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Abstract

In its landmark paper about Standards and Guidelines for the Interpretation of Sequence Variants, 

the American College of Medical Genetics and Genomics (ACMG) and Association for Molecular 

Pathology (AMP) did not address how to use tumor data when assessing the pathogenicity of 

germline variants. The Clinical Genome Resource (ClinGen) established a multidisciplinary 

working group, the Germline/Somatic Variant Subcommittee (GSVS) with this focus. The GSVS 

implemented a survey to determine current practices of integrating somatic data when classifying 

germline variants in cancer predisposition genes. The GSVS then reviewed and analyzed available 

resources of relevant somatic data, and performed integrative germline variant curation exercises. 

The committee determined that somatic hotspots could be systematically integrated into moderate 

evidence of pathogenicity (PM1). Tumor RNA sequencing data showing altered splicing may be 

considered as strong evidence in support of germline pathogenicity (PVS1) and tumor phenotypic 

features such as mutational signatures be considered supporting evidence of pathogenicity (PP4). 

However, at present, somatic data such as focal loss of heterozygosity and mutations occurring on 

the alternative allele are not recommended to be systematically integrated, instead, incorporation 

of this type of data should take place under the advisement of multidisciplinary cancer center 

tumor-normal sequencing boards.

*Drs. Walsh, Ritter and Kesserwan should be considered joint first author.
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INTRODUCTION

Predominant questions driving both oncologists and cancer geneticists are under what 

circumstances information generated from genomic testing can be used to inform 

therapeutics or impact plans for risk reduction and prevention strategies (Kauff et al., 2002; 

Lima et al., 2018; Villani et al., 2016). Currently, major cancer centers perform parallel 

sequencing of tumor and matched normal (germline or constitutional) DNA, which can 

simultaneously reveal information about therapeutic options and cancer predisposition (Dela 

Cruz et al., 2016; Mody et al., 2015; Oberg et al., 2016; Parsons et al., 2016; Walsh et al., 

2014). Two large-scale studies, one pediatric and one adult, have used similar methodology 

integrating somatic data to augment germline variant calling (Huang et al., 2018; Zhang et 

al., 2015).

In contrast to research studies, distinct classification guidelines have been published for 

clinical reporting of tumor variants, including a recent publication from the Association for 

Molecular Pathology (AMP), germline variants from the American College of Medical 

Genetics and AMP, and guidance for germline variant reporting in cancer genes 

(Chakravarty et al., 2017; Li et al., 2017; Richards et al., 2015; Plon et al. 2008). However, 

these classification schemes do not offer guidance about using variant data from germline 

sequencing when interpreting tumor variation, or conversely using cancer somatic data in the 

context of reporting germline variants. Specifically, the evidence codes described in 

ACMG/AMP germline classification do not reference the use of somatic data, yet a natural 

set of questions arise as to the appropriate use of existing somatic data to aid germline 

interpretation (Figure 1). We describe here a standardized approach to incorporating somatic 

data for germline interpretation (Figure 2).

METHODS

The Clinical Genome Resource (ClinGen, clinicalgenome.org) Hereditary Cancer Clinical 

Domain Working Group convened the Germline/Somatic Variant Subcommittee (GSVS) to 

understand current practices and make recommendations for the use of somatic data as a 

criterion for germline variant interpretation for hereditary cancer genes. The GSVS is 

comprised of oncologists, geneticists, molecular pathologists, molecular geneticists, 

bioinformatics specialists, computational biologists, and laboratory directors. We first 

designed a survey to assess current practices for the use of somatic data for germline variant 

classification (Supp_Materials). The design of this survey was based on expert opinion 

within GSVS to target four main evidence types; 1) mutational hotspots, 2) tumor RNA 

sequencing (RNA-seq) data, 3) loss of heterozygosity (LOH), and 4) tumor phenotypic 

characteristics such as signature, mutational burden and microsatellite instability. The survey 

was sent to 40 molecular laboratories that sequence both tumor and germline samples, and 
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included in the AMP listserv and genetests.org. The Memorial Sloan Kettering Cancer 

Center Institutional Review Board (IRB) approved this study.

Next, we identified peer-reviewed and publicly available somatic data sources that could be 

used for germline variant classification based upon these four evidence types and then 

defined best practices and limitations for the use of specific datasets. Following this, we 

selected ACMG/AMP evidence codes that could best incorporate somatic data, using 

existing codes whenever possible. Finally, we selected 45 peer reviewed rare variants with 

associated tumor data from The Cancer Genome Atlas (TCGA) experience that were 

classified as VUS in ClinVar and classified these variants using the approaches we 

developed. Rules were discussed as a group, applied by individual biocurators and then 

analyzed as a group for consistency and agreement in the evidence code usage.

