade tumors 

(Table 4). However, the BRATS segmentation itself was not purely manual: for example, 

segmentation was performed on every second or third slice and interpolated; and Gaussian 

smoothing was performed following the segmentation [22]. Local threshold-based 

segmentation was used to segment the enhancing region and the necrosis [22]. Interpolation, 

smoothing and threshold-based painting operations can result in more consistent 

segmentations between raters and result in higher inter-rater Dice coefficient than purely 
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manual segmentation might produce. Furthermore, BRATS manual segmentation followed a 

detailed and procedural protocol [22] that involved tracing edema in T2-weighted MRI and 

tumor sub-regions on T1CE MRI [22]. The manual segmentation in BRATS also had access 

to native resolution MRI scans. By contrast, the segmentation in ITK-SNAP used 

information from all modalities concurrently, and worked with images resampled to a 

common 1mm3 isotropic resolution. The three radiologists defined the tissue classes in the 

image based on their individual interpretation of anatomy, which likely resulted in greater 

divergence between experts than in the BRATS reference segmentation.

4.2. Placenta Segmentation

In the placenta segmentation problem, the accuracy of semi-automatic segmentation in ITK-

SNAP relative to manual segmentation (average Dice coefficient of 0.88 ± 0.04) compared 

favorably with previously published work on semi-automatic segmentation of the placenta in 

11–13 week 3DUS scans using the random walker algorithm [9, 33], where the average Dice 

coefficient of 0.86 ± 0.06 is reported; and with fully automatic multi-atlas segmentation 

results, where Dice coefficient of 0.83 ± 0.05 is reported [26]. However, the segmentation 

time in ITK-SNAP (27.8 ± 7.0) was several times greater than the average time of 3.6 min 

reported for the random walker segmentation [33]. One possible factor explaining the 

difference in time is that the initialization for the random walker algorithm is performed in a 

manner favorable for placenta identification: in slices taken radially around the placenta; 

whereas in ITK-SNAP the placenta is viewed in orthogonal planes that may make placental 

anatomy harder to interpret.

4.3. Conclusions from the ITK-SNAP Evaluation

The main conclusion of the evaluation in brain tumor and placenta segmentation is that 

while ITK-SNAP does not unequivocally improve on existing segmentation solutions in 

these domains, it offers segmentation performance competitive with the state of the art, 

without being specially tuned, optimized, or trained for these specific problems. The ability 

of a general-purpose semi-automatic segmentation tool to compete with highly specialized 

and/or heavily trained approaches in these two problems suggests that ITK-SNAP can be an 

effective tool in a broad range of complex image segmentation problems, including 

problems for which there currently do not exist specialized solutions or annotated data for 

training machine learning and multi-atlas based techniques. Even in problems where 

automated algorithms have been developed, they may not always be available in the form of 

ready-to-use software, making ITK-SNAP a preferred segmentation solution.

4.4. ITK-SNAP in Relation to Other Medical Image Analysis Software

A number of mature medical image analysis software tools provide automatic and semi-

automatic segmentation capabilities. General-purpose segmentation functionality is offered 

in 3D Slicer [19, 15], ImageJ [1, 4], BioImage Suite [13] and MIPAV [24]. Additionally, a 

large number of domain-specific tools that support segmentation exists, such as FreeSurfer 

[16], FSL [31] or SPM [3] provide excellent automated tools for brain MRI segmentation, 

but they are not general-purpose segmentation tools. To our knowledge, ITK-SNAP is the 

first interactive image segmentation tool to combine Random Forest classification and active 

contour segmentation in a single interactive segmentation workflow. It is also the first to 
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extend such a workflow to concurrent semi-automatic segmentation of multiple image 

modalities. In the 2D microscopy segmentation domain, the tool Ilastik [32], which also 

leverages Random Forest classifiers trained interactively by the user on multi-channel 

images offers similar scope and functionality to ITK-SNAP. 3D Slicer is the general-purpose 

3D medical image analysis tool that arguably comes closest in offering the semi-automated 

segmentation functionality in ITK-SNAP. However, 3D Slicer follows a distinct design 

philosophy from ITK-SNAP that emphasizes “breadth of functionality [and] extensibility” 

[15, p. 1324] that “separates Slicer from such task-oriented packages as ITK-Snap” [15, p.

