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Abstract

Genital human papillomavirus (HPV) is the world’s most commonly diagnosed sexually

transmitted infection, and high-risk HPV types are strongly linked to cervical dysplasia and

carcinoma. Puerto Ricans are among the US citizens with higher HPV prevalence and lower

screening rates and access to treatment. This bleak statistic was as a motivation to detect

biomarkers for early diagnosis of HPV in this population. We collected both urine and cervi-

cal swabs from 43 patients attending San Juan Clinics. Cervical swabs were used for geno-

mic DNA extractions and HPV genotyping with the HPV SPF10-LiPA25 kit, and gas

chromatography-mass spectrometry (GC-MS) was employed on the urine-derived products

for metabolomics analyses. We aimed at discriminating between patients with different HPV

categories: HPV negative (HPV-), HPV positive with simultaneous low and high-risk infec-

tions (HPV+B) and HPV positive exclusively high-risk (HPV+H). We found that the metabo-

lome of HPV+B is closer to HPV- than to HPV+H supporting evidence that suggests HPV

co-infections may be antagonistic due to viral interference leading to a lower propensity for

cervical cancer development. In contrast, metabolites of patients with HPV+H were signifi-

cantly different from those that were HPV-. We identified three urinary metabolites 5-Oxo-

prolinate, Erythronic acid and N-Acetylaspartic acid that discriminate HPV+H cases from

negative controls. These metabolites are known to be involved in a variety of biochemical

processes related to energy and metabolism and may likely be biomarkers for HPV high-risk

cervical infection. However, further validation should follow using a larger patient cohort and

diverse populations to confirm our finding.
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Introduction

The association between mucosotropic Human Papilloma Virus (HPV) infections and cervical

cancer is unequivocal, with the virus being considered the etiologic agent for cervical carci-

noma [1, 2]. To date, despite that 180 different HPV types have been sequenced, only about 50

strains infect the epithelium of the genital tract where they can cause cancer or persist asymp-

tomatically [3, 4]. The high-risk HPV types (oncogenic) includes genotypes 16, 18, 31, 33, 35,

39, 45, 51, 52, and 58 that are associated with cervical, vulvar, vaginal, and anal cancer progres-

sion, while low-risk types such as 6, 11, 40, 42, 43, 44, 53, 54 and 74 are associated with warts

and low-grade anal lesions [5]. Puerto Rico is the region with the lowest cervical cancer screen-

ing rates in the US, which has also substantial economic and access barriers to preventive strat-

egies and treatments [6], and a higher prevalence of HPV than compared to those in the US

(34% vs 27%) [7, 8].

Screening practices include HPV testing in conjunction with cervical cytology (Pap smear)

during a pelvic examination especially for women above the age of 30 years [9]. This test has

shown to reduce the incidence of mortality from cervical cancer [10]. However, the test has

many barriers that include embarrassment in the screening method that can also contribute to

low screening rates in certain cultures such as in Puerto Rico, where screening is significantly

low [6]. Therefore, there is a definite need for alternative and supplementary HPV-related

infections early detection tests that some authors have discussed before [11]. As an alternative,

we aimed to determine if the analysis of urinary metabolites, could be a reliable approach for

the screening of patients with cervical HPV infections since the urine is widely used for identi-

fication of metabolic biomarkers in cancer [12, 13]. Moreover, as the collection of urine is

non-invasive, the biomaterial is very abundant and has a relatively stable composition of pro-

teins—often used to detect prostate and bladder cancer or even relate to inflammatory bowel

disease in children [13–15]. Indeed, methods such as HPV DNA urine testing has been used to

identify abnormal cells in adolescent girls who do not wish to have a vaginal examination [16,

17]. In fact, it was reported that self-collected urine can be used for HPV DNA detection

matching perfectly with the HPV DNA types identified in the corresponding cervical scrapes

[18, 19]. This supports our hypothesis that the metabolic changes observed in urine samples

could be directly related to the type of cervical HPV infection. Thus, we aimed to determine if

changes in urinary metabolites, could be an alternative and reliable approach for the screening

of patients with cervical HPV infections.

Urine biofluid samples, to our knowledge, have not been used in conjunction with metabo-

lomics to discriminate patients with cervical HPV infections. However, a recent study sug-

gested that methylation of both host and viral genes in urine has been feasible for cervical

cancer screening [20]. Such recent evidence has suggested that biomarkers for cervical cancer

may be washed such as exfoliated cells and debris in the urine, a kind of liquid biopsy–that

could facilitate the diagnostics of non-urothelial malignant cells such as cervical cancer [21].

