
Keypoint Transfer for Fast Whole-Body Segmentation

Christian Wachinger,
Computer Science and Artificial Intelligence Lab (CSAIL) at the Massachusetts Institute of 
Technology (MIT); Department of Neurology, Massachusetts General Hospital, Harvard Medical 
School; Artificial Intelligence in Medical Imaging (AI-Med), Child and Adolescent Psychiatry, LMU 
München.

Matthew Toews,
Ecole de Technologie Superieure, Montreal.

Georg Langs,
CSAIL at MIT; Computational Imaging Research Lab, Medical University of Vienna.

William Wells,
CSAIL at MIT; Brigham and Women’s Hospital, Harvard Medical School.

Polina Golland
CSAIL at MIT

Abstract

We introduce an approach for image segmentation based on sparse correspondences between 

keypoints in testing and training images. Keypoints represent automatically identified distinctive 

image locations, where each keypoint correspondence suggests a transformation between images. 

We use these correspondences to transfer label maps of entire organs from the training images to 

the test image. The keypoint transfer algorithm includes three steps: (i) keypoint matching, (ii) 

voting-based keypoint labeling, and (iii) keypoint-based probabilistic transfer of organ 

segmentations. We report segmentation results for abdominal organs in whole-body CT and MRI, 

as well as in contrast-enhanced CT and MRI. Our method offers a speed-up of about three orders 

of magnitude in comparison to common multi-atlas segmentation, while achieving an accuracy 

that compares favorably. Moreover, keypoint transfer does not require the registration to an atlas or 

a training phase. Finally, the method allows for the segmentation of scans with highly variable 

field-of-view.
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I. Introduction

Is atlas-based segmentation without dense correspondences possible? Dense 

correspondences, i.e., correspondences for each location in the test image to the training 
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images, are computed by common registration- and patch-based segmentation methods [1]–

[8]. The computation of dense correspondences via deformation fields or the identification 

of similar patches can become computationally intense for images with a large field-of-view. 

As an alternative, we introduce an approach for image segmentation based on sparse 

correspondences by identifying distinctive locations in the image: key-points. Keypoints are 

automatically computed as local optima of a saliency function [9], contrary to manually 

selected landmarks [10]. We match keypoints between test and training images to establish 

correspondences for a sparse set of image locations. Based on these correspondences, the 

segmentation masks of entire organs are transferred and fed into a probabilistic fusion 

algorithm. The segmentation accuracy compares favorably to common multi-atlas 

techniques, while working with sparse correspondences leads to a computationally efficient 

algorithm, offering orders of magnitude of speed-up.

We outline the keypoint transfer segmentation algorithm in Fig. 1 and as animation in the 

supplementary material. Keypoints are extracted at salient image regions and described by 

their geometry and a descriptor based on a histogram of local image intensity gradients. 

Following keypoint extraction, we segment an image in three steps. First, we match 

keypoints in the test image to keypoints in the training images based on the geometry and 

the descriptor. Second, keypoint labels are voted on based on matches. In the example in Fig. 

1, the keypoint receives two votes for right kidney and one for liver, resulting in a majority 

vote for right kidney. Third, the label mask is transferred for the entire organ for each match 

that is consistent with the majority label vote. The organ map from one training image is 

possibly transferred multiple times if more than one match is available for this training 

image. Keypoint transfer also integrates the certainty in the keypoint label voting and 

computes the intensity similarity between scans. The algorithm’s capability in 

approximating the organ shape can further improve with a growing number of manually 

labeled scans, where additional images can be included in the training set without the need 

for a dedicated training stage.

In addition to being fast, keypoint transfer is beneficial for segmenting images with varying 

field-of-view. In our experiments, we use manually annotated whole-body scans to segment 

images with a limited field-of-view. Such scans are commonly acquired in clinical practice 

by focusing on the region of diagnostic interest, and thereby reducing scanning time and 

radiation dose. The intensity-based registration between images with a limited field-of-view 

and full abdominal images is challenging, particularly when anatomical structures are 

initially not approximately aligned. Keypoint matching is robust to such variations in field-

of-view and therefore offers an efficient and practical tool to deal with the growing number 

of clinical images. A preliminary version of this work was presented at a conference [11]. 