1324]. For example, 3D Slicer offers extensive functionality for image filtering, non-linear 

registration, surface model visualization and editing, diffusion MRI processing and 

tractography, and image-guided surgery [15]. By contrast, ITK-SNAP focuses specifically 

on the task of image segmentation and eschews functionality not directly related to 

segmentation. 3D Slicer is a much larger tool that ITK-SNAP, with over 570,000 lines of C+

+ and Python code (not counting the 90+ extensions that do not form the core of the 

software). By contrast, ITK-SNAP has 190,000 lines of code and does not currently offer 

extensions. 3D Slicer offers several built-in options for image segmentation, such as tissue 

classification based on the expectation-maximization algorithm [27], a simple region 

growing algorithm3, a competitive region growing algorithm “GrowCut” [14], a more recent 

Fast GrowCut algorithm [36], and active contour segmentation via robust statistics [18]. The 

extensions of 3D Slicer supporting general-purpose segmentation include a tool for 

watershed segmentation4, and a tool called the “Segmentation Wizard” 5. The above 

modules, with the exception of the Segmentation Wizard, take only a single-modality image 

as the input. Semi-automatic GBM segmentation using 3D Slicer was evaluated in [14]; the 

authors determined that the GrowCut module was the most suitable of the available tools, 

and was shown to have good overlap with manual segmentations (88% Dice coefficient) 

while reducing segmentation time by 39% over manual segmentation. However, direct 

comparison of the quantitative results in [14] and the current paper cannot be made for 

several reasons: (1) in [14], segmentation was performed in a single modality (contrast-

enhanced T1-MRI) and only using a single anatomical label (tumor vs. no tumor); (2) in 

[14], the segmented tumors were considerably smaller than in the BRATS challenge 

(average tumor volume 27.7cm3, as opposed to 82.4cm3 for the complete tumor and 60.1 

cm3 for the tumor core in the current paper); (3) the comparison of semi-automatic and 

manual segmentation in [14] was between segmentations performed by the same rater, 
whereas in the current paper, we report accuracy relative to the BRATS consensus reference 

segmentation derived by different raters.

4.5. Limitations

A limitation of ITK-SNAP is that it is a general-purpose image segmentation tool, and thus 

not optimized for any specific segmentation problem. As the result, it is likely to produce 

segmentation results inferior to tools that are specialized. However, as noted in the 

Introduction, expert-guided segmentation is needed both to create and train new specialized 

3https://www.slicer.org/wiki/Documentation/4.8/Modules/SimpleRegionGrowingSegmentation
4https://www.slicer.org/wiki/Documentation/4.4/Extensions/Wasp
5https://www.slicer.org/wiki/Documentation/Nightly/Extensions/SegmentationWizard
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tools, and to address existing segmentation problems for which specialized tools have not 

yet been developed. A particular limitation of the active contour algorithm implemented in 

ITK-SNAP is that for thin tissue layers (e.g., fewer than 3–4 voxels thick), the active contour 

may not flow into the tissue layer due to the strong action of the curvature term in (1) and 

due to the inherent limitation of the level set method in representing parallel contours 

separated by short distances. These limitations can be overcome by reducing the weight of 

the curvature term and/or by super-sampling the input image (effectively making the tissue 

layer thicker in units of voxels). However, these mitigation strategies add time to 

segmentation and may result in leakage and poor segmentation due to under-regularization. 

In the tumor segmentation problem, we took advantage of the adjacency of thin layers 

composing the tumors by performing segmentation in a nested fashion, so that thin layers 

never had to be segmented directly. Such a nesting strategy may not always be feasible in 

other applications. In particular, the active contour algorithm as implemented in ITK-SNAP 

is not well suited for the segmentation of thin tubular structures, such as vessels.