In the last decade, there has been an increased trend in the use of “omics” approaches to

study cancer biology [22–25]. Among these approaches, metabolomics has been shown to

potentially identify relevant biomarkers for cancer detection or for the development of new

drug targets. Mass spectrometry-based metabolomics techniques are being used to uncover

metabolites in different cancer types [23, 24, 26] due to their reliability and reproducibility

[27].

Taken together these evidence supports our study, aimed at testing if urine could be used as

a non-invasive method for the detection of cervical HPV infections by evaluating the associa-

tion between cervical HPV types and urinary metabolites.
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Materials and methods

Patient recruitment and sampling

Women undergoing gynecology evaluation at the University of Puerto Rico and San Juan City

clinics (San Juan Metropolitan area), who did not meet the exclusion criteria, were recruited

to the study. The exclusion criteria were: 1) antibiotics taken in the prior 2 months; 2) history

of regular urinary incontinence; 3) treatment for or suspicion of prior toxic shock syndrome;

4) candidiasis; 5) active urinary tract infections; 6) active STDs; and 7) vaginal irritation at the

time of screening. The study was approved by the Ethics Committees of the UPR-Medical Sci-

ences Campus IRB (Protocol ref. 1050114/June 2014), San Juan City Hospital and the Inter

American University of Puerto Rico IRB (Protocol ref. 1182327–2014) as part of a larger cervi-

cal microbiome study. All subjects were informed (both verbally and in writing) of the sam-

pling procedure, risks and benefits of the study, gave written informed consent and signed

HIPAA forms, in accordance with the Declaration of Helsinki.

Urine biofluid was self-collected at the time of gynecology evaluation, from 43 healthy

reproductive-age women (21–50 years old), with the ability to provide informed consent.

Metadata categories we collected from the interview/visit included age, BMI and smoking (S1

Table). All samples were stored at -80˚C and processed for further metabolite extraction. Addi-

tionally, conventional cervical cytological test (Pap smear) was obtained for cytology diagnos-

tics. Cervical swabs were obtained from the patients using sterile Catch-All Specimen

Collection Swabs (Epicentre Biotechnologies, Madison WI), and placed in MoBio bead tubes

with buffer (MoBio PowerSoil™ kit, MoBio, Carlsbad CA) for genomic DNA extractions using

the MoBio PowerSoil™ kit, following the manufacturer’s instructions. As these patients were

recruited as part of a cervical microbiome study, the cervical genomic DNA extractions used

both for HPV typing and microbiota analyses, were done using the standard MoBio soil kit as

suggested by the Manual of Procedures of the Human Microbiome Project protocol [28].

Human Papilloma Virus genotyping

For HPV genotyping we used a short-polymerase chain reaction-fragment assay (Labo Bio-

medical Products (LBP), Rijswijk, The Netherlands, licensed Innogenetics technology) using

the cervical genomic DNA. The assay uses SPF10 primers to amplify a 65-bp fragment of the

L1 open reading frame of HPV genotypes, followed by a Reverse-Hybridization step. In the

first step, the 65-bp PCR fragment assay amplifies HPV genotypes: 6, 11, 16, 18, 31, 33, 34, 35,

39, 40, 42, 43, 44, 45, 51, 52, 53, 54, 56, 58, 59, 66, 68/73, 70, and 74. In the second step, the

amplified fragments underwent a line probe assay by reverse-hybridization, to determine the

specific HPV type compared to the kit-provided controls [29].

Metabolomics procedure and analysis

Metabolite extraction and derivatization. Two hundred μL of liquefied urine samples

were mixed with 800 μL of the methanol-water mixture (8:1 v/v), vortexed for 1 min and cen-

trifuged at 13000 rpm X 10 min at 4˚C. After centrifugation, supernatants were collected,

placed in glass vials, and evaporated to dryness using a SpeedVac (Savant AS160, Farmingdale,

NY). The metabolite samples were first derivatized by methoxyamination by adding 50 μL of

20 mg/mL solution of methoxyamine hydrochloride (Sigma-Aldrich) in pyridine (Sigma-

Aldrich) and incubated at 37˚C for two hours. Trimethylsilylation was subsequently per-

formed by adding 50 μL of N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA+1%

TMCS, Sigma-Aldrich), incubating for 1 h at 65˚C and centrifuged at 13000 rpm X 10 min at
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RT. Supernatants were transferred to analytical vials and stored at -20˚C or diluted in hexane

(1:50) prior to the GC-MS analysis.