Major changes in this version are: an updated presentation of the algorithm in the method’s 

section including an algorithmic perspective of the keypoint segmentation, the addition of 

experiments for whole-body MR and contrast-enhanced MR on the gold corpus, an 

evaluation of the matching criteria on segmentation performance, and additional experiments 

on all four contrasts on the silver corpus.
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A. Related Work

For the segmentation of large field-of-view scans, several methods have previously been 

proposed. A combination of discriminative and generative models [12] and entangled 

decision forests [13] have been explored for the segmentation of CT scans. Authors in [14] 

proposed simultaneous segmentation of multiple organs by combining global and local 

context. Marginal space learning was described for organ detection in [15]. A combination 

of multi-object recognition and iterative graph-cuts with active shape model was introduced 

in [16]. Random decision forests for patch-based segmentation were proposed in [17]. 

Contrary to previously demonstrated methods, keypoint transfer does not need an extensive 

training on manually annotated images.

We use the publicly available Visceral dataset [18], [19] for evaluating keypoint transfer. 

Methods based on multi-atlas segmentation have been applied on the Visceral data [20]–

[25], which we employ as a baseline in our evaluation. Multi-atlas segmentation with atlas 

selection and label fusion was proposed for 12 abdominal structures on clinically acquired 

CT in [26]. We use a 3D extension [27] of the popular scale invariant feature transform 

(SIFT) [9] for the extraction and description of keypoints. Next to image registration, 3D 

SIFT features were also used for studying questions related to neuroimaging [28] and for 

efficient big data analyses of medical images with approximate nearest-neighbor search [29]. 

Contrary to previous applications of the 3D SIFT descriptor, we use it to propagate 

information across images.

II. Method

Given training images1 ℐ = I1, …, In  and corresponding segmentations S = S1, …, Sn , 

where Si(x) ∈ {1, …, η} for η labels, our aim is to infer segmentation S for test image I. To 

this end, we automatically identify keypoints in the images and employ them to create sparse 

correspondences. This is in contrast to atlas-based segmentation, where images are aligned 

with deformable registration. Keypoints are extracted by locally maximizing a saliency 

function. Following the SIFT descriptor, we use the difference-of-Gaussians [9]

xi, σi = localarg max
x, σ

∣ f x, κσ − f x, σ ∣ , (1)

where xi and σi are the location and scale of keypoint i, f(·, σ) is the convolution of the 

image I with a Gaussian kernel of variance σ2, and κ is a multiplicative scale sampling rate. 

Keypoints are located at distinctive spherical image regions that show a local extrema in 

scale-space. For the descriptor of the keypoint FD, we employ a 3D extension of the image 

gradient orientation histogram [27] with 8 orientation and 8 spatial bins, which is scale and 

rotation invariant and further robust to small deformations. Working with image gradients 

instead of intensity values makes the descriptor more robust to intensity variations and 

therefore offers advantages in comparing descriptors across subjects.

1We use the term “training images” although our algorithm does not have an explicit training stage.
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The keypoint F of a salient image region is described by the 64-dimensional histogram FD 

with the keypoint location Fx ∈ ℝ3 and keypoint scale Fσ ∈ ℝ, resulting in a compact 68-

dimensional representation. Let FI denote the set of keypoints identified in the test image I 
and let ℱℐ = ℱI1, …, ℱIn  denote the set of keypoints identified in the training images ℐ. 

Script letters are used for denoting training data and non-script letters for denoting testing 

data. Each keypoint is assigned an organ label ℱIi according to the organ it is located in, 

ℒ = Si ℱx  for ℱ ∈ ℱIi. Keypoints that are located in the un-segmented background, are 

discarded. For the keypoints in the test image, the organ label L is unknown and inferred 

with a voting algorithm as described later in this section. Table I summarizes the notation 

used in the article.