RESULTS

Laboratory and variant interpretation survey

Of the 21 respondents to the survey, 16 (76.2%) reported following the ACMG/AMP 

standards and guidelines for classification of germline variants (Richards et al., 2015). 

Integrating somatic and germline data was not performed by most laboratories (18/21 

(85.7%)). When positing that should both tumor and normal sequencing data be available for 

a given patient 13/18 (72%) respondents reported that they would use somatic data for 

classifying germline variants. Attribution of somatic data regarding the strength of the 

evidence was variable; 9/18 (50%) reported considering somatic data at a supporting level, 

2/18 (11.1%) at moderate level, and 7/18 (38.9%) at strong level. In contrast, 9/18 (50%) 

respondents reported they would not incorporate LOH or tumor copy number alteration in 

companion tumor normal sequencing as evidence for pathogenicity of a germline variant. 

Additional questions were asked regarding the types of data laboratories use (or would use) 

as complimentary diagnostics or biomarkers aiding in interpreting germline variants in 

cancer predisposition genes. Data elements included: immunohistochemistry, telomere 

lengths, and chromosomal breakage studies 13/18 (72%), RNA sequencing data 15/18 

(83.3%) for splicing variants in cancer predisposition genes of uncertain significance, and 

therapeutic responses 12/18 (66.7%) (Supp_Materials). As anticipated, the survey identified 

no consensus on the applications, sources, weights of evidence, or use of somatic data 

including LOH or mutational hotspots. However, we used these survey results to direct 

discussion on the working group calls, which aided not only in understanding current usage 

but prioritizing somatic variant data elements for germline interpretation.

Publicly available somatic data resources

The survey showed that there was heterogeneity in the sources of somatic data and usage of 

those sources. Somatic data sources can include any of the following: variant data from 

paired tumor / normal sequencing, institutional resources such as case registries, local or 

gene/disease focused resources, public or institutional data, and proprietary datasets. To 

address this heterogeneity, we reviewed data sources and compiled a list of peer-reviewed 

resources identified from the survey and review of the literature with a focus on those, which 

are publicly available (Supp_Materials). The cBioPortal for Cancer Genomics, originally 

Walsh et al. Page 3

Hum Mutat. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://genetests.org


developed at Memorial Sloan Kettering Cancer Center (MSK) and currently developed and 

maintained by a multi-institutional team including The Dana Farber Cancer Institute, 

Princess Maxima Cancer Center in Toronto, Children’s Hospital of Philadelphia, The Hyve 

in the Netherlands and Bilkent University in Ankara, Turkey (http://www.cbioportal.org, 

Gao et al. Sci. Signal. 2013 & Cerami et al. Cancer Discov. 2012), is a publicly available 

resource that stores somatic variants from 224 cancer studies including those from multiple 

TCGA projects and the National Moonshot Cancer initiative project GENIE (Genomics 

Evidence Neoplasia Information Exchange) (Consortium, 2017) (Chang et al., 2016; Chang 

et al., 2018)), and all hotspots identified by this algorithm are also publicly available at the 

website cancerhotspots.org.

Integration of somatic mutational hotspots (PM1 evidence code)

Here, we provide an overview of cancer mutational hotspots, as this was the somatic data 

element the committee considered for incorporation into germline variant interpretation for 

cancer predisposition given the availability of a curated database of somatic hotspots (Chang 

et al., 2016; Chang et al., 2018). A somatic mutational hotspot was defined as a single amino 

acid position in a protein-coding gene that is mutated more frequently than would be 

expected in the absence of selection (Chang, et al., 2016). While the exact definition varies 

depending on the approach used to calculate hotspots (Chang et al., 2016; Chang et al., 

2018; Huang et al., 2018), the methodology assigns a statistical significance to the 

recurrence of mutation at a given amino acid corrected for the background mutational rate of 

the position, gene, and sample both within and across cancer types in the affected cohort. 

Somatic mutational hotspots are therefore not common germline benign variants in a 

population. For this analysis, we focused on ~1100 mutational hotspots from a recent 

analysis of the sequencing data from ~25,000 diverse primary and metastatic human cancers 

available both in the cancerhotspots.org portal as well as in the cBioPortal (Chakravarty et 

al., 2017; Chang et al., 2018; Seiler et al., 2018; Yang et al., 2018). Each codon may be 

mutated to one or more alternative amino acids primarily in a single cancer type or across 

many cancer types (Figure 3). Chang et al. defines hotspots at sites with a Q-value <0.1 as 

statistically significant with a false discovery rate <10%. We identified this data type for 

potential integration into the ACMG/AMP guidelines Moderate (PM1) evidence category 

[(PM1 = “located in a mutational hotspot and/or critical and well-established functional 

domain (e.g. active site of an enzyme) without benign variation” (Richards et al., 2015)]. 

Notably, hotspots defined per Chang et al, 2016 & 2018 are consistent with the odds ratios 

described recently of moderate evidence at 4.3:1 and strong evidence at 18.7:1 odds by 

Tavtigian et al (2018). We piloted this approach on the tumor suppressors TP53, VHL, 
DNMT3A, BRCA2, PTEN, ATM and the oncogene PTPN11.

Using TP53 somatic hotspots to understand PM1 specifications

The tumor suppressor gene TP53 is the most commonly mutated gene in cancer and one of 

the most well studied genes in hereditary and sporadic cancer (Baker, Kinzler, & Vogelstein, 

2003; F. P. Li & Fraumeni, 1969). The hotspot database cancerhotspots.org includes 120 

TP53 codons for a total of 622 TP53 variants (Chang et al., 2016; Chang et al., 2018). The 

TP53 transactivation assay is an established functional assay for TP53 variants (Kato et al., 

2003; Monti et al., 2007; Petitjean et al., 2007). We reviewed TP53 transactivation activity 
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from the International Agency for Research on Cancer (IARC) TP53 database (Bouaoun et 

al., 2016) for all TP53 amino acid (AA) positions identified as hotspots in 

cancerhotspots.org. We identified two key areas in which hotspot data should receive 

additional considerations for proper use: (1) alternative AA and frequency at the hotspot 

residue and (2) conflation of variant effects -- missense versus truncating/null -- at hotspot 

residues. While most missense and null variants at TP53 mutational hotspots residues are 

functionally inactive as determined by the IARC reported transactivation assays, a minority 

of missense variants within mutational hotspot residues may retain functional activity and 

produce different degrees of transactivation activity (Supp_Table S3). For example, the TP53 
Ile255 position is considered a mutational hotspot residue (cancerhotspots.org) when 

substituted with a Phe, Asn, Ser or Thr; all 4 mutations have been found in cancer and all 

lack functional p53 transactivation activity. However, a Val substitution at position 255 is not 

considered a cancer hotspot and consistently, the p.Ile255Val substitution does not show a 

significant decrease in transactivation activity relative to wild type p53 (Kato et al., 2003). 

As the hotspot calculation in cancerhotspots.org is summarized over all contributing amino 

acids, this underscores the importance of considering AA identity and frequency at each 

hotspot residue when incorporating hotspot data into variant pathogenicity interpretation.

Additionally, somatic hotspot usage should avoid conflation of missense and predicted 

truncating/null data by careful consideration of the gene functional context (tumor 

suppressor genes vs oncogene) and variant type (predicted truncating/null vs. activating in 

tumor suppressor versus oncogenes respectively). Currently in cancerhotspots.org, predicted 

truncating/null and missense variants are combined for hotspot Q-values. Hotspots in tumor 

suppressor genes may be driven almost entirely by predicted truncating/null mutations while 

missense mutations at that position may not have functional impact. This is exemplified by 

NP_001119584.1(TP53):p.(Glu294*) a predicted truncation/null hotspot, whereas missense 

mutations at this same AA residue 294 maintains intact p53 transactivation ability 

comparable to wild type p53. Another example is with NP_001120982.1(APC):p.Gln1378* 

where all variants in cancerhotspots.org identified as hotspots are truncating/null. We 

therefore suggest any use of hotspot data should separate data derived from missense 

changes from predicted null or truncating variants, especially if they are predicted to lead to 

nonsense mediated decay.

Analysis of VHL at Somatic Hotspots to understand PM1 specifications

In the recent publication from Tavtigian et al, the authors derive the moderate level of 

evidence as a 4:3:1 odds of pathogenicity (2018). To test if somatic hotspot data could 

uphold this odds ratio, we searched for VHL somatic variants in cancerhotspots.org that 

have received germline classification in ClinVar (Supp_Table). Out of 69 hotspot variants, 

we identified a total of 34 VHL germline variants in ClinVar, of which 30 variants were 

considered pathogenic or likely pathogenic and 4 as VUS, Conflicting interpretation, Likely 

Benign, or Benign. This generated an odds of pathogenicity of ~7.5:1, which is higher than 

moderate evidence odds ratios (4.3:1) from Tavtigian et al but less than strong evidence odds 

ratios (18.7:1). To be conservative, we chose to maintain consistency with moderate 

evidence presented by Richards et al and Tavtigian et al (2015, 2018), noting that the clinical 

significance field in ClinVar can vary in the number and consensus of laboratories 
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contributing, and we did not further analyze data based on the number of contributing 

laboratories.

Specifying hotspot data for somatic data integration (PM1 evidence code)

For the most applicable and reproducible somatic data inclusion, we propose using the PM1 
evidence code if the variant AA at the hotspot codon in question has a sample count in 

cancerhotspots.org that is equal or greater than 10 at that codon. If the variant AA has a 

sample count that is greater than 1, and less than 10 (from 2–9), a PM1_supporting evidence 

code is recommended (Figure 4). In addition, when evaluating the somatic hotspot data, it is 

strongly suggested to consider the following points:

1) Hereditary Cancer Context: Somatic hotspot data is recommended for use only in the 

context of a germline variant being interpreted with regard to cancer predisposition, as some 

cancer susceptibility genes are also associated with non-cancer syndromes. 2) Germline and 
Somatic Hotspots: If an amino acid residue is a mutational hotspot both at the germline and 

somatic level, then only the germline information should be used to fulfill the evidence code. 

Even in cases where somatic evidence leads to a stronger conclusion for the PM1 code (ex. 

PM1 for somatic and PM1_Supporting for germline), germline evidence is prioritized for a 

germline interpretation. 3) Variant Type and Database Composition and Cancer Spectrum: 

To identify statistically significant or recurrent hotspots in cancer, the cancerhotspots.org 

algorithm used a population-scale cohort of tumor samples of various cancer types. It must 

be noted however, that the majority of patient tumor samples used were solid tumors in 

adults and while 41 tumor types were used in their analysis some pediatric tumor types were 

not included (Chang et al. 2016). Consequently, the cancers contributing to the hotspot 

residue may not fully represent the cancer(s) associated with the patient’s hereditary cancer 

predisposition syndrome. We suggest careful review of the cancer types and variants at the 

hotspot residue and to consider this information within the context of the patient’s cancer 

phenotype and/or family history of cancer.

Variant classification examples using PM1 evidence code specification

To identify variants for this pilot, we used the intersection of 2671 variants from 226 genes 

in cancerhotspots.org with those present in the ClinVar variant_summary.txt file 

(downloaded on 4/12/2018, Supp. Tables S3 and S4). We queried germline variant 

interpretations submitted to ClinVar using the Genome Reference Consortium Human Build 

37 GRCh37 (hg19). We focused on 109 variants with Uncertain Significance and 97 variants 

with Conflicting Interpretations of Pathogenicity. We used the ACMG five-tier system 

classification: Pathogenic, Likely Pathogenic, Uncertain Significance (also described as 

Variant of Uncertain Significance or VUS, below), Likely Benign and Benign. Here we 

provide examples of germline variant analysis applying PM1 evidence (Supp_Materials).

NM_000546.5(TP53):c.374C>T;p.(Thr125Met): This variant had Conflicting Interpretations 

of Pathogenicity (VUS and Likely Pathogenic) in ClinVar (ID 183748). This variant was 

evaluated in the ClinGen Variant Curation Interface (VCI) as VUS with the following 

evidence codes: PS3_Supporting, PM2, PP3, and PP4. In cancerhotspots.org 16/30 samples 
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were c.374C>T; p. (Thr125Met). The PM1 evidence code was applied, leading to the 

upgrade of this variant to Likely Pathogenic.

NM_000546.5(TP53):c.845G>T;p.(Arg282Leu): This variant had conflicting interpretations 

of pathogenicity -- VUS and Likely Pathogenic -- in ClinVar (ID 182938). In the ClinGen 

VCI, we evaluated this variant as Likely Pathogenic with PM2, PM5, and PP3 evidence 

codes. In cancerhotspots.org, the overwhelming number of samples harbored the Trp amino 

acid change (201 / 219 samples) whereas the L amino acid change was seen in just 1 sample 

(bowel cancer). However, the R282 codon is a known germline hotspot, and applying the 

PM1 evidence code further supports the interpretation of Likely Pathogenic and helps clarify 

prior discordant VUS classifications (Baugh et al., 2018). See Discussion section for variants 

that are both a germline and somatic hotspot.

NM_000546.5(TP53): c.542G>A; p. (Arg181His): This variant had conflicting 

interpretations of pathogenicity (Likely Pathogenic and Pathogenic) in ClinVar (ID 142320) 

but was reported by a commercial lab as a VUS (7/8/17). Using the ClinGen VCI, we 

interpreted this variant as a VUS based on PP3, PP4, PM2_Supporting, and PS3_Moderate 

codes. In cancerhotspots.org, 9/26 samples had the Arg181His variant. When the 

PM1_Supporting evidence code for somatic hotspot data is applied, the variant becomes 

Likely Pathogenic.

NM_00314.6(PTEN): c.395G>A; p.(Gly132Asp): This variant had conflicting 

interpretations of pathogenicity with two VUS interpretations and one Likely Pathogenic in 

ClinVar(ID:92822). Using the ClinGen VCI, we interpreted this variant as VUS based on the 

following: PP2, PP3, PP4, and PM2 codes. In cancerhotspots.org, mutations of Gly882Asp 

at this site were found in 8/17 samples. Adding PM1_Supporting somatic hotspot makes the 

interpretation Likely Pathogenic.