Metabolites separation by GC and detection by MS. Metabolites were fractionated by

gas chromatography-mass spectrometry (GC-MS) (GCMS-QP2010, Shimadzu Scientific). The

chromatography conditions were as follows: RXI-5MS (0.25 mm inner diameter, 0.25 μm D.

F., 30 m) (Restek), split injection (ratio = 15), the injection volume of 1 μL. The inlet tempera-

ture was 280 ˚C; the ion source temperature was 200 ˚C; interface temperature was 150 ˚C.

The oven temperature was set at 100 ˚C for 1 min, and then programmed from 100 ˚C to

290 ˚C at 8 ˚C/min, and held at 290 ˚C for 16 min. Helium was used as the carrier gas at a con-

stant linear velocity of 39 cm/sec. The sample aliquot was injected in split mode (ratio = 15).

Mass spectra were obtained for each metabolite on a Shimadzu GCMS-QP2010 mass spec-

trometer after electron impact ionization (EI, 70 eV, ion source temperature 200˚C) in full

scan mode between 35 and 700 amu. Mass spectral library searches of the major chro-

matographic peaks were conducted using the GCMS Labsolution data analysis software (Shi-

madzu) equipped with NIST14/2014/EPA/NIH database.

Bioinformatics analysis. Genotyping results were grouped into three main categories:

HPV negative (HPV-), HPV positive with simultaneous low and high-risk infections (HPV+B),

and HPV positive exclusively with high-risk genotypes (HPV+H). Studies had found multiple

HPV genotypes associated with neoplasias [30], including low-risk types [31]. Recently HPV

research has also grouped patients with both high-risk and low-risk infections in studies relat-

ing HPV diversity and prevalence in Hispanic populations [32, 33].

For metabolomics analysis, peak intensities for each metabolite were collected, composed

as the data matrix and processed using Metaboanalyst 4.0 [34, 35] unless otherwise specified.

Data integrity check was performed according to default settings on the Metaboanalyst inter-

face. Thus, obtained datasets were evaluated by Principal Component Analysis to identify sam-

ples-outliers being outside the Hotelling T2 95% confidence ellipse [36]. Next, identified

outliers (two in HPV+B and one HPV+H group) and samples that did not produce a total ion

chromatogram (Table 1) were removed from further analysis. The resultant data were normal-

ized by log-transformation and Pareto scaling to improve the pattern recognition for untar-

geted metabolomics data. Changes between groups were analyzed via the Holm-Sidak test for

multiple comparisons with GraphPad Prism version 7.0c (GraphPad Software, San Diego,

CA). The α level for significance was set at 0.05. The supervised Partial Least-Squares Discrim-

inant Analysis (PLS-DA) model was used to identify the metabolic differences between groups.

To evaluate the model performance, class labels were permuted 2,000 times to identify whether

differences between groups were significant. For permutation test statistics we selected separa-

tion distance, which was defined as the ratio of the between-group sum of squares and the

within-group sum of squares (B/W ratio). Group’s performance was evaluated by using the

leave-one-out cross-validation (LOOCV) method. Evaluation of Variable Importance in Pro-

jection (VIP) scores, estimated the importance of each variable in the projection used within

the PLS-DA model. Variables with a VIP score� 1.0 were considered important in a given

model. The diagnostic ability of these variables as potential biomarkers for the detection of

HPV infections in urine, was assessed by measuring the area under the curve values (AUC),

using the receiver operating characteristic curves (ROC) method. Variables with a AUC� 0.9

were considered important for diagnostic purposes [37].

Results and discussion

Cervical HPV genotyping of the 43 patients revealed a total of 34 HPV positive patients and 9

negative to HPV infections (HPV-). Of the 34 HPV positives, 15 were exclusively high-risk
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Table 1. Sample IDs and groupings by HPV-risk, genotypes and cytology.