A. Keypoint Matching

In the first step, we match each keypoint in the test image with keypoints in the training 

images. To ensure high quality matches, a two-stage matching procedure is proposed to 

improve the reliability of the matches by including additional constraints. In the first stage, a 

match ℳ F i is computed between a test keypoint F ∈ FI and keypoints in a training image 

ℱIi. To this end, we find the nearest neighbor based on the similarity of the descriptor and 

scale constraints

ℳ F i = arg min
ℱ ∈ ℱIi

FD − ℱD , s.t. εσ−1 ≤ Fσ

ℱσ ≤ εσ, (2)

where a loose threshold on the scale allows for variations up to a factor of εσ = 2. The 

distance ratio test is employed to discard keypoint matches that are not reliable [9], where 

we compute the ratio between descriptors of the closest and second-closest neighbor. All 

matches with a distance ratio of greater than 0.9 are rejected.

In the second stage, we improve the matches by additionally imposing loose spatial 

constraints, which requires an approximate alignment. For our datasets, accounting for 

translation was sufficient at this stage due to consistent patient orientation; as an alternative 

we could use an efficient keypoint-based pre-alignment [27]. The most likely translation ti 
suggested by the matches ℳi is computed with the Hough transform [30]2. Mapping the 

training keypoints with ti leads to an approximate alignment of the keypoints and allows for 

an updated set of matches with an additional spatial constraint

ℳ F i = arg min
ℱ ∈ ℱIi

FD − ℱD ,

s.t. εσ−1 ≤ Fσ

ℱσ ≤ εσ, Fx − ℱx − ti 2 < εx,
(3)

2As an alternative to the Hough transform, the within-sample median translation could be used.
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where a spatial threshold εx is selected to keep 10% of the closest matches. As previously, 

matches that do not fulfill the distance ratio test are discarded. Note that the estimated global 

translation between training and testing image is only used for improving matches.

At this stage, each keypoint F in the test image is matched to at most one keypoint ℳ F i per 

training image Ii, denoted as match m. We quantify the reliability of a match m by 

constructing a distribution over matches p(m), see Fig. 2. We build the distribution based on 

the translation of a match, i.e., matches that propose a translation that is not proposed by 

other matches receive a low probability. Hence, the probability p(m) for a match m defines 

the translational consistency of the match with respect to other matches. This translational 

consistency only holds for a training and test image pair, so that a separate distribution is 

estimated for each training image. For the estimation, we use matches ℳi between keypoints 

in the test image and those in the i-th training image and kernel density estimation. For 

notational ease, we write p(m), although there are actually separate distributions pi(m) for 

each training image i; the selection of the corresponding distribution is evident from the 

training keypoint involved in the match. The non-parametric model accommodates multi-

modal distributions, which is helpful for whole-body scans, as keypoints in the upper 

abdomen may suggest a different transformation than those in the lower abdomen.

B. Keypoint Voting

After computing matches for keypoints in the test image, an organ label L is inferred for 

each keypoint in the test image based on the generative model illustrated in Fig. 3. The latent 

variable m represents keypoint matches from the previous step. With keypoint labeling it is 

possible to get a coarse localization of organs in the image. Further, keypoint labels are 

employed to guide the image segmentation as described in the following section. For 

inferring keypoint labels, we use the factorization from the graphical model in Fig. 3 and 

marginalize over the latent random variable m

p L, F, ℒ, ℱ = ∑
m ∈ ℳ F

p L, F, ℒ, ℱ, m (4)

= ∑
m ∈ ℳ F

p L ∣ ℒ, m ⋅ p F ∣ ℱ, m ⋅ p m , (5)

where ℳ F  includes matches for keypoint F across all training images. Working with a 

sparse set of matches makes the marginalization computationally efficient. The label 

probability is defined as

p L = l ∣ ℒ, m =
1 if ℒm F = l,
0 otherwise,

(6)

where ℒm F  is the label of a training keypoint that the match m assigns to the test keypoint 

F. Based on the descriptor, the keypoint probability is defined as
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p F ∣ ℱ, m = 1
2πτ2exp −

FD − ℱm F
D

2
2

2τ2 , (7)

where we set τ2 = maxm FD − ℱm F
D

2
2
. The most likely organ label is assigned to be the 

label of the keypoint L

L = arg max
l ∈ 1, …, η

p L = l ∣ F, ℒ, ℱ (8)

= arg max
l ∈ 1, …, η

p L = l, F, ℒ, ℱ . (9)

To summarize, each training keypoint ℱ that was matched to test keypoint F votes for the 

label L with the organ it is located in ℒ. If we would set the probabilities p F ∣ ℱ, m ∝ 1 and 

p(m) ∝ 1 to constant values this would result in a majority vote for the keypoint label. To 

increase robustness, we weight the contribution of each training keypoint by the similarity of 

the descriptors p F ∣ ℱ, m  and the probability of the match p(m).

C. Keypoint segmentation

The keypoint segmentation is based on keypoint matching and voting from the previous 

sections. In [11], we derived the segmentation method from a generative model with 

marginalization over latent random variables. Here, we provide an algorithmic perspective in 

Algorithm 1 instead, to emphasize the simplicity of transferring entire organs maps. The 

method uses the extracted keypoints F, the identified matches m, and the voted label of the 

keypoint L, as presented in previous sections. The objective is to estimate the segmentation

Algorithm 1

Keypoint transfer segmentation. Organ segmentations from the training images are 

transferred to the test image via identified matches.

1: ∀l ∈ {1, …, η}, Sl = 0

2: for all F ∈ FI do

3:   for all m ∈ ℳ F  do

4:    if L ≠ ℒm then continue

5:    end if

6:    W = 0

7:    for all x : Sm x = L do

8:      W x = 1
2πν exp −

I x − ℐm x 2

2ν2

9:    end for
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10:    SL = SL + W ∗ p L = L ∗ p m

11:   end for

12: end for

13: ∀x:S x = arg maxl ∈ 1, …, η Sl x

14: return S

S based on probability maps for each of the organs Sl with l ∈ {1, …, η}. In short, the maps 

are computed by going through all the matches and transferring entire organ label maps from 

the training images, where the transformations are implied by the matches. Fig. 4 illustrates 

the procedure.

In details, we let ℐm denote the training image identified with match m after the 

transformation implied by the match has been applied. Sm is similarly defined to be the 

selected and transformed segmentation map. We initialize the probability maps Sl = 0, and 

then iterate through all the keypoints in the test image and associated matches. We only 

allow for those training keypoints to transfer their segmentation whose votes are consistent 

with the majority vote in Eq. (9), L = ℒm. Preventing keypoints with inconsistent label from 

transferring the segmentation improves the robustness of the algorithm. Instead of directly 

transferring the binary organ map, we modulate it with the local similarity between test and 

training image, I x − ℐm x . Locations with similar intensities in test I and training ℐm
image obtain a higher weight than locations with larger intensity differences. We use a 

Gaussian distribution for obtaining the weights W from the image differences, where ν2 is 

the intensity noise variance. The probability map of the organ L is then incremented by the 

weights. In the increment, we also consider the certainty in the label voting and the match, 

by multiplying with the label probability p L = L  and the distribution over matches p(m), 

respectively. Finally, we select the most likely label in the final segmentation S, where we 

account for not transferring the background surrounding the organ by assigning the 

background label if the maximal probability in the voting is below 15%.

In the presented algorithm, keypoints can only transfer segmentations that have the same 

label, e.g., a liver keypoint can only transfer liver segmentation maps. This may be overly 

restrictive because the transformation resulting from a good match may also be usable for 

neighboring organs. Transferring the organ segmentation more often may lead to a better 

approximation of the target organ shape. In our experimental evaluation, we therefore also 

investigate the transfer of organ segmentations that are different from the keypoint labels

We further study the potential benefit of accounting for affine organ variations across 

subjects. To this end, we estimate an organ-specific affine transformation when there are at 

least three matches for an organ between one training image and the test image. We use the 

random sample consensus (RANSAC) algorithm [31] to find the transformation parameters 

with the highest number of inliers. In our experiments, we have not observed a robust 

improvement of segmentation accuracy with the organ-wide affine transformation and 
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therefore do not report it in the results. We believe that the reason for the affine 

transformation to not improve the results lies in the multiple transfer of organ labels per scan 

for different translations; this, in combination with probabilistic weighting, already accounts 

for much of the organ variability.