NM_000551.3(VHL): c.452T>C; p.(Ile151Thr): This variant had conflicting interpretations 

of pathogenicity with one submission as VUS and one as Likely Pathogenic in ClinVar(ID:

428803). Using the ClinGen VCI, we interpreted this variant as VUS based on the 

following: PP3, PP4, and PM2 codes. In cancerhotspots.org, Ile882Thr mutations were 

found in 2/6 samples. Adding PM1_Supporting somatic hotspot does not change the 

interpretation, leaving it as VUS.

NM_002834.4(PTPN11): c.215C>T; p.(Ala72Val): This variant had conflicting 

interpretations of pathogenicity with one submission as VUS, four submissions as Likely 

Pathogenic and one submission as Pathogenic in ClinVar (ID:41443). Using the ClinGen 

VCI, we interpreted this variant as Likely Pathogenic based on the following: PP2, PP3, 

PP4, PM2 and PS3. In cancerhotspots.org, mutations of Ala882Val were found in 6/18 

samples. Adding PM1_Supporting somatic hotspot code makes the interpretation 

Pathogenic.

NM_022552.4(DNMT3A): c.2645G>A; p. (Arg882His): This variant had conflicting 

interpretations of pathogenicity -- VUS and Pathogenic in ClinVar (ID:375881). Using the 

ClinGen VCI, we interpreted this variant as Likely Pathogenic based on the following: 

PM2_Supporting (given that the variant is not completely absent in the Genome Aggregation 
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Database but is present at a very low allele count), PP3, PP2 and PS3. In cancerhotspots.org, 

mutations of R882H were found in 28/39 samples With the addition of PM1 using somatic 

hotspot data, this variant remains Likely Pathogenic.

NM_000051.3(ATM): c.1009C>T (p. Arg337Cys): This variant is interpreted as a VUS in 

ClinVar (ID: 127327). This was identified in a Caucasian, 75-year-old. woman with invasive 

ductal carcinoma of the breast, metastatic to bone and lymph nodes, presenting with a 

paternal aunt with postmenopausal breast cancer, and a paternal cousin with breast cancer at 

~30 years of age. Using the ClinGen Variant Curation Interface (VCI), the variant was 

classified as a VUS using PM2_Supporting and PP3. In cancerhotspots.org, the 

p.Arg337Cys variant was found in 31/40 samples. However, with the addition of PM1 the 

variant remained a VUS.

Additional Relevant Somatic Data Types for Interpreting Germline Variants

In addition to specifying systematic use of somatic hotspot data in the PM1 evidence code 

for the interpretation of heritable cancer variants, we considered potential evidence codes for 

usage of other relevant somatic data types such as tumor signatures, chromothripsis, 

mutational burden, microsatellite instability (MSI), tumor RNA-seq data and LOH. Here, we 

summarize the potential uses of somatic data in the PP4 and PVS1 evidence codes, and LOH 

data.

Integration of RNA-Seq tumor data (PVS1 evidence code)

The current definition of the PVS1 evidence code from Richards et al is “null variant 

(nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multi exon 

deletion) in a gene where LOF is a known mechanism of disease”. Analysis of RNAseq data 

from tumors may provide insights into germline variants and provide further evidence for 

the application of codes such as PVS1. For example, the use of tumor-derived RNA 

sequencing data can determine whether a canonical or non-canonical predicted splice site 

variant results in abnormal cDNA isoforms that are associated with disruptions in splicing 

(Figure 5). Variants can occur at splice sites or at an intron / exon junction and splice 

disruption can lead to a truncated protein or nonsense-mediated decay (Seiler et al., 2018; 

Yang et al., 2018; Zhang et al., 2015). In Zhang et al, tumor RNAseq was used to support 

likely functional germline splicing disruption caused by a predicted splice variant in ATM, 

as the RNAseq displayed marked loss of read counts in exons 3’ of the splice site (see Figure 

S4 in Zhang et al., 2015). Further insight for usage of PVS1 evidence code has been detailed 

recently (see paper by Tayoun et al. in this same issue). Following their PVS1 decision tree, 

the splice site in the example from Zhang et al. would receive the full PVS1 evidence code, 

whereas without tumor RNA-seq data of the germline variant to confirm nonsense mediated 

decay, the maximum it could receive would be PVS1_Strong (downgrade from Very Strong 

to Strong).