# Sample

ID

Genotyping

Result

Cytology HPV

Risk

HPV

Status

Group

1 35 Negative LGSIL Negative Negative HPV-

2 50 Negative ASCUS Negative Negative HPV-

3 53�� Negative HGSIL Negative Negative EXC

4 58 Negative LGSIL Negative Negative HPV-

5 61 Negative HGSIL Negative Negative HPV-

6 69 Negative HGSIL Negative Negative HPV-

7 70 Negative HGSIL Negative Negative HPV-

8 75 Negative HGSIL Negative Negative HPV-

9 79 Negative NSIL Negative Negative HPV-

10 16 16,66,6 LGSIL Both Positive HPV+B

11 18� 16,6,53 HGSIL Both Positive EXC

12 21 31,33,42,44,74 HGSIL Both Positive HPV+B

13 22 16,31,39,45,66,68,44,53,74 LGSIL Both Positive HPV+B

14 25� 16,33,66,6 HGSIL Both Positive EXC

15 26 16,51,56,6,34,44,53,74 LGSIL Both Positive HPV+B

16 27 39,74 LGSIL Both Positive HPV+B

17 28 54,56 HGSIL Both Positive HPV+B

18 30 16,39,52,53,56 HGSIL Both Positive HPV+B

19 31�� 31,52,6,74 LGSIL Both Positive EXC

20 34 16,56,74 HGSIL Both Positive HPV+B

21 36 18,44,74 HGSIL Both Positive HPV+B

22 47 31,33,44 HGSIL Both Positive HPV+B

23 48 33,42 ASCUS Both Positive HPV+B

24 49 33,42 HGSIL Both Positive HPV+B

25 51 51,53 ASCUS Both Positive HPV+B

26 63 51,53,66 HGSIL Both Positive HPV+B

27 65 54,45,51 NA Both Positive HPV+B

28 66 31,6 HGSIL Both Positive HPV+B

29 17 16,66 HGSIL H-risk Positive HPV+H

30 19 35 HGSIL H-risk Positive HPV+H

31 20 66 LGSIL H-risk Positive HPV+H

32 32 52 LGSIL H-risk Positive HPV+H

33 33 16 HGSIL H-risk Positive HPV+H

34 37 31 LGSIL H-risk Positive HPV+H

35 43 51 LGSIL H-risk Positive HPV+H

36 44� 56 LGSIL H-risk Positive EXC

37 56 18,35 ASCUS H-risk Positive HPV+H

38 60 51,52,66 LGSIL H-risk Positive HPV+H

39 62 16 LGSIL H-risk Positive HPV+H

40 68 68 HGSIL H-risk Positive HPV+H

41 72�� 45 HGSIL H-risk Positive EXC

42 74�� 31 NA H-risk Positive EXC

43 78�� 52 ASCUS H-risk Positive EXC

�—outlier removed from metabolomics analysis;

��—sample did not produce the total ion chromatogram; EXC—samples excluded from the metabolomics analysis.

Cytology categories: NA-undetermined; LGSIL Low-grade squamous intraepithelial lesion, HGSIL high-grade squamous intraepithelial lesion, ASCUS Atypical

squamous cells of undetermined significance, and NSIL Negative for squamous intraepithelial lesion.

https://doi.org/10.1371/journal.pone.0209936.t001
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types (HPV+H) and 19 had simultaneously high-risk and low-risk infections, ranging from 2

to 9 simultaneous HPV genotypes (HPV+B) (Table 1). We did not find any patients positive

only for low-risk HPV types. These 43 patients were mostly non-smokers, and although socio-

demographic and cytology metadata information was available, due to the modest sample size

these categories did not pass the PLS-DA model validation.

The distribution of multiple HPV infections is common but with different HPV co-infec-

tion prevalence rates in different countries. Thus, it was documented that out of the 2,478 sam-

ples from the Costa Rican HPV Vaccine Trial, 43.2% had multiple HPV type infections [38].

In a study of 5,000 samples from the Centralized Cervical Cancer Screening Program of British

Columbia, 33% were positive for more than one HPV type [39]. In Brazil, a study recruiting

2,113 women for a 1-yearand a 4-year period, showed an HPV co-infection prevalence of

12.3% and 22.3% correspondingly [40]. Relatively similar to the co-infection prevalence in

Costa Rica, our study found 44.2% of Puerto Rican woman positive for multiple HPV type

infections (Table 1). Other studies performed in Venezuela, revealed Amerindian populations

with a 75% HPV prevalence, and with 23 different HPV types, a study that discriminated

between exclusively low-risk HPV, exclusively high-risk and co-infections by both HPV types

[32], as well as another study that made grouping between low-risk and high-risk types [33].