III. Results

We segment 10 anatomical structures (liver, spleen, aorta, trachea, left/right lung, left/right 

kidney, left/right psoas major muscle (PM)) and perform experiments on four different 

contrasts from the Visceral dataset resampled to 2mm isotropic voxels [18], [19]: contrast-

enhanced CT (ceCT), whole-body CT (wbCT), contrast-enhanced MR (ceMR), and whole-

body MR (wbMR). The dataset contains 20 images for each of the contrasts with manual 

annotations that we refer to as gold corpus. Image dimensions are roughly 217 × 217 × 695 

for wbCT, 200 × 200 × 349 for ceCT, 252 × 87 × 942 for wbMR, and 195 × 108 × 240 for 

ceMR. All of the 10 structures are annotated on ceCT and wbCT scans, and most on wbMR. 

On ceMR, only liver, spleen, aorta, kidneys, and PM have sufficient annotations to allow for 

an evaluation. In addition to the gold corpus, a silver corpus exists with 65 ceCT, 62 wbCT, 

71 ceMR, and 37 wbMR scans. The silver corpus does not have manual annotations but 

labels were created by fusing the results of several segmentation methods that were 

submitted to the Visceral challenge [19]. The fusion was done with the SIMPLE approach 

[5] and resulted in more accurate segmentations than any of the individual algorithms, but 

may not be as accurate as manual annotations [19]. Following [27], we set σ = 1.6 voxels 

and κ = 23  for the keypoint localization. We use 10 bins along each dimension in the Hough 

transform and for the distribution p(m), where kernels with sigma 0.2 are employed.

On the gold corpus, we perform leave-one-out experiments, using 19 images for training and 

one image for testing. On the silver corpus, we use the 20 images from the gold corpus as 

training set and the fused segmentations as reference. We set ν = 50 for all organs, except 

for lungs and trachea on the CT scans, where we set ν = 300. We compare our method to 

multi-atlas segmentation with majority voting (MV) [3], [4] and locally-weighted label 

fusion (LW) [6] using ANTS [32] for deformable registration3. We quantify the 

segmentation accuracy with the Dice volume overlap between reference and automatic 

segmentation.

A. Gold Corpus

Statistics for the voting on keypoint labels are displayed in Table II. As expected, the 

average number of keypoints varies across organs, also influenced by an organ’s size. 

Keypoints that do not receive reliable matches due to spatial constraint and distance ratio test 

are not labeled. Since it is possible that certain keypoints in the test image do not appear in 

the training set, the focus on reliable keypoints improves the performance of the algorithm. 

We observe a high voting accuracy for keypoints that are labeled. Exceptions with lower 

accuracies are aorta and psoas major muscles on MR. Since we do not include background 

keypoints in the training set, all of the votes on background keypoints in the test image are 

3Command: ANTS 3 −m CC[.,.,1,2] −r Gauss[3,0] −t Syn[0.25]
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incorrect. However, only about one third of the CT background keypoints and about one half 

of MR keypoints received labels. As long as there is no bias in transferring label maps to a 

specific location, the remaining background keypoints have limited impact on the 

segmentation outcome.

Fig. 5 reports segmentation results for all contrasts with keypoint transfer and multi-atlas 

segmentation. Across all anatomical structures, locally-weighted voting outperforms 

majority voting. Keypoint transfer segmentation leads to segmentation accuracy comparable 

to that of locally-weighted voting for most structures. Statistically significantly higher 

accuracy (two-tailed, paired t-test) was achieved for kidneys in ceCT (about 15 Dice points, 

p < 0.02), wbCT (about 20 Dice points, p < 0.001), and wbMR (about 20 Dice points, p < 

0.005). Further significant improvements exist for aorta in wbCT (p < 0.05) and wbMR (p < 

0.001), spleen in wbCT (p < 0.05), trachea in wbMR (p < 0.001), and psoas major muscles 

in wbMR (p < 0.01). Keypoint transfer is significantly worse than locally-weighted voting 

for liver in ceMR (p < 0.005) and lungs in ceCT (p < 0.005). The transfer of label maps that 

are different from the keypoint label did not yield a robust improvement in these 

experiments. Figs. 6 to 8 illustrate segmentation results for all the contrasts.