A limitation of the evaluation in this paper is that ITK-SNAP was compared to manual 

segmentation and, in the case of brain tumors, to specialized brain tumor segmentation 

algorithms, but not to other general-purpose interactive image segmentation tools. It would 

have been difficult to conduct such an evaluation in a manner that is free of real or perceived 

bias, since in the current study, the developers of ITK-SNAP participated in the evaluation 

(e.g., by training the neuroradiologists) while the developers of other interactive open-source 

tools did not. However, the fact that the brain tumor evaluation was performed on a publicly 

available BRATS challenge dataset will allow the developers of other tools to carry out 

similar evaluations independently and to compare their segmentation results to those 

reported in this paper in a direct way.

Another limitation of the evaluations performed in this paper is the use of Dice coefficient to 

characterize segmentation accuracy. Dice coefficient provides only one aspect of 

segmentation accuracy and the value is correlated with the shape of the segmented object, 

e.g., the same displacement will result in a much larger reduction in Dice overlap for thin 

shapes than for blob-like shapes. Boundary distance metrics are frequently reported 

alongside Dice coefficients when evaluating segmentation, but in this paper, such data were 

unavailable to us for the BRATS challenge because the underlying reference manual 

segmentations are not publicly available.

Information Sharing Statement

The ITK-SNAP software (source code and binaries) are hosted on Source-Forge at https://

sourceforge.net/projects/itk-snap, and can also be accessed through the ITK-SNAP website 

www.itksnap.org and the Neuroimaging Tools & Resources Collaboratory (NITRC) at 

https://www.nitrc.org/projects/itk-snap.

The BRATS challenge data were obtained from the Swiss Institute for Computer Assisted 

Surgery (SICAS) Medical Image Repository at https://www.smir.ch/BRATS/Start2013. The 

ITK-SNAP segmentations of the BRATS datasets, as well as the placenta ultrasound scans, 

manual segmentations, and ITK-SNAP segmentations are available in the ITK-SNAP 
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NITRC repository https://www.nitrc.org/projects/itk-snap under the package “nein2018”. 

The R language statistical analysis scripts and spreadsheets used to generate the tables and 

figures in this paper are hosted on Github at https://github.com/pyushkevich/nein2018_stats.
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Figure 1: 
Screen shot of the ITK-SNAP user interface after completed brain tumor segmentation. 

Three orthogonal slices through the T1-weighted MRI scan are shown, with segmentation 

overlaid in color. A 3D rendering of the segmentation appears in the lower left quadrant. 

Small thumbnails in the top and bottom right quadrants represent other MRI scans loaded in 

ITK-SNAP (T2-weighted, FLAIR, contrast-enhanced T1).
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Figure 2: 
Screen shot of the ITK-SNAP user interface during brain tumor presegmentation (supervised 

classification mode). Axial, sagittal and coronal slices through four MRI modalities and the 

speed image are in the top left, top right and bottom right quadrants of the user interface, 

respectively. The speed image (blue-to-white color map) has range between −1 (blue) and 1 

(white), with positive values indicating higher probability that a voxel belongs to the object 

of interest and negative values indicating higher probability of a voxel belonging to the 

background. The object of interest in this example consists of all tissue classes composing 

the complete tumor: edema, active tumor, enhancing tumor core and necrosis. The lower left 

quadrant shows a 3D rendering of the samples used for training the random forest classifier. 

Some of the samples (necrosis: green, normal gray and white matter: blue) are also seen as 

color overlays in the axial, sagittal and coronal views.
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Figure 3: 
Illustration of the “patch intensity” and “location” features available in the ITK-SNAP 

supervised classification presegmentation mode. A test 2D image on the left consists of four 

regions with similar mean intensity but different texture. A set of example voxels has been 

marked in each region (red, green, cyan and yellow circles) The 4 × 4 grid on the right 

consists of speed images generated by training a Random Forest classifier using the four 

circles as the training data under different conditions. The rows in the grid correspond to 

different set of features used to train the classifier: the default features (the intensity of each 

voxel serving as its only feature), patch intensity features (the set of intensities in the 5 × 5 × 

5 patch around the voxel used as features), location features (the coordinates of each voxel 

used as features), and patch and location features combined. The columns in the grid 

correspond to different objects (red, green, cyan and yellow) being selected as the object of 

interest. The addition of patch features improves the ability of the classifier to discriminate 

regions based on texture, while the location features allow imposition of geometrical 

constraints into the segmentation
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Figure 4: 
Composition of the different subsets of the BRATS 2012/2013 data referenced in this paper. 

A: the “Leaderboard” dataset provided for off-site evaluation in BRATS 2013. The online 

BRATS system (virtualskeleton.ch) continues to use this dataset for evaluating and ranking 

segmentation methods. B: the subset of 15 cases used for off-site evaluation in both BRATS 

2012 and BRATS 2013. It served as the primary dataset for the comparison of 20 algorithms 

from the two challenges in the BRATS evaluation paper by Menze et al. [25, Figure 7]. C: 
the subset of 20 cases that was segmented using ITK-SNAP by all three neuroradiologists in 

this study. D: the subset of five cases segmented twice by the three neurorad iologists.
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Figure 5: 
Sequence of segmentation used by the tumor segmentation protocol. The input images for 

the example tumor dataset are shown on the left. The columns on the right show the speed 

images and the segmentations obtained in the four stages of the segmentation. Segmentation 

is performed proceeding from the largest object inwards, so that during each segmentation 

stage, the object being segmented does not have holes. The table in the bottom right 

describes how the different tissue classes in the image are assigned to the object of interest 

and background during each stage, as well as what label is assigned to the result of active 

contour segmentation during each stage. For example, in stage 1, the four tissue classes 

comprising the complete tumor are assigned to the object of interest, while healthy 

appearing gray/white matter and CSF are assigned to the background. This yields a speed 

image that is positive in the complete tumor and negative in the healthy tissue. After 

applying active contour segmentation to this speed image, the result is assigned the edema 

label.
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Figure 6: 
Bland-Altman plots showing agreement in segmentation volume between attempts by 

different pairs of neuroradiologists (inter-rater plot, left) and different attempts by the same 

neuroradiologist (intra-rater plot, right). The average volume in both attempts is plotted on 

the horizontal axis, and the difference in volume between attempts is plotted on the vertical 

axis. All sub-plots have aspect ratio of 1.
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Figure 7: 
Distribution of ITK-SNAP segmentation time for each rater, by tumor grade.
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Figure 8: 
Number of voxels labeled for each tissue class by each rater. The number of voxels is plotted 

on a logarithmic scale.
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Figure 9: 
ITK-SNAP during placenta presegmentation using the supervised classification mode. The 

orthogonal slice views show a median-filtered 3DUS image of the placenta and the fetus and 

the speed image. The 3D view shows the samples traced for training the classifier.
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Figure 10: 
Example high-grade case demonstrating areas of disagreement between raters. To a 

considerable degree, disagreement is driven by differences in the anatomical interpretation 

of complex cases (e.g., what constitutes enhancement, what constitutes edema vs. tumor), as 

opposed to fine-scale disagreements in tracing of agreed-upon boundaries.
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Table 1:

Major new features added in recent versions of ITK-SNAP. For most features, the corresponding section in 

this paper or external reference is indicated.