Loss of Heterozygosity is not to be used routinely for germline variant interpretation

We initially proposed systematic incorporation of LOH data to ACMG/AMP germline 

classification given that a finding of tumor LOH could increase the functional impact of 
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germline variants in cancer predisposition syndromes (Kanchi et al., 2014). However, there 

are two main barriers to standardizing the use of LOH evidence for routine germline 

classification:(1) Definition of the length of LOH that would constitute a specific, or focal, 

loss and (2) Variation between and a range of qualities of somatic LOH calling algorithms 

from next generation sequencing data. Both barriers could lead to misinterpretations of the 

pathogenicity of the remaining allele after LOH events. For example, results from tumor 

mutation panels often do not provide enough data to distinguish whether the LOH event is 

centered on the gene containing the germline variant in question or instead represents LOH 

across an entire chromosome segment or arm containing hundreds of genes. Also 

problematic is the variation in somatic LOH calling software, and performance, particularly 

in the exome sequencing setting. We considered many examples relevant for LOH and 

highlight two such examples here in ATM and BRCA2 genes seen in 2 patients with breast 

cancer and brain cancer, respectively. These 2 variants, designated NM_000051.3(ATM): c.

8071C>T p. (Arg2691Cys) and NM_000059.3 (BRCA2): c.6058G>A p.(Glu2020Lys) are 

classified as uncertain significance in ClinVar, and reported to have somatic focal LOH data 

(Lu et al., 2015). For the ATM p.(Arg2691Cys) variant, supporting LOH data was only 

available in one reported case, and for BRCA2 p.(Glu2020Lys), the tumor type was atypical. 

Based on this and the technical issues with LOH, we recommend that LOH data not be used 

routinely for integration into germline variant classification.

However, using LOH on a case-by-case basis may be accepted when there is sufficient 

expertise in both germline and somatic variant and LOH calling, with documentation of 

LOH deemed focal by experts, consistency of tumor type between the germline variant and 

cancer type, and any reported LOH data is seen in >1 case. In such cases, it may be possible 

to incorporate LOH data (Figure 5) to substantiate PVS1 evidence code. In these cases, we 

suggest that LOH data is used to increase the PVS1 evidence code found by following the 

decision tree in Tayoun et al (in this same issue). For example, following the PVS1 decision 

tree, a nonsense variant in a tumor suppressor gene, lacking evidence of nonsense mediated 

decay, nonsense variants in that exon are rare in the population, and less than 10% of the 

protein is truncated would receive a PVS1_Moderate score. With the addition of somatic 

LOH (as deemed focal by experts), the germline variant could be assigned PVS1_Strong. 

For LOH not deemed focal by experts, we do not recommend the use of PVS1 evidence 

code.

Integration of Biomarkers for Somatic Support of Germline Variant Interpretation (PP4 
evidence code)

In addition to specifying use of somatic hotspot data in the PM1 evidence code for the 

interpretation of heritable cancer variants, we considered potential evidence codes for usage 

of other relevant somatic data types such as tumor signatures, chromothripsis, mutational 

burden, and microsatellite instability (MSI). The PP4 evidence code (“Patient’s phenotype 

or family history is highly specific for a disease with a single genetic etiology”) can 

potentially incorporate these four types of evidence (Figure 5 & Summary Box 1). Large-

scale sequencing studies have provided mutational signatures sensitive to detecting germline 

Hereditary Breast and Ovarian Cancer (HBOC) and constitutional mismatch repair (MMR) 

deficient patients (Alexandrov et al., 2013; Campbell et al., 2017). For example, tumor 
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signatures 3 and 6 (as defined by Alexandrov et al., 2013) when detected through tumor and 

matched normal sequencing could be considered as supporting evidence for phenotypes 

associated with the following genes: BRCA2 (signature 3) and MLH1/ MSH2/MSH6/PMS2 
(signature 6). The signatures of mutational processes in cancer are publicly available online 

(cancer.sanger.ac.uk). While these signatures may indicate functional consequence of an 

alteration in one of these genes, they are not specific to individual germline variants, and 

therefore we suggest supporting phenotypic evidence (PP4). In addition to tumor signature 

13, characterized by large-scale tumor rearrangements and chromothripsis may be used as 

PP4 evidence, as they are indicative of a germline predisposition such as medulloblastoma 

and germline TP53 mutations (Grobner et al., 2018; Rausch et al., 2012). Thus, in instances 

where tumor signatures are available, in addition to molecular sequencing, this should be 

used as supporting evidence.

The total number of variants detected in a tumor may signify an underlying predisposition 

(Bouffet et al., 2016; Campbell et al., 2017; Le et al., 2015; Shlien et al., 2015). However, 

there is little consensus on the definition of hypermutation, which leads to differences in 

application and interpretation (Campbell et al., 2017; Pritchard et al., 2016). Moreover, the 

cause of hypermutation -- such as hyper-methylation and silencing of MLH1 or specific 

therapeutic interventions -- should be considered in addition to constitutional MMR 

deficiency or Lynch syndrome (Campbell et al., 2017; Dudley, Lin, Le, & Eshleman, 2016; 

van Thuijl et al., 2015). When hypermutation of tumors is not a result of treatment, it can 

support a phenotypic picture consistent with a germline predisposition in mismatch repair. 