The average segmentation result for ceCT scans when varying the number of training scans 

from 5 to 15 is shown in Fig. 9; the evaluation is done on the five images not included in the 

training set. As we increase the number of training images, the segmentation accuracy 

generally increases. We note a slight decrease for spleen, left lung and right PM for 15 

scans, which may be due to the composition of the training set. Averaging over 

segmentations of a larger number of subjects therefore assists in recovering the true shape of 

the organ. In the future, the growing number of large datasets may therefore further improve 

the segmentation results. Moreover, keypoints may support the efficient implementation of 

an atlas selection scheme to only transfer organs from overall similar subjects.

The runtime of keypoint transfer segmentation and multi-atlas label fusion is compared in 

Fig. 10, with keypoint transfer being about three orders of magnitude faster than multi-atlas 

segmentation. For ceCT scans, as an example, the extraction of keypoints takes about 17s 

and the segmentation transfer takes 16s, yielding a segmentation time for ten organs that is 

about half a minute. We implemented the segmentation transfer in Matlab without 

parallelization. The pairwise deformable registration takes most of the runtime for multi-

atlas segmentation. To reducing computational costs for atlas-based segmentation, we also 

experimented with creating a probabilistic atlas. However, the iterative estimation of the 

atlas is also expensive and the high anatomical variability of the abdomen makes the 

summarization challenging.

We further evaluate the impact of the different matching constraints from Section II-A 

(scale, spatial, and distance ratio) on the segmentation accuracy of ceCT data. We measure 

that 12.5% of matches are changed due to scale, 52.6% of matches are changed due to the 

distance threshold, and 60.9% of matches are discarded due to distance ratio. Fig. 11 shows 

the segmentation accuracy for the standard keypoint matching algorithm and variations by 

not using scale constraints, spatial constraints, or the distance ratio test. Not considering 

spatial constraints yields to the largest decrease in accuracy. For scale and distance ratio, 
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there is no unanimous picture across all organs, but the overall Dice is highest by including 

all of the matching constraints.

We plot the distribution over matches p(m) projected on the x-z axes in Fig. 12. We observe 

that translations proposed by the matches do not follow a uni-modal distribution.

Limited field-of-view scans—Next to the segmentation of abdominal and whole-body 

scans, the segmentation of scans with limited field-of-view was also evaluated. In clinical 

practice, such partial scans are frequently acquired because of a specific diagnostic focus. 

For evaluating the performance of the algorithm, we cropped ceCT and wbCT images 

around the kidneys and the spleen, as shown in Fig. 13. Specific for the segmentation of the 

spleen in the limited field-of-view scans, we noted a substantial improvement by transferring 

organ segmentations that are different from the keypoint label for spleen images. In this 

case, we also let lung and liver keypoints transfer the segmentation of spleen. Fig. 13 shows 

segmentation results for kidneys and spleen. In comparison to segmenting the whole scans, 

we observe a slight decrease in segmentation accuracy for partial scans. Overall, however, 

the key-point transfer is robust to variations in the field-of-view and enables segmentation 

without modifications of the algorithm. We do not show results for the multi-atlas 

segmentation in this experiment because the registration between the cropped images and 

the training images failed. Since the initial alignment does not yield a rough overlap of the 

target regions, it is a very challenging registration problem. While it may be possible to 

design initialization techniques that improve the alignment, we view it as a major advantage 

of the keypoint transfer that no modification is required to handle limited field-of-view 

scans.

B. Silver Corpus

Fig. 14 reports segmentation results on the silver corpus for all contrasts, comparing 

keypoint transfer to multi-atlas segmentation. As for the gold corpus, locally-weighted 

voting outperforms majority voting for all anatomical structures. Further, we see similar 

results in the comparison of keypoint transfer and locally-weighted voting for the silver 

corpus and for the gold corpus. Key-point transfer achieves higher accuracy on kidneys for 

both CT contrasts. Liver, spleen and aorta are segmented more accurately on ceCT; aorta and 

trachea have higher Dice overlap for both whole-body modalities. Liver and spleen show 

lower accuracy for keypoint transfer than locally-weighted voting for both MR contrasts.