Functionality Version Section

Semi-automatic segmentation of multi-component images and multiple image volumes 3.0 2.2

Semi-automatic segmentation using unsupervised learning (Gaussian mixture models) 3.0

New Qt-based GUI with project file support and numerous UI improvements 3.0 2.2

Full support for the DICOM image format 3.0

Semi-automatic segmentation using supervised learning (Random Forests [6]) 3.2 2.4.2

4D (3D+time) image support 3.2 2.2

Line and text annotations (to improve collaborative segmentation) 3.4

Reduced memory footprint using run length encoding of segmentations in memory 3.4 [39]

Images with different size, resolution and orientation may be loaded and segmented together 3.6 2.2

Manual and automated linear image registration 3.6 2.2.2

Interpolation of manual segmentation between slices 3.6 [40]
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Table 2:

Intra-rater reliability of glioma segmentation by the non-expert rater. The left portion of the table shows 

average intra-rater Dice coefficient and intra-class correlation coefficient (ICC) for all 25 cases segmented by 

the non-expert. The right portion shows the same metrics for Subset B in Figure 4, allowing comparison with 

inter-rater reliability of the BRATS reference manual segmentation reported in [25, Figure 5] .

Grade Region

Full Leaderboard (n = 25) Subset B (n = 15)

Dice Coefficient
ICC

Dice Coefficient
ICC

Mean (SD) Median Mean (SD) Median

High

Complete 0.88 (0.20) 0.93 0.97 0.83 (0.28) 0.92 0.98

Tumor Core 0.79 (0.22) 0.85 0.94 0.73 (0.28) 0.84 0.97

Enh. Core 0.75 (0.26) 0.83 0.82 0.64 (0.34) 0.78 0.80

Low
Complete 0.81 (0.16) 0.83 1.00 0.81 (0.16) 0.83 1.00

Tumor Core 0.36 (0.21) 0.34 0.55 0.36 (0.21) 0.34 0.55

All

Complete 0.87 (0.20) 0.93 0.98 0.83 (0.25) 0.92 0.99

Tumor Core 0.72 (0.27) 0.84 0.85 0.63 (0.31) 0.81 0.84

Enh. Core 0.75 (0.26) 0.83 0.83 0.64 (0.34) 0.78 0.81
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Table 3:

Summary statistics for inter-rater and intra-rater reliability of the three neuroradiologist experts. Intra-rater 

ICC is not reported for high-grade and low-grade gliomas separately because of the small dataset (3 and 2 

cases, respectively). † : Only three cases available for estimating ICC.

Grade Region

Inter-Rater (n = 20) Intra-Rater (n = 5)

Dice Coefficient
ICC

Dice Coefficient
ICC

Mean (SD) Median Mean (SD) Median

High

Complete 0.84 (0.12) 0.86 0.78 0.85 (0.07) 0.87

Tumor Core 0.71 (0.19) 0.75 0.68 0.77 (0.09) 0.76

Enh. Core 0.70 (0.21) 0.76 0.86 0.78 (0.11) 0.82

Low
Complete 0.76 (0.18) 0.79 0.99 0.90 (0.06) 0.92

Tumor Core 0.66 (0.20) 0.71 0.97 0.85 (0.12) 0.89

All

Complete 0.82 (0.13) 0.84 0.87 0.87 (0.07) 0.88 0.97

Tumor Core 0.70 (0.19) 0.75 0.77 0.80 (0.10) 0.81 0.93

Enh. Core 0.70 (0.21) 0.76 0.86 0.78 (0.11) 0.82 0.10†
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Table 4:

Comparison of mean and median inter-rater Dice coefficient between the three experts in the current study and 

manual segmentation by three raters in [25]. The comparison is in the same set of cases (subset B in Figure 4, 

n = 15).

Grade Region

ITK-SNAP Inter-Rater Menze et al. Inter-Rater

Dice Coefficient Dice Coefficient

Mean (SD) Median Mean (SD) Median

High

Complete 0.82 (0.12) 0.83 0.85 (0.09) 0.87

Tumor Core 0.67 (0.20) 0.71 0.81 (0.19) 0.87

Enh. Core 0.64 (0.23) 0.70 0.68 (0.17) 0.71

Low
Complete 0.76 (0.18) 0.79 0.71 (0.16) 0.68

Tumor Core 0.66 (0.20) 0.71 0.64 (0.27) 0.78

All

Complete 0.80 (0.14) 0.82 0.81 (0.13) 0.85

Tumor Core 0.67 (0.20) 0.71 0.77 (0.22) 0.84

Enh. Core 0.64 (0.23) 0.70 0.68 (0.17) 0.71
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Table 5:

Evaluation of the ITK-SNAP segmentation by the three experts and the non-expert against the BRATS 

challenge reference segmentation on Subset C (Figure 4), which was segmented by all four raters. Highest 

mean Dice coefficient for each region is shown in bold.

