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Abstract

National and local initiatives focused on the transformation of STEM teaching in higher education 

have multiplied over the last decade. These initiatives often focus on measuring change in 

instructional practices, but it is difficult to monitor such change without a national picture of 

STEM educational practices, especially as characterized by common observational instruments. 

We characterized a snapshot of this landscape by conducting the first large scale observation-based 

study. We found that lecturing was prominent throughout the undergraduate STEM curriculum, 

even in classrooms with infrastructure designed to support active learning, indicating that further 

work is required to reform STEM education. Additionally, we established that STEM faculty’s 

instructional practices can vary substantially within a course, invalidating the commonly-used 

teaching evaluations based on a one-time observation.

One Sentence Summary:

Although lecture is prominent throughout the undergraduate STEM curriculum, STEM faculty 

employ varied teaching practices within the same course.

A large body of evidence unequivocally demonstrates that engaging students in the learning 

process through student-centered strategies (i.e., strategies that promote student interactions 

and cognitively engage students with content such as Peer Instruction (1)) (2, 3) leads to 

increased learning and affective gains for all students enrolled in Science, Technology, 
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Engineering, and Mathematics (STEM) courses (4). Consequently, over the last ten years, 

the highest levels of American educational (2, 3) and governmental (5) bodies have called 

for and supported the widespread adoption of these strategies throughout the undergraduate 

STEM curriculum. To date, the national picture of the STEM instructional landscape has 

mostly been provided through national self-report surveys of faculty members within a 

particular STEM discipline (6–12); an exception includes a study of geoscience instructors 

(13), which implemented both surveys and classroom observations. Although self-report 

survey data can correlate well with observation data (13, 14), they are prone to reliability 

threats depending on the context in which the survey responses are collected (15). Moreover, 

few surveys implemented nationally to date provide valid and reliable data (16). Finally, 

survey data can underestimate the complexity of classroom environments whereas 

observational data can afford greater detail (17). The Classroom Observation Protocol for 

Undergraduate STEM (COPUS) (18) has rapidly become a favored instrument among 

STEM disciplines to provide more consistent assessment of instructional practices, as well 

as to document the impacts of educational initiatives (17, 19–24). We report here an 

unprecedented step toward a national characterization of STEM teaching practices by 

presenting the results of analyses of COPUS data collected from over 2,000 classes taught 

by more than 500 STEM faculty members across multiple institutions.

This large-scale data set enables distinctive contributions to current understanding of 

instructional practices in STEM courses. First, it allows for generalizations beyond 

institutional descriptions (17, 21, 22). Second, it suggests a resolution to inconsistent 

findings from recent discipline-based education research (DBER) studies. For example, 

STEM faculty report that it is more difficult to use student-centered techniques in large 

classrooms or less amenable physical layouts (25, 26), but previous studies have not borne 

this out in practice (21). Previous studies have also reported inconsistent relationships 

between course level (introductory or upper-division) and instructional practices (13, 19, 

21). Third, classroom observations are often used for evaluative (i.e., promotion and tenure) 

purposes, as well as in research to document the impact of educational initiatives. More data 

is needed to guide such use of observational protocols to collect data in a valid way; for 

example, previous research suggests that at least three observations are needed for an 

accurate picture of instructional practices (21). Data collected for this report allows us to test 

the generalizability of all these findings by increasing the sample size of observations 

collected 7.5-fold over the Lund et. al. study. Finally, it addresses the call made in a recent 

report from the National Academies of Sciences, Engineering, and Medicine for new data 

collection to understand the use of evidence-based practices (27).

We used COPUS (18) to characterize 2,008 STEM classes taught by 5481 individual faculty 

members. COPUS requires documenting the co-occurrence of 13 student behaviors (e.g. 
listening, answering questions) and 12 instructor behaviors (e.g. lecturing, posing questions) 

during each 2-minute interval of a class. This instrument, which was adapted from the 

Teaching Dimensions Observation Protocol (28), was selected for this study as it is broadly 

1Data came from an online tool that enables researchers to have their COPUS data analyzed - http://www.copusprofiles.org. Data 
entries did not always make it clear if the course was taught by the same instructor or at the same institution. These numbers thus 
represent minima.
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used and has been empirically demonstrated to provide valid characterization of 

instructional practices in STEM classrooms (see Supplementary Materials) (17, 18, 20, 21, 

24, 29, 30). Moreover, the high level of interrater reliability consistently achieved across 

studies employing COPUS ensures that the instrument can provide a reliable and valid 

characterization of STEM instructional practices on a large scale. Data came from 241 

doctorate-granting universities and one primarily undergraduate institution, with the largest 

contributing institution comprising 17.1% of the data. Faculty were observed on average 2.7 

times. 98.4% of the faculty were observed within the same semester and course. Details 

about instructors and courses observed are presented in Table 1.