Microsatellite instability is an additional assay providing a means to identify patients with 

predisposition to cancer. Currently, however, this is still a non-specific marker with similar 

caveats to mutational burden (Campbell et al., 2017). These data should ideally be 

considered in a patient specific context and under the advisement of a tumor/germline 

review committee.

DISCUSSION

The use of somatic data has been a valuable resource for the classification of germline 

variants in cancer predisposition genes in large research studies (Huang et al., 2018; Zhang 

et al., 2015). As indicated by our survey of laboratories, most laboratories would use somatic 

data to interpret germline variants, if somatic data accompanied germline data for a given 

patient. The incorporation of somatic data to germline variant evaluation requires expertise, 

quality somatic data and an understanding of the complexities of tumor data when 

considering its use for clinical germline classification. We initially discussed incorporating 

multiple types of somatic data by adding additional evidence codes to the ACMG criteria for 

the classification of germline variants, such as a new supporting evidence tag if the variant is 

present in a somatic database. However, a validation exercise of 27 established germline 

variants with integration of LOH as a moderate tag revealed that 8/27 variants would change 

from an established Benign or Likely Benign classification to Uncertain and 5/27 would 

move from Uncertain to Likely Pathogenic (Supp_Table). Ultimately, we determined that 

creating new ACMG evidence codes at this time could not be done with scientific rigor 

given the available data. While we considered somatic data broadly, we propose an overall 

conservative application of somatic data in line with the ACMG/AMP Standards and 
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Guidelines. Mutational hotspots in cancer genes have been defined and are reproducible 

based on gene size, tumor type and aggregated sequencing studies (Chang et al., 2016; 

Chang et al., 2018). Thus, we, with the guidance and approval of the ClinGen Sequence 

Variant Interpretation (SVI) WG which oversees specifications to ACMG criteria, 

recommend the use of statistically significant somatic hotspot data using the PM1 evidence 

code for germline classification of variants in hereditary cancer genes. However, it is 

important to note that hotspot definitions will undergo iterative changes as more tumors are 

sequenced. An example is TP53, where hotspots at AA residues 157 and 158 were identified 

only after the tumor sample set expanded (11,119 versus 24,592 tumor samples) (Chang et 

al., 2018). This emphasizes the abundance of data necessary to discover hotspots and 

highlights the potential that some true hotspots may be missed. Additionally, careful 

consideration should be given to cases when a residue is both a germline and a somatic 

hotspot, such as the TP53 variant curation example of arginine codon 282. Although 

currently we recommend using the germline hotspot information instead, it is worthwhile to 

consider using both sources of information in an additive approach, with potential increase 

in the strength of the evaluation based on hotspot evidence from both germline and somatic 

sources. As more somatic hotspots are identified and as germline variant curation efforts 

further define germline hotspots as well, it is likely that we will identify more sites with both 

somatic and germline hotspot evidence. In a future analysis, we may seek to additively 

integrate this information and www.clinicalgenome.org will host any updates to these 

recommendations.

We also sought initially to systematically integrate LOH data, but reconsidered due to the 

many caveats which now limit its standardized use in clinical classification of germline 

variants. Notably, multiple research-based tumor boards are using LOH data to aid in 

classifying rare variants, as seen in the Pediatric Cancer Genome Project (PCGP) Germline 

Study, and three The Cancer Genome Atlas (TCGA) efforts (Huang et al., 2018; Kanchi et 

al., 2014; Lu et al., 2015; Seiler et al., 2018; Walsh et al., 2014; Yang et al., 2018; Zhang et 

al., 2015). Each of these studies assessed variants in the context of patient specific paired 

sequencing. However, loss of the wild type allele in the tumor should be combined with 

other evidence for pathogenicity such as functional biomarkers or characteristic genomic 

signatures (Davies et al., 2017; Alexandrov et al., 2013; Riaz et al., 2017). As nuances for 

LOH are further specified, such as critical size for focal LOH, and LOH computational 

calling programs on whole exome improve, we expect this data element to be more 

meaningfully used (Abkevich et al., 2012; Koboldt et al., 2012). In addition, our committee 

aims to periodically re-evaluate LOH evidence and create a new recommendation when 

warranted.