Grade Region

Dice Coefficient between ITK-SNAP Segmentation and BRATS Reference Segmentation

Expert 1 Expert 2 Expert 3 Non-Expert

Mean (SD) Median Mean (SD) Median Mean (SD) Median Mean (SD) Median

High

Complete 0.82 (0.13) 0.85 0.89 (0.04) 0.89 0.81 (0.09) 0.84 0.86 (0.11) 0.88

Tumor Core 0.63 (0.20) 0.72 0.74 (0.19) 0.80 0.62 (0.20) 0.67 0.74 (0.20) 0.78

Enh. Core 0.69 (0.24) 0.77 0.71 (0.22) 0.81 0.68 (0.13) 0.69 0.66 (0.27) 0.76

Low
Complete 0.67 (0.28) 0.69 0.82 (0.12) 0.83 0.83 (0.11) 0.82 0.71 (0.33) 0.82

Tumor Core 0.43 (0.36) 0.41 0.52 (0.37) 0.56 0.60 (0.41) 0.75 0.31 (0.42) 0.16

All

Complete 0.79 (0.17) 0.84 0.88 (0.07) 0.89 0.81 (0.09) 0.84 0.83 (0.17) 0.88

Tumor Core 0.59 (0.25) 0.64 0.69 (0.24) 0.76 0.62 (0.24) 0.68 0.65 (0.30) 0.76

Enh. Core 0.69 (0.24) 0.77 0.71 (0.22) 0.81 0.68 (0.13) 0.69 0.66 (0.27) 0.76
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Table 6:

Agreement of ITK-SNAP segmentation by the three experts and the non-expert with the BRATS challenge 

reference segmentation, ranked against the 20 methods evaluated in the BRATS 2012/2013 challenges [25, 

Figure 7]. The “rank” columns give the rank of each mean Dice coefficient measurement relative to the Dice 

coefficients for the 20 methods listed in [25, Figure 7]. Ranks are computed separately for each region/grade 

combination. Ties, occurring when mean Dice coefficient is within rounding error in [25, Figure 7], are 

indicated as follows: †: two-way tie, ‡: three-way tie.

Grade Region

ITK-SNAP Segmentation vis-a-vis 20 Methods in the BRATS 2012/2013 Challenges

Expert 1 Expert 2 Expert 3 Non-Expert

Mean (SD) Rank Mean (SD) Rank Mean (SD) Rank Mean (SD) Rank

High

Complete 0.83 (0.12) 2 0.89 (0.03) 1 0.80 (0.09) 3† 0.84 (0.13) 1†

Tumor Core 0.65 (0.20) 4 0.74 (0.20) 2 0.62 (0.21) 5 0.70 (0.22) 2

Enh. Core 0.63 (0.27) 1 0.65 (0.24) 1 0.64 (0.13) 1 0.59 (0.30) 2†

Low
Complete 0.67 (0.28) 5† 0.82 (0.12) 1 0.83 (0.11) 1 0.71 (0.33) 3‡

Tumor Core 0.43 (0.36) 5 0.52 (0.37) 5 0.60 (0.41) 1† 0.31 (0.42) 15

All

Complete 0.79 (0.18) 2 0.87 (0.07) 1 0.80 (0.09) 2 0.81 (0.20) 2

Tumor Core 0.59 (0.26) 4 0.68 (0.26) 2 0.62 (0.26) 4 0.60 (0.33) 4

Enh. Core 0.63 (0.27) 1 0.65 (0.24) 1 0.64 (0.13) 1 0.59 (0.30) 2†
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