Analyses of instructors’ and students’ behaviors revealed that instructors demonstrated a 

greater variety of behaviors (an average of six behaviors occurred in 10% or more of two-

min intervals within a given class) compared to students (an average of three behaviors). 

Specifically, the most common instructor behaviors observed were lecture (an average of 

74.9 ± 27.8% of the total two-min intervals of a given class), writing in real time (35.0 

± 35.2%), posing non-rhetorical questions (25.0 ± 21.4%), following-up on questions (14.3 

± 18.9%), answering student questions (11.5 ± 12.8%), and administering clicker questions 

(10.0 ± 16.5%). Students primarily listened to the instructor (87.1 ± 20.8%), answered 

instructor questions (21.6 ± 19.8%), and asked questions (10.4 ± 12.1%). Complete 

distributions for all instructor and student behaviors can be found in the supplemental 

information.

Simply describing instructor and student behaviors across our sample leaves out pertinent 

information regarding the characterization of instructional practices in STEM undergraduate 

courses. Knowing that lecture is prevalent does not accurately reflect what other strategies 

are being implemented alongside or instead of lecture. To answer this question, we 

conducted latent profile analysis (LPA) on eight of the instructor and student behaviors. 

More details about LPA and how we chose a final solution are available in the supplemental 

information (31–38). We created clusters based on four instructor behaviors (lecture, posing 

questions, clicker questions, and one-on-one work with students) and four student behaviors 

(group work on clicker questions, group work on worksheets, other group work, and asking 

questions). We chose these eight behaviors because they were observed with adequate 

heterogeneity, were not highly correlated with each other, and were likely to be key 

strategies in active or non-active learning environments. The solution consisted of seven 

clusters, each representing a unique instructional profile (Fig. 1).

The first group of instructional profiles, clusters 1 and 2, depicts classrooms in which 80% 

or more of class time consists of lecturing. Cluster 1 has no observed student involvement 

except sporadic questions from and to the students, while Cluster 2 has clicker questions that 

are sometimes associated with group work. We labeled this group of profiles “Didactic” 

instructional style; 55% of the observations collected belonged to this broad instructional 

style. The second group of profiles, which we named “Interactive Lecture,” consists of 

Cluster 3 and Cluster 4. These clusters represent instructors who supplement lecture with 

more student-centered strategies such as Other group activities (Cluster 3) and Clicker 
questions with group work (Cluster 4); 27% of the observations were classified in this 

instructional style. Finally, clusters 5, 6, and 7 depict instructors who incorporate student-
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centered strategies into large portions of their classes. Cluster 5 represents a variety of group 

work strategies consistently used, while Cluster 7 represents a similar variety, but with less 

consistent usage. Some in Cluster 6 may resemble a popular style of instruction called 

POGIL, Process Oriented Guided Inquiry Learning (39), but others (due to a higher 

proportion of lecture) likely represent other strategies that incorporate group worksheets and 

one-on-one assistance from the instructor. We labeled this third group of clusters “Student-

Centered” instructional style. This instructional style represents almost a fifth of the data set. 

Our results offer a succinct, yet comprehensive, classification of instructional practices 

observed across STEM courses. Given the sample size and diversity of courses and 

disciplines represented, we are confident that the profiles and broad instructional styles 

provide a reliable picture of the current instructional landscape in undergraduate STEM 

courses taught at doctorate-granting institutions.

We leveraged the identification of the three broad instructional styles to test our hypotheses 

and address discrepancies among prior DBER studies (Fig. 2). We report the results of Chi 

square analyses below and only claim statistical relationships when differences led to 

standard residuals greater than three (40); no statistically significant interaction effects were 

observed. Our first hypothesis – instructors of smaller courses or in classrooms with flexible 

physical layout would implement more student-centered strategies while instructors of larger 

courses or in classrooms with fixed physical layout would tend to use traditional lecture 

styles – was supported.

Observations in large courses were classified in the didactic instructional style more than 

expected by random chance and in the student-centered instructional style less than expected 

by chance, while the opposite occurred for small courses, χ2 (4, N = 1753) = 56.5, p < 

0.001, V = 0.13. Classrooms with flexible seating were more likely to be classified in the 

student-centered instructional style, χ2 (2, N = 1137) = 55.9, p < 0.001, V = 0.22. 

Interestingly, about half of the classes with flexible seating and about half of the small and 

medium courses were classified as didactic style of instruction. This result implies that 

simply providing adequate infrastructure or small class size does not necessarily change 

instructional practices. Second, we found no significant relationships between instructional 

style and course level, suggesting that instructional style is similar throughout the 

curriculum, χ2 (8, N = 1927) = 11.0, p = 0.20. This outcome confirms the findings from 

other studies (13, 19). We were also interested in differences by discipline since the 

affordances of content, disciplinary teaching conventions, and educational research 

traditions are different for each. However, the relative proportions are skewed by more 

chemistry and biology classes in the data, so we only made statistical inferences about these 

disciplines. The results (Fig. 2D) indicate that chemistry classes tended to be classified in the 

didactic style while biology classes were relatively more frequently associated with the 

student-centered instructional style, χ2 (2, N = 1328) = 36.5, p < 0.001, V = 0.17.

Finally, we explored the diversity of instructional styles implemented by STEM instructors 

in order to estimate the minimum number of observations required to accurately depict their 

instructional practice. As in previous research (21), we found that individual instructors vary 

their teaching from day to day. Among the instructors who were observed multiple times, 

approximately half (53.3%) had their classes classified into one of the three broad 
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instructional styles, 41.1% had their classes classified in two styles, and 5.6% into all three 

styles. The more frequently an instructor was observed, the greater the number of broad 

instructional styles under which her/his teaching was classified (Fig. 2F). Figure 2e 

highlights that the proportion of interactive lecture and student-centered instructional style 

increase with the number of observations per faculty. Our data thus suggest that faculty do 

not employ the same style throughout a semester and that at least four observations are 

necessary for reliable characterization of their teaching.

In conclusion,

1. This report confirms anecdotal accounts that didactic practices (i.e., lecturing and 

other teacher-centered behaviors) are prevalent throughout the undergraduate 

STEM curriculum despite ample evidence to the limited impact of these 

practices and significant interest on the part of institutions and national 

organizations in education reform. The scale from which the findings are derived 

indicates the pervasiveness of didactic teaching in STEM higher education. This 

result should prompt institutions and STEM disciplines to reflect on practices 

and policies that sustain this status quo and identify systemic reform strategies;

2. This report provides a unique baseline of data for comparison for educational 

initiatives determining the impact of their intervention, for professional 

development facilitators to inform the design of their programs, and for faculty 

when they receive COPUS data. The seven instructional profiles allow these 

comparisons to move beyond the binary teacher- or student-centered teaching 

classification and to inform incremental and diverse paths toward student-

centered teaching;

3. This report challenges survey-based studies in which faculty identify classroom 

layouts and course size as barriers to instructional innovation. The results show 

that flexible classroom layouts and small course sizes do not necessarily lead to 

an increase in student-centered practices. Investments in pedagogical training for 

users of these environments is thus critical in order for the expenditure on 

infrastructure to be impactful;

4. This report confirms findings from prior small-scale studies that STEM faculty 

are complex instructors, who often use a variety of instructional strategies within 

the same course. Therefore, reliable characterization of instructional practices 

requires at least four visits. This new finding challenges current practices in 

promotion and tenure evaluation of faculty’s teaching, which often include peer 

observation of just one class in an academic year.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Broad instructional styles and their associated instructional profiles. Each panel shows a 

single cluster (profile) along with the percent of observations that were classified in that 

cluster. Each panel shows the average (solid circle), boxplot (hollow, grey outline), and 

individual data points (faint points) for each of the students (reds) and instructor behaviors 

(blues).
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Fig. 2. 
Distribution of the three broad instructional styles across A) course level, B) course size, C) 

classroom physical layout, D) STEM discipline, E) number of observations per faculty; F) 

represents the relationship between frequency of observations and classification of 

observations in one, two, and all three broad instructional styles.
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Table 1.

Study sample

Demographic

Classroom
observations

Instructors

Frequency Percent Frequency Percent

Discipline Biology 619 30.8 179 31.6

Chemistry 709 35.3 122 21.5

Computer Science 61 3.0 21 3.7

Engineering 159 7.9 78 13.8

Geology 121 6.0 36 6.3

Mathematics 177 8.8 56 9.9

Physics 148 7.4 66 11.6

Missing data 14 0.7 9 1.6

Course level 100 level 1,140 56.8 249 43.8

200 level 294 14.6 85 15.0

300 level 296 14.7 110 19.4

400 level 102 5.1 39 6.9

Graduate 95 4.7 34 6.0

Missing data 74 3.7 44 7.7

Course Size Small (0–50) 570 28.4 167 29.5

Medium (51–100) 302 15.0 80 14.1

Large (>101) 881 43.9 158 27.9

Missing data 255 12.7 162 28.6

Classroom Layout Fixed 757 37.7 120 21.5

Flexible 380 18.8 87 15.7

Missing data 871 43.4 350 62.8
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