A total of twenty-four metabolites were identified in samples from all groups according to

their electron impact mass spectra by comparison to the NIST14 spectral mass library

(Table 2).

To identify potential biomarkers discriminating between patients with HPV infections and

those that had no infections, we performed PLS-DA analysis using the normalized metabolite

intensities as variables. The PLS-DA was used to analyze three groups of patients. PLS-DA

scores plot of HPV- and HPV+H displayed satisfactory separation at the 95% level with minor

overlap between source ellipses, while the separation between HPV- and HPV+B was less sig-

nificant suggesting similarity in the metabolites abundances between HPV- and HPV+B. The

PLS-DA showed that 60.5% of the total explained variance in the data was represented by the

first two principal components (PC1–49.8% and PC2–10.7%). The permutation test showed

significant separation distance between groups (p< 5e-04) (Fig 1A).

This suggests that in our study, the metabolome of HPV+B group is closer to HPV- than to

HPV+H. Thus, it is very likely that the pattern of HPV genotype co-infections in HPV+B

group does exhibit a rather antagonistic effect of the different HPV risk types, resulting in a

similar metabolomic profile as in HPV-. The effects of multiple interactions between co-infect-

ing HPV types on carcinogenesis are not well studied and data reported to date are controver-

sial. Some reports suggested that multiple HPV infections could trigger synergistic effects

enhancing the development of carcinogenesis [41, 42] while others reported their antagonistic

interactions, that likely may reduce the risk of cervical cancer [43–45]. In addition, despite the

popular opinion that multiple HPV infections are associated with the higher risk of cervical

cancer compared to those with single HPV infection, several studies conducted in different

counties identified that multiple HPV infections are not necessarily correlated with the severity

of cervical abnormalities [5, 46, 47]. Therefore, there is a need to perform more studies evaluat-

ing the incidence of multiple type HPV infections in different populations, and identification

of any interaction between HPV types in the incidence of cervical cancer.

We next identified ten significant discriminatory metabolites (VIP score�1) responsible

for the separation of groups that may have a clinical value in the diagnosis of HPV infection.

Thus, we found higher abundance of 5-Oxoprolinate (VIP, 1.8), Erythronic acid (VIP, 1.7),

N-Acetylaspartic acid (VIP, 1.6), 4-Hydroxybuturic acid (VIP, 1.6), Aconitic acid (VIP, 1.5),

Citric acid (VIP,1.3), 5-Oxoproline (VIP, 1.2), Glutaric acid (VIP, 1.2), Uric acid (VIP, 1.1)

and Acetic acid (VIP, 1.1) (Table 2, Fig 1B). These metabolites are known to be involved in
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multiple biochemical processes, such as energy metabolism, pentose phosphate pathway, γ-

glutamyl cycle and futile 5-Oxoproline cycle.

To determine whether these metabolic changes were significant, we performed the Holm-

Sidak corrections for multiple comparisons (α = 0.05) using the following group combinations

HPV- with HPV+B, HPV- with HPV+H and HPV+B with HPV+H. We found that 5-Oxopro-

linate, Erythronic acid, N-Acetylaspartic acid, and 4-Hydroxybuturic acid were significantly

elevated in HPV+H group compare to HPV- (Table 2, Fig 1C). As expected, we have not iden-

tified significant changes in HPV+B vs HPV-, since the metabolome of HPV+B group is closer

to HPV- than to HPV+H. However, multiple test comparisons have not identified changes

between HPV+B vs HPV+H. The biological significance of this is to be determined, and

requires a using a larger patient cohort.

To identify the diagnostic potential of the four most significant metabolites 5-Oxoprolinate,

Erythronic acid, N-Acetylaspartic acid and 4-Hydroxybuturic acid as prognostic biomarkers

for high-risk HPV infection, we conducted an additional ROC analysis (Fig 2). The analysis

showed the greatest AUC values in HPV+H vs HPV- including 5-Oxoprolinate (AUC, 0.92),

Erythronic acid (AUC, 0.92) and N-Acetylaspartic acid (AUC, 0.91). Taken together,

Table 2. Human urine metabolome found in HPV+B vs HPV- and HPV+H vs HPV- groups.

# Metabolite RT Fragment ions VIP HPV+B

Adj P

HPV+H

Adj P

1 Lactic acid 9.67 189, 233, 261 0.47 1.000 0.988

2 Acetic Acid 9.90 189, 219, 247 1.11 1.000 0.599

3 Glycine 10.69 147, 218, 246 0.47 1.000 0.993

4 2-Hydroxybutyric acid 11.24 189, 247, 275 0.55 1.000 0.988

5 Proline 11.55 184, 258, 328 0.22 0.987 0.993

6 Methylmalonic acid 11.83 147, 189, 289, 0.61 1.000 0.988

7 Urea 12.09 147, 231, 273 0.20 1.000 0.993

8 5-Oxoprolinate 13.18 75, 158, 186 1.82 0.303 0.009�

9 Threonine 13.27 130, 246, 290 0.61 1.000 0.983

10 Succinic acid 13.47 147, 189, 289, 0.57 1.000 0.955

11 Glycerol 15.07 171, 189, 347 0.35 1.000 0.993

12 5-Oxoproline 15.97 147, 272, 300 1.23 1.000 0.205

13 Glutaric acid 16.13 73, 147, 303 1.20 1.000 0.365

14 N-Acetylaspartic acid 16.65 73, 147, 346 1.65 0.575 0.024�

15 2-Butenoic acid 17.11 189, 247, 275 0.45 1.000 0.988

16 Hippuric acid 17.64 77, 105, 236 0.73 1.000 0.983

17 4-Hydroxybutyric acid 17.72 73, 147, 275 1.62 1.000 0.035�

18 4-Hydroxyphenylacetic acid 17.83 75, 205, 324 0.68 1.000 0.955

19 Erythronic acid 18.28 147, 289, 331 1.69 1.000 0.016�

20 2-Hydroxyglutaric acid 19.04 147, 207, 433 0.32 1.000 0.993

21 Glyceric acid 19.95 73, 231, 391 0.04 1.000 0.993

22 Aconitic acid 20.8 73, 147, 459 1.46 1.000 0.120

23 Citric acid 23.14 357, 459, 591 1.27 0.909 0.599

24 Uric acid 25.47 73, 567 1.11 1.000 0.685

RT—Retention time; VIP—Variable importance in projection scores identified via PLS-DA analysis for the PC1; Adj P–Adjusted P value determined using the Holm-

Sidak method in comparison to HPV- group, α = 0.05.

�—indicate metabolite that matches selected criterion.

https://doi.org/10.1371/journal.pone.0209936.t002

Urine metabolites and HPV

PLOS ONE | https://doi.org/10.1371/journal.pone.0209936 December 28, 2018 7 / 14

https://doi.org/10.1371/journal.pone.0209936.t002
https://doi.org/10.1371/journal.pone.0209936


5-Oxoprolinate, Erythronic acid and N-acetylaspartic acid could serve as prognostic biomark-

ers to discriminate high-risk HPV infections from non-infected controls.

5-Oxoprolinate (the conjugate base of 5-Oxoproline) is an intermediate in the isomeriza-

tion of glutathione to 5-Oxoproline via the action of γ-glutamyl cyclotransferase in the γ-

glutamyl cycle. Elevation of 5-Oxoproline levels in blood and urine has been increasingly rec-

ognized as a cause of 5-Oxoprolinuria [48] that usually occurs in chronically ill, malnourished

women with impaired renal function and chronic acetaminophen ingestion [49]. In addition,

HPV infections in women are usually associated with a low level of glutathione [50], decreased

expression of antioxidant enzymes and elevation of ROS levels in host cells [51]. Reduction in

glutathione content augments an ATP-depleting futile 5-Oxoproline cycle via elimination of

the feedback inhibition of γ-Glutamyl Cysteine Synthetase causing increase of γ-Glutamyl Cys-

teine that is subsequently metabolized to 5-Oxoproline which could cycle back into glutamic

acid via action of 5-Oxoprolinase and at the cost of two ATP molecules without production of

Glutathione [49, 52, 53].

Fig 1. Metabolites discriminating HPV-, HPV+B and HPV+H patients. (A) Partial-least discriminant analysis (PLS-DA) score plot. (B) Variable

importance in projection (VIP) plot with cut-off� 1.0. (C) Box-and-whisker plots depict the most significant metabolites, with the top two: 5-

Oxoprolinate and N-Acetylaspartic acid changes in HPV+B and HPV+H groups relative to HPV-. �Adjusted P value. Y-axis shows the normalized

relative abundance. RT—Retention time; VIP—Variable importance in projection scores identified via PLS-DA analysis for the PC1; Adj P–Adjusted P

value determined using the Holm-Sidak method in comparison to HPV- group, α = 0.05. �—indicate metabolite that matches selected criterion.

https://doi.org/10.1371/journal.pone.0209936.g001
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Erythronic acid is a normal organic acid present in biofluid samples of healthy children and

adults. However, its elevation in urine evidences a deficiency of the activity of Transaldolase—

a key enzyme in the pentose phosphate pathway [54]. This can lead to various clinical manifes-

tations including liver dysfunction hepatosplenomegaly, hepatic fibrosis in the pathophysiol-

ogy of diabetes [55, 56].

N-Acetylaspartic acid is synthesized from Aspartate and Acetyl-CoA and via hydrolysis of

N-Acetyl-aspartylglutamate. According to the literature, elevation of N-Acetylaspartic acid

could be regulated by the Ras homolog gene family, member C guanosine triphosphatase,

which is essential in transforming growth factor beta 1- induced epithelial-mesenchymal tran-

sition in cervical cancer cells [34]. To date, this metabolite is only known as a specific urinary

marker for Canavan disease [57] which is caused by Aspartoacylase deficiency with abnormal

accumulation of N-acetylaspartic acid in the brain and body fluids [58].

To date, HPV testing is increasingly used for screening in conjunction with the conven-

tional cervical cytological test (Pap smear) or liquid-based cervical cytological test [9, 59] fol-

lowed with the HPV DNA test [11]. Cervical cytology classification for squamous cell

abnormalities includes Atypical Squamous Cells of Undetermined Significance (ASCUS), Neg-

ative for squamous intraepithelial lesion (NSIL), Low-Grade, and High-Grade Squamous

Intraepithelial Lesion (LGSIL and HGSIL). Given that, these types of cervical screenings are

invasive and time-consuming, the development of new diagnostic methods using biofluid

samples including urine could provide a feasible alternative to HPV testing of cervical samples

Fig 2. Urine biomarkers predicted by ROC curve analysis curve with 95% confidence interval (shadowed). Box-and-whisker plots show the

distribution of abundance values of 5-Oxoprolinate, Erythronic acid and N-Acetylaspartic acid in HPV- vs HPV+H samples with the optimal cut-off as

a horizontal dotted red line.

https://doi.org/10.1371/journal.pone.0209936.g002
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[60]. Thus, our study provides a new possibility for the detection of HPV+H infections in

urine, via analysis of the content of 5-Oxoprolinate, Erythronic acid and N-Acetylaspartic acid

using just 200 μL of the urine sample. The applicability of these metabolites as predictive uri-

nary markers requires further investigation using a larger patient cohort, which is the limita-

tion of the current study. In addition, assessment of Erythronic acid and N-Acetylaspartic

acid abundance in urine are already routinely performed, via DNA mutation screenings for

Transaldolase and Aspartoacylase correspondently. The existing use of these laboratory tests

confirms its suitability for the diagnosis of HPV+H infections. Current diagnosis of 5-Oxopro-

linuria is expensive and performed only in specialized laboratories via GC-MS. Nevertheless,

this study suggests that mutational analysis of the 5-Oxoprolinase gene may be advisable for

routine diagnostic purposes [61] which could also apply for the identification of HPV+H

infections in clinical laboratories.

Conclusions

This study provided preliminary evidence for the successful detection of urine metabolites

related to cervical high-risk HPV infections. Using the urine samples of the Puerto Rican

woman followed by GC-MS analysis we have shown, that patients with high-risk HPV infec-

tions have the significantly higher abundance of 5-Oxoprolinate, Erythronic acid, and N-Acet-

ylaspartic acid. Besides characterizing cervical HPV, we were able to relate high-risk HPV

infections with urinary metabolites and defined 5-Oxoprolinate, Erythronic acid, and N-Acet-

ylaspartic acid as possible prognostic biomarkers for high-risk HPV infections. We also found

that patients with simultaneous high-risk and low-risk infections had a similar urinary meta-

bolome with patients without infections supporting early evidence that suggests HPV co-infec-

tions may be antagonist due to viral interference leading to lower propensity in cervical cancer

development. However, further validation should follow using a larger patient’s cohort to con-

firm our finding. In addition, it is advisable to perform more MS-based studies to evaluate dif-

ferentially abundant metabolites and peptides in urine that may correlate not only with HPV

genotypes but with cervical intraepithelial neoplasia stages and clinical status.
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