IV. Discussion

Overall, we note a higher segmentation accuracy for CT than for MR scans. We think that 

the standardization with Hounsfield units in CT scans is potentially beneficial at several 

stages of the method. The construction of matches as well as the keypoint voting are 

influenced by the descriptor similarity across scans. Further, the weights W (x) in the 

keypoint segmentation are based on image intensity differences between training and test 

images. Studying the voting statistics in Table 1, we see that the voting accuracy for MR 

scans is comparable to CT scans for most organs. These good results for MR support the 

robustness of the descriptor to intensity variations, since the voting and matching is only 

based descriptor similarity. In contrast, the weights W (x) are computed on image intensity 
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differences between training and test images, where the variations can have a larger impact. 

Approaches for correction of intensity inhomogeneity in MRI [33] may be helpful to 

increase the segmentation accuracy in the future.

In contrast to multi-atlas methods, keypoint transfer does not estimate a dense deformation 

field between scans. Instead, keypoints between organs are matched and the implied 

transformation is then used to transfer the organ segmentation. A less constrained 

deformation model, like this one, can have advantages in situations, where it is complicated 

to estimate image-wide deformation fields. We have shown this for the segmentation of 

scans with variations in the field-of-view, where keypoint transfer enabled the segmentation 

of partial scans. While we do incorporate spatial consistency of matches as weighting term 

p(m), this can handle multi-modal distributions and is less restrictive than typical 

regularization constraints imposed on deformation fields, particularly interesting for whole-

body scans with wide inter-subject variation.

We have presented results on a gold and a silver corpus. The silver corpus does not have 

manual annotations but provides an opportunity to evaluate the segmentation methods on a 

larger dataset. Overall, the segmentation results across both corpora were similar. Since 

many of the segmentation techniques submitted to the Visceral challenge are based on multi-

atlas techniques [19], there may be a bias in the fused segmentation of the silver corpus, 

favoring multi-atlas methods in the comparison.

The keypoint transfer segmentation relies on the identification of keypoints in the organs. 

While we did not experience this problem in our experiments, it may be a limitation for 

small organs without salient texture. An alternative in such scenarios could be to use 

keypoints from neighboring organs to transfer the segmentation. As shown for the spleen on 

the limited field-of-view scans, the transfer from neighboring organs can improve the 

segmentation result. However, we also performed experiments with using neighboring 

organs to transfer the label map on whole-body images and it did not lead to an 

improvement. A potential reason is that some organs are quite large so that keypoints can be 

fairly distant from the target organ. It may be a promising research direction in the future to 

restrict the transfer to keypoints that are close by.

Keypoint transfer is a very fast segmentation approach. Depending on the image type, the 

segmentation of a single scans takes between 10 and 84 seconds. This is orders of magnitude 

faster than multi-atlas techniques. In addition, there is no training stage in the algorithm that 

may require additional time. The only preparation for a new scan to be included in the 

training dataset is the extraction of keypoints. Keypoint transfer segmentation is therefore a 

highly scalable approach for large training and test sets.

V. Conclusion

We proposed an approach for image segmentation with keypoints that transfers label maps 

of entire organs. The algorithm relies on sparse correspondences between keypoints in the 

test and training images, which increases the efficiency of the method. We have further 

demonstrated that keypoint matches are robust to variations in the field-of-view, which 
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allowed for the segmentation of partial scans. We evaluated the method on two CT and MR 

contrasts from gold and silver corpora. The accuracy of keypoint transfer segmentation 

compares favorably to multi-atlas segmentation, while being about three orders of 

magnitude faster. Since a segmentation can be obtained very quickly with keypoint transfer, 

the produced segmentation may be used as additional input for other segmentation 

approaches, e.g., based on deep learning.
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Fig. 1: 
Overview of the keypoint transfer algorithm for whole-body segmentation. First, keypoints 

(white circles) are matched between training and test images (arrow). Second, the organ 

label of the test keypoint is voted on, based on the identified matches (r.Kidney). Third, 

training keypoints with r.Kidney as label transfer the surrounding organ map to the test 

image, creating a probabilistic segmentation. The manual segmentation is shown for 

comparison.

Wachinger et al. Page 15

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2: 
Illustration of the construction of the distribution p(m) over matches m. Arrows indicate 

matches between training and test image. Each match proposes a translation, illustrated as 

dots in 2D. Based on these samples the distribution is estimated.

Wachinger et al. Page 16

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3: 
Graphical model for keypoint voting with the match m and the keypoint label L being latent 

random variables. The labels of training keypoints ℒ, the test keypoint F and the training 

keypoints ℱ are observed, illustrated as shaded nodes.
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Fig. 4: 
Illustration of keypoint transfer segmentation for the example of liver. The crosses indicate 

keypoints in the training and test images with the match m, illustrated as arrow. For the label 

transfer to take place, the label of the training keypoint ℒm and the voted label of the test 

keypoint L have to be liver. The segmentation map of the training image Sm = liver is then 

transferred and the probability map for liver Sliver is updated. To increase the robustness and 

accuracy of the segmentation, we weigh the transferred segmentation according to the 

certainty in (i) the keypoint label voting, (ii) the match, and (iii) the local intensity similarity 

of the test and training image.
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Fig. 5: 
Segmentation accuracy on the gold corpus for different organs on ceCT, wbCT, ceMR, and 

wbMR images for majority voting, locally-weighted voting, and keypoint transfer. Bars 

indicate the mean Dice and error bars correspond to standard error.
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Fig. 6: 
Example segmentation results on coronal views for wbMR overlaid on the intensity images, 

shown for manual, keypoint transfer, locally-weighted multi-atlas.
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Fig. 7: 
Example segmentation results on coronal views for ceMR overlaid on the intensity images, 

shown for manual, keypoint transfer, locally-weighted multi-atlas.
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Fig. 8: 
Example segmentation results on coronal views for ceCT (left) and wbCT (right) overlaid on 

the intensity images. Each series shows segmentations in the following order: manual, 

keypoint transfer, locally-weighted multi-atlas.
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Fig. 9: 
Segmentation results for varying the number of training images from 5 to 15. Results are 

shown for ten organs on ceCT images with keypoint transfer. Bars indicate the mean Dice 

over five test images and error bars correspond to standard error.
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Fig. 10: 
Average segmentation runtimes (in minutes) per image for keypoint transfer and multi-atlas 

label fusion with ten organs. The time is plotted on the logarithmic scale.
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Fig. 11: 
Segmentation results for removing the individual matching constraints. Bars indicate the 

mean Dice over five test images and error bars correspond to standard error.
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Fig. 12: 
Visualization of the distribution over matches p(m) for 2D (x-z).

Wachinger et al. Page 26

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 13: 
Segmentation results for scans with limited field-of-view. We show coronal views of images 

with the kidneys and the spleen for ceCT and wbCT scans. Bars indicate the mean Dice and 

error bars correspond to standard error. We denote the use of lung and liver keypoints to 

transfer spleen segmentations as ‘Spleen Across’. For comparison, the mean Dice scores on 

the entire images for ceCT were 0.87 (r. kidney), 0.86 (l. kidney), and 0.76 (spleen), and for 

wbCT 0.75 (r. kidney), 0.81 (l. kidney), and 0.68 (spleen)
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Fig. 14: 
Segmentation accuracy on the silver corpus for different organs on ceCT, wbCT, ceMR, and 

wbMR images for majority voting, locally-weighted voting, and keypoint transfer. Bars 

indicate the mean Dice and error bars correspond to standard error.
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TABLE I:

Summary of notation used in the article.

I, ℐ = I1, …, In Test and training images

S, S = S1, …, Sn Test and training segmentations

Sl Segmentation probability map for label l

S Inferred segmentation

F, ℱ Keypoint in test and training image

Fx, ℱx Location of test and training keypoint

Fσ, ℱσ Scale of test and training keypoint

FD, ℱD Descriptor of test and training keypoint

FI, ℱIi All keypoints from test and training image i

L, ℒ Label of test and training keypoint

L Inferred label for test keypoint

m Match between a test and training keypoint

m(F) Corresponding training keypoint matched to F

ℳ F All matches for test keypoint F

ℳi All matches for training image Ii

ℐm, Sm Training image and segmentation of match m
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