Evidence generated as part of comprehensive cancer sequencing and evaluation can help 

guide and strengthen support for interpretations of pathogenicity in germline cancer 

predisposition genes. These data elements are beneficial when analyzed on a case-by-case 

basis, considering the many different parameters of these types of experiments and analytic 

platforms. As tumor profiles have been analyzed in parallel to germline sequencing for 

patients with cancer predisposition, characteristics of the tumor profile including tumor 

signatures, mutational burdens and microsatellite instability can support well-known 

phenotypic classifications. We suggest PP4 evidence code in these cases. Furthermore, 

Walsh et al. Page 11

Hum Mutat. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.clinicalgenome.org/


RNA-seq from the tumor, when available, can provide the use of the very strong evidence 

(PVS1) code to validate germline splicing variants, although caution must be taken if the 

tumor has experienced significant structural variation as they may ablate the mutated allele 

or make RNA-seq interpretation challenging.

Evaluating somatic data in the context of hereditary cancer has proved to be a challenging 

task. When the Germline / Somatic Variant Subcommittee formed, we considered several 

questions (Figure 1), in part drawn from our own experience evaluating hereditary cancer 

patients and incorporating concurrent tumor sequencing. Given the sizable number of 

clinical laboratories considering integrating somatic data (62%), and the diverse sources of 

potential somatic data elaborated by the survey, it is apparent, at present, it will be a major 

challenge to integrate additional relevant somatic data due to inconsistency in use, 

interpretation, and training and in some cases methodology (LOH). The challenge can be 

overcome by improved understanding and increased use of tumor sequencing data, and 

enhanced training in tumor boards and centers that prioritize germline and tumor somatic 

sequencing for cancer care. We have summarized the data types, limitations and uses in a 

table (Table 1). We acknowledge that these recommendations may evolve, as more data 

emerges and as we consider additional data types, such as somatic epigenetic silencing in a 

recent paper from Park et al (2018). The ClinGen Germline / Somatic Variant Subcommittee 

aims to continue to assess somatic data for standardized incorporation into germline variant 

evaluation, and conversely, to explore whether germline data can provide insight into 

somatic variant evaluations (Li et al., 2017). It may be the case that once tumor and germline 

sequencing is standard of care, a merged variant interpretation guideline that draws 

information from both sources to guide interpretation of tumor and germline variants will 

provide the greatest clinical utility.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Checklist of Questions When Considering Somatic Data for Aiding in Classifying Germline 

Cancer Predisposition Gene Variants
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Figure 2: 
Process for considering the use of somatic variant data in classifying germline variants
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Figure 3: 
Example of TP53 histidine codon 179 in cancerhotspots.org. (Far Right) The residue has 

149 samples in the dataset, and seven amino acid variants represented by 3, 8, 8, 12, 14, 41, 

and 63 samples (middle box). Any AA with >=10 samples will be PM1 (R, Y, L, Q), while 

AA with >1 (and <10) will be PM1_Supporting (D, N, P). Each AA additionally displays 

the number of samples derived from a selection of cancer types (right box).
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Figure 4: 
PM1 Rule Specifications: Flow chart used to determine if somatic data should be used for 

PM1, and how it should be applied.
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Figure 5: 
Integration of Somatic Data for Germline Variant Classification. Green: Evidence Code for 

general use and application; Yellow: Evidence codes should only be considered under 

guidance of multidisciplinary tumor board, as this requires patient specific integrated data 

and institutional norms; Red: Additional caution needed with LOH to ensure focal loss and 

relevant germline variant on retained allele.
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Summary Box 1:

Expanded ACMG/AMP Criteria for Applying Tumor Evidence in the Classification of Variants in Cancer 

Genes

Very strong evidence of pathogenicity

PVS1 Null variant (nonsense, frameshift, canonical +/−1 or 2 splice sites, initiation codon, single or multi-exon deletion) in a gene where 
loss of function (LOF) is a known mechanism of disease

• The presence of loss of heterozygosity in a tumor, judged to be focal by experts, can increase the strength of a 
downgraded application of PVS1 by one level

Caveat: intended for the context of a germline variant being interpreted with regard to cancer predisposition

Moderate evidence of pathogenicity

PM1 Located in a mutational hot spot and/or critical and well-established functional domain (e.g. active site of an enzyme) without benign 
variation

• Variant AA at the hotspot codon in question has a sample count in cancerhotspots.org that is equal or greater than 10 at 
that codon Reduce to PM1_Supporting if variant AA has a sample count that is greater than 1, and less than 10 (from 2–
9)

Caveat: intended for the context of a germline variant being interpreted with regard to cancer predisposition

Supporting evidence of pathogenicity

PP4 Patient’s phenotype or family history is highly specific for a disease with a single genetic etiology

• Mutation signatures, with statistically significant association to a single gene or small set of genes, all of which were 
sequenced in the individual(s) with the variant under investigation (e.g. BRCA2: signature 3, MLH1, MSH2, MSH6, 
PMS2: signature 6; TP53: signature 13)

Caveat: intended for the context of a germline variant being interpreted with regard to cancer predisposition
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