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The advent of molecular therapy targeting specific driver oncogenes has dramatically 
changed the prognosis of a subset of NSCLC, dilating survival and improving the quality of 
life of patients with advanced disease. Two of the major targets for treatment with receptor 
TKIs are the activated mutated forms of the EGFR and the ALK gene fusions. In advanced 
NSCLC patients harboring EGFR mutations or ALK rearrangements, the use of TKIs in the first-
line setting, have provided unexpected large progression-free survival and overall survival 
benefits, compared with cytotoxic chemotherapy. However, despite initial responses and 
durable remissions, the development of resistance inevitably leads to treatment failure. The 
aim of this review is to discuss the treatment strategy currently used for tumors harboring 
these two genetic targets and to focus on what will be available in clinical practice in the 
near future.
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Lung cancer is the leading cause of cancer-related deaths worldwide in both men and women, 
accounting for roughly 27% of all cancer-related deaths in 2015 [1]. Unfortunately, the progno-
sis of advanced (IIIB/IV) NSCLC remains poor with a 5-year survival rate of less than 17% [1]. 
Nevertheless, recent advances over the understanding of molecular mechanisms underling the 
development and progression of NSCLC revealed the presence of different targetable oncogenic 
drivers, thus identifying specific subsets of patients with distinct pathological and clinical features 
who might benefit from targeted therapies. This evidence paved the way to the era of personalized 
therapy, with EGFR and ALK target therapies representing the forefront of treatment of advanced 
NSCLC. EGFR mutations more frequently occur in patients with specific clinical features, such as 
never smoker, female gender, Asian ethnicity (30% of advanced NSCLCs as opposed to 15% for the 

Practice points

 ●  Despite recent improvements in diagnostic techniques and therapeutic approaches, the prognosis of advanced 
NSCLC remains dismal.

 ●  Molecular analyses (at least for EGFR, KRAS, ALK, ROS1) are mandatory in every patient diagnosed with NSCLC.

 ●  In oncogene-addicted NSCLCs, targeted therapies provide benefit in terms of both progression-free survival and 
overall survival.

 ●  Resistance to treatment invariably occurs in virtually all patients who receive TKIs.

 ●  Next-generation TKIs represent a valid options to overcome resistance to first-generation inhibitors.
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western population) and adenocarcinoma histol-
ogy. However, it should be noticed that EGFR 
mutational status is not determinable only of the 
basis of the aforementioned clinical character-
istics. On the other side, ALK rearrangements 
commonly occur in patients with certain clin-
icopathologic features including never smoking 
history, young age (median age of onset 52 years) 
and adenocarcinoma histology (solid or acinar 
growth patterns), accounting for 5% of all cases 
of NSCLC. In this paper, we will provide an 
overview of the two major subtypes of oncogenic 
drivers, EGFR and ALK in NSCLC as well as the 
development of target therapies available now 
and in the near future.

First- & second-generation eGFR–TKis
Activating EGFR mutations (most commonly 
exon 19 deletion or exon 21 [L858R] point muta-
tion) are associated with higher response rates 
(RRs) to EGFR–TKI therapy, than standard 
platinum-doublet chemotherapy. Such muta-
tions are present in up to 17% of Caucasians 
and 50% of east Asian patients with lung 
adenocarcinoma [1].

Iressa Pan-Asia Study was the first Phase III 
randomized clinical trial to confirm EGFR 
mutation as a predictive biomarker for response 
to EGFR–TKIs [2].

Specifically comparing EGFR–TKI therapy 
with chemotherapy in an unselected popula-
tion, with clinical features suggestive for acti-
vating EGFR mutations, patients with EGFR-
mutated (m+) tumors achieved significantly 
longer progression-free survival (PFS) with 
gefitinib versus those receiving chemotherapy 
(hazard ratio [HR] for progression or death 
0.48; 95% CI: p < 0.001). The dominant role of 
EGFR–TKIs as first-line treatment option over 
standard platinum-based doublet chemotherapy 
in patients with stage IIIb/IV NSCLC and sus-
pected or known EGFR mutations, was further 
supported by multiple trials, showing signifi-
cantly higher RRs and prolonged PFS occurred 
consistently across all of them (Table 1) [3-9].

As a result, erlotinib, gefitinib and most 
recently, the irreversible inhibitor afatinib have 
received approval for first-line treatment of 
EGFRm+ NSCLC, leading upfront molecu-
lar testing for EGFR, a mandatory analysis. 
Nevertheless, none of the above studies have 
documented a significant difference in overall 
survival (OS) between TKIs and chemotherapy, 
likely due to the high proportion of patients 

receiving different subsequent therapies and 
crossing over to the alternative treatments. In 
the pooled analysis of the Phase III randomized 
LuX-Lung 3 and LuX-Lung 6 trials [10], first-
line afatinib was shown to improve OS ver-
sus chemotherapy in patients with advanced 
NSCLC with common mutations (median: 
27.3 vs 24.3 months; HR: 0.81; 95% CI: 
0.66–0.99; p = 0.037). In particular, subgroup 
analyses suggested that the OS benefit of afatinib 
was driven by patients harboring exon 19 dele-
tions (31.7 vs 20.7 months; HR: 0.59; 95% CI: 
0.45–0.77; p = 0.0001), while no difference was 
observed for the L858R cohort (HR: 1.25; 95% 
CI: 0.92–1.71; p = 0.16), noting that these two 
mutational patterns define different behavior and 
prognosis. With the aim to determine which of 
the currently available EGFR–TKIs is the treat-
ment’s choice for the advanced EGFR-positive 
NSCLC in the first-line setting, results from a 
Phase II randomized study, LuX-Lung 7 (com-
paring afatinib vs gefitinib), have been recently 
shown at the first ESMO Asia 2015 Congress in 
Singapore [11], while data from another Phase III 
randomized trial ARCHER 1050 (the irrevers-
ible TKI inhibitor, dacomitinib vs gefitinib) are 
pending [12]. In the first head-to-head LUX-
Lung 7 trial, afatinib significantly reduced the 
risk of lung cancer progression by 27% versus 
gefitinib, with an higher proportion of patients 
alive and progression free at 18 months (27 vs 
15%; p = 0.018) and 24 months (18 vs 8%; 
p = 0.018).

Speculating on the reason for the increased 
effectiveness of afatinib compared with gefitinib, 
we may argue that afatinib has some activity 
against T790M exon 20 mutation, present in up 
to 30% of TKIs naive. Although no difference 
between the two TKIs was found, in terms of 
discontinuation due to adverse events (6.3% for 
both arms), typical toxicity profiles have differ-
ently marked the two treatments, which might 
play a role to guide the selection of an EGFR 
inhibitor as a first-line choice. Despite remark-
able initial responses, all patients with EGFR-
mutant lung adenocarcinomas, eventually 
experience disease progression on EGFR– TKI 
therapy, resulting in median PFS ranging from 
9.6 to 13.7 months.

Several acquired resistance mechanisms have 
been reported so far: EGFR exon 20 T790M 
mutation, uncommon EGFR secondary point 
mutations (e.g., D716Y, L747S, T854A), 
MET amplification, PIK3CA mutation, BRAF 
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mutation, HER2 amplification, transforma-
tion to small cell lung cancer and epithelial to 
mesenchymal transition [13–16].

Third-generation eGFR–TKis
Roughly 60% of cases of acquired resistance 
seem to be associated with the presence of a 
secondary missense mutation, namely T790M. 
This mutation consists into the replacement of 
a threonine with a methionine at codon 790 
of exon 20 in the EGFR gene, affecting the 
catalytic adenosine 5́  triphosphate ATP bind-
ing pocket of the EGFR–TK domain [17]. As 
a consequence, T790M mutation enhances 
the binding affinity between the EGFR–TK 
domain and ATP. Importantly, in a subset of 
patients with EGFRm+ NSCLC who develop 
T790M-mediated acquired resistance, this 
mutation is detectable at baseline in a sub-
group of clones through the use of highly sen-
sitive techniques, becoming dominant follow-
ing prolonged exposure to EGFR–TKIs [18]. 
In order to overcome such resistance a novel 
class of third-generation EGFR–TKIs has been 
designed to specifically target T790M mutation, 
providing a critical improvement in the treat-
ment in T790M-positive NSCLC patients with 
acquired resistance to TKIs. Within this class, 
rociletinib (CO-1686), osimertinib (AZD9291), 
HM61713, ASP8273 and EGF816 are mutant-
selective and EGFR wild type (WT) sparing 
TKIs, and are active against either sensitizing 
mutations and T790M. Interestingly, these 
molecules show a low affinity for WT form of 
EGFR, thus displaying a better toxicity profile 
compared with first- and second-generation 
EGFR–TKIs.

Osimertinib (AZD9291) is a monoanilino-
pyrimidine compound that irreversibly and 
selectively targets sensitizing as well as resistant 
T790M-mutant EGFR. In preclinical studies, 

osimertinib showed a significant efficacy in 
tumor xenograft and transgenic models [19]. In 
the Phase I/II AURA trial 253 patients with 
advanced EGFR-mutant NSCLC pretreated 
with EGFR–TKIs received osimertinib at dis-
ease progression. Of note, in 127 patients with 
documented T790M mutation was reported 
an impressive objective response rate (ORR) 
of 61%, with a disease control rate (DCR) of 
95% and PFS and 9.6 months [20]. Conversely, 
in patients who tested negative for T790M, 
the ORR was 21%, DCR 61% and PFS only 
2.8 months. Importantly, in f irst-line set-
ting in EGFR–TKIs-naive patients harboring 
EGFR-sensitizing mutation, Ramalingam et al. 
reported an ORR of 70%, DCR of 97%, while 
PFS was not reached [21]. Besides, an ongoing 
Phase II clinical trial (AURA2) of osimertinib 
in EGFR-positive NSCLCs who progressed on 
EGFR–TKIs treatment and confirmed T790M 
showed encouraging results, achieving an ORR 
of 64%, a DCR of 90%, however, PFS was 
not reached [22]. Overall, osimertininb proved 
to be safe, with only 6–7% of adverse events 
leading to reduction or discontinuation of treat-
ment. The most common side effects included: 
diarrhea (47%), rash (40%), nausea (22%) 
and interstitial lung disease (1.9%) [23]. The 
Phase III study (AURA3) is currently investigat-
ing osimertinib versus platinum-based therapy 
in advanced EGFR-mutant NSCLC patients 
with documented T790M mutation and pro-
gressive disease after treatment with upfront 
EGFR–TKIs [24]. Finally, in an effort to under-
stand the most effective inhibitor among those 
of I and III generation, a randomized, Phase III 
study (FLAURA) comparing AZD9291, versus 
gefitinib or erlotinib in treatment-naive advanced 
NSCLCs harboring EGFR–TKI sensitizing 
mutations, has been recently opened to accrual, 
with the primary objective to compare PFS for 

Table 1. eGFR–TKi versus conventional chemotherapy in NSCLC harboring mutated EGFR.

Study n (EGFRm+)  RR (%) Median PFS (months) Median OS (months) Ref. 

IPASS 261 71.2 vs 47.3 9.5 vs 6.3 21.6 vs 21.9 [2]

First-SIGNAL 42 84.6 vs 37.5 8.0 vs 6.3 27.2 vs 25.6 [3]

WJTOG 3405 172 62.1 vs 32.2 9.2 vs 6.3 34.8 vs 37.3 [4]

NEJGSG002 228 73.7 vs 30.7 10.8 vs 5.4 27.7 vs 26.6 [5]

OPTIMAL 154 83 vs 36 13.1 vs 4.6 28.8 vs 22.7 [6]

EURTAC 173 58 vs 15 9.7 vs 5.2 28.6 vs 22.1 [7]

LUX LUNG-3 345 56 vs 23 11.1 vs 6.9 28.2 vs 28.2 [8]

LUX LUNG-6 364 66.9 vs 23.0 11.0 vs 5.6 23.1 vs 23.5 [9]
m: mutation; OS: Overall survival; PFS: Progression-free survival; RR: Response rate.
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AZD9291 to standard of care EGFR–TKI, 
while PFS in T790M+ patients is a secondary 
objective [25].

Rociletinib (CO-1686) is another third-
generation compound that selectively inhibit 
mutant EGFR, targeting either sensitizing and 
T790M mutations [26]. In a Phase I/II trial 
rociletinib allowed for an ORR of 59% and the 
DCR of 93% in patients harboring T790M, 
whereas in the T790M-negative patients expe-
rienced an ORR of 29% and DCR was 59%. 
Hyperglycemia nausea, rash, diarrhea and QTc 
prolongation were the most common side effects 
reported in this study [26]. EGF816 is a novel 
third-generation EGFR–TKI targeting T790M 
mutation with a 60-fold selectivity compared 
with WT EGFR [27]. Likewise osimertinib 
and rociletinib, in vitro studies confirmed that 
EGF816 potently inhibit also common EGFR 
mutations, including L858R, Ex19del and, 
remarkably, antitumor activity in exon 20 
insertion mutant model. In the Phase I study 
EGF816X2101 42 EGF816 was administered 
to 42 patients, with 2% of them experienc-
ing complete response, 24% partial response. 
However, an impressive DCR of 93% has been 
reported [27,28]. The most common AEs observed 
in the Phase I clinical trial were diarrhea (25%), 
stomatitis (22.5%) and rash (17.5%).

Along with the aforementioned compounds, 
novel third-generation EGFR–TKIs are cur-
rently under clinical investigation. Among 
them, ASP8273 and HM61713 already entered 
in human Phase I/II studies. With regard to 
ASP8273, in the Japanese Phase I/II dose esca-
lation study, an ORR of 50% and 80% has been 
reported in all- and T790M-positive patients, 
respectively [29]. On the other hand in the Nord 
American trial an ORR of 28% and a DCR of 
56% were observed, with 25% of patients har-
boring T790M mutation achieving a partial 
response [30]. Currently, ASP8273 is also being 
evaluated in a first-line Phase III clinical trial 
versus first-generation EGFR–TKIs, but data are 
still immature.

Lastly, HM61713 is another third-generation 
EGFR–TKI targeting either, sensitizing and 
T790M EGFR mutations, sparing the WT form 
of EGFR. Preliminary results from two expan-
sion cohorts (300 and 800 mg) of the Phase I/II 
trial showed an ORR of 29.1 and 54.8% for 
300 and 800 mg cohorts, respectively [31]. 
Again, data are still immature and need further 
investigation.

Future perspectives in EGFRm NSCLC
Given that the PD-1/PD-L1 pathway has been 
revealed as a promising target for treating 
NSCLC [32], its correlation with EGFR muta-
tion needs to be confirmed by further studies. 
Indeed, data are still conflicting with some evi-
dences stating that EGFR activation inhibits 
antitumor immunity through the PD-1/PD-L1 
pathway, suppressing T-cell function and increas-
ing levels of proinflammatory cytokines [33]. As 
opposite, recent studies concluded that EGFR 
or KRAS mutations did not correlate with RR 
to nivolumab for advanced NSCLC [34], neither 
a significant correlation between PD-L1 expres-
sion and EGFR, KRAS, BRAF or ALK status 
in limited disease was observed [35]. Recently, 
results from a multiarm Phase Ib trial, inves-
tigating osimertinib 80 mg in combination 
with durvalumab (anti-PD-L1 monoclonal 
antibody), savolitinib (MET inhibitor) or selu-
metinib (MEK 1/2 inhibitor) in patients with 
advanced EGFR-mutant lung cancer, have been 
released. The osimertinib and durvalumab com-
bination represents one arm of the TATTON 
study, conceived with two parts; part A: a dose 
escalation phase in patients with advanced 
NSCLC that had received prior treatment with 
an EGFR–TKI. Part B: a dose expansion trial in 
EGFR–TKI treatment-naive advanced disease. 
Specifically, in patients with prior EGFR–TKI 
therapy, investigator-assessed ORR was 67 and 
21% in T790M+ and T790M-, respectively, 
and 70% in EGFR-mutant treatment-naive 
patients. However, an increase in intersitial 
lung disease was reported with the combina-
tion of osimertinib and durvalumab compared 
with what would be expected with either drug 
alone (26% in part A, 64% in part B) [36]. If 
combining immunotherapy with TKI treat-
ment, in oncogene-addicted disease, represents 
an exciting opportunity, and a potential answer 
to overcome the mechanisms of resistance, many 
gaps need to be fulfilled: the absence of available 
biomarkers with predictive capacity; the correct 
therapeutic strategy (combination vs a sequential 
approach); the unique toxicity profiles that these 
combinations may present.

First-generation ALK-inhibitor crizotinib
Crizotinib is an oral small molecule TKI of ALK, 
MET and ROS-1 kinases [37,38], which demon-
strated an improvement in survival and RRs, 
over standard-of-care chemotherapy, for ALK-
positive NSCLCs, regardless of the treatment 
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setting. Crizotinib development represents a par-
adigmatic example of a pretty fast approval pro-
cess by the regulatory agencies, when an effective 
drug for a high unmet clinical need, is discov-
ered. Indeed, based on the results of the trials 
listed below, crizotinib was granted accelerated 
approval by the US FDA in 2011 for the treat-
ment of ALK-positive NSCLC, turned, 2 years 
later, into regular approval after the publications 
of confirmatory studies (Table 2) [39–46].

Mechanisms of acquired resistance to 
crizotinib
Unfortunately, as with EGFR–TKIs, mecha-
nisms of intrinsic (30%) or acquired resistance 
to crizotinib, occur, after an average of 1 year 
since treatment start. Acquired resistance may be 
the result of either pharmacological or biological 
phenomena. In terms of pharmacological limita-
tions, crizotinib appears to poorly penetrate the 
blood–brain barrier [47], resulting in inefficient 
CNS disease control [48–50]. In a retrospective 
analysis of pooled data from the profile 1005 
and 1007, the intracranial ORR to crizotinib in 
patients with ALK-positive NSCLC was only 7%, 
despite a 12-weeks intracranial DCR of 60% [51]. 
When CNS represents the only site of recurrence, 
in the context of an extracranial disease control, 
brain local therapy (radiation or surgery) con-
tinuing crizotinib beyond progression, may be a 
reasonable option [52,53]. Biological resistance is 
expressed through ALK-dominant or nondomi-
nant mechanisms. The first involve an alteration 
in the drug target itself, the second the activation 
of alternative signaling pathways or ‘bypass track.’ 
As regards the target, ALK mutation and copy 
number gain account for 30–45% of crizotinib-
resistant cases [54,55], where modifications of 
the ‘gate-keeper’ L1196M, represents the most 
common second site ALK mutation, to the left 
of broad range of others distributed throughout 
the ALK–TK domain, described so far (G1269A, 
G1202R, G1 123S/D, C1156Y, L1152R, S1206Y, 
1151Tins, F1174C, D1203N) [56,57]. Among the 
bypass tracks mechanisms, the development 

of EGFR mutations/activation of WT EGFR, 
HER2 or KIT receptor, K-RAS mutations, has 
been described [58,59].

Second-generation ALK inhibitors
Two second-generation ALK inhibitors have 
been approved to date: ceritinib, received world-
wide approval for ALK-positive NSCLC after 
critotinib failure; alectinib, approved in Japan 
for all patients with advanced ALK-positive 
NSCLC.

●● Ceritinib
Ceritinib (LDK378; Zykadia; Novartis) is 
20-times as potent as crizotinib against ALK and, 
in xenograft models of ALK-rearranged NSCLC, 
showed marked antitumor activity against both 
crizotinib-sensitive and crizotinib-resistant 
tumor [60,61]. Moreover, in ALK-positive cell line 
models, ceritinib was able to efficiently inhibit 
ALK harboring the crizotinib-resistant muta-
tions L1196M, G1269A, I1171T and S1206Y 
but it was ineffective against the G1202R and 
F1174C [62]. Ceritinib inhibits also the IGF-1 
receptor but not MET [63]. In a Phase I study 
(ASCEND, March 2014), ceritinib was shown 
to be highly effective in ALK-positive NSCLCs, 
both in the crizotinib-naive and crizotinib-
treated settings, with 56% RR for 80 patients 
previously treated with crizotinib and 62% for 
the naive cohort [64]. Of note, responses were also 
seen in untreated CNS lesions in patients with 
crizotinib-resistant disease. Updated data were 
presented at ASCO 2014 (ASCEND-1): ORR 
60% in the whole population (55.4% in ALK 
inhibitor pretreated, 69.5% in naive patients). 
Median PFS was 7 months in the overall popula-
tion (6.9 months in patients previously exposed 
to ALK inhibitors) [65].

Two Phase II trails, both presented at 
American Society of Clinical Oncology (ASCO) 
2015, have confirmed activity of ceritinib. 
ASCEND-2: ceritinib in patients who pro-
gressed after both chemotherapy and crizotinib, 
highlighted an ORR of 38.6% in the overall 

Table 2. Summary of the Phase i–iii studies on crizotinib for NSCLC with ALK rearrangements.

Study n (ALKm+) RR (%) PFS (months) OS (months) Ref. 

PROFILE 1001 82  57  9.7  1 year 76% 
2 year 54%

[39]

PROFILE 1005 261 59.8 8.1 NA [42]

PROFILE 1007 347 65 7.7 20.3 [44]

PROFILE 1014 343 74 10.9 Not reached [46]
m: Mutation; NA: Not applicable; OS: Overall survival; PFS: Progression-free survival; RR: Response rate.
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population and 33% in the brain metastases 
subgroup [66]. Median PFS (overall 5.7 months) 
significantly differed between patients with 
brain metastases (5.4 months) and those without 
(11.3 months). ASCEND-3: ceritinib in ALK 
inhibitor naive patients with ALK-rearranged 
NSCLC, showed an ORR of 63.7% (58% for 
those with CNS disease vs 67.6% in the cohort 
without), with median PFS 11.1 months (10.8 vs 
11.1 months depending on the presence or not 
of brain metastases) [67].

With the aim to compare the activity of the 
drug with standard chemotherapy in untreated 
ALK-positive NSCLCs (ASCEND-4) and in 
previously treated with chemotherapy and cri-
zotinib (ASCEND-5), two Phase III clinical 
trials with ceritinib have recently completed 
enrollment.

●● Alectinib
In enzymatic assays, alectinib (RG7853/
AF-802/RO5424802/CH5424802, Chugai-
Roche) is five-times more potent than crizotinib 
against ALK, able to inhibit most of the clini-
cally observed acquired ALK resistance muta-
tion to crizotinib (L1196M, G1269A, C1165Y 
and F1174L) [68,69]. While it does not inhibit 
MET and ROS1, it showed activity against 
RET with a similar potency to ALK [70]. In 
a Japanese Phase I/II study, crizotinib-naive 
ALK-positive NSCLC patients exposed to 
alectinib, reached an RR of 93.5% [71]. With 
the goal to understand the activity of alectinib 
in crizotinib pretreated patients, the results 
of a Phase II global study (NP28673) have 
been reported, with an ORR of 50% in the 
whole population (57% for those with CNS 
involvement) and PFS 8.9 months (13 months 
for chemotherapy-naive patients) [72]. The 
molecule also has proven to meet the need to 
have a more active drug into the brain, which 
currently represents the ‘Achilles heel’ of all 
target therapies: an 83% intracranial DCR 
and a median CNS duration of response of 
10.3 months [73].

Those results confirmed the ones showed in 
the previous Phase I/II study [74] with 60% of 
patients with brain metastases enrolled (ORR: 
52%; median PFS: 8.1; CNS ORR: 75% and 
CNS DCR: 88.5%). Moreover, alectinib has 
shown to be effective in the setting of pretreated 
patients with leptomeningeal disease [75]. 
Weather alectinib should be used in first-line 
setting or in a sequential strategy is still an open 

issue. In order to address this question, two first-
line studies comparing alectinib with crizotinib 
have recently completed enrollment: one con-
ducted in Japan (J-ALEX; JapicCTI-132316) 
and a global one (ALEX; NCT02075840). 
However, the crucial point will be the magni-
tude of PFS benefit. Since sequential therapy 
with crizotinib followed by alectinib provides 
a combined median PFS of 18–20 months, we 
expect at least 6 months of amplitude of the 
PFS benefit to justify a switch from first-line 
crizotinib to first-line alectinib.

ALK inhibitors in clinical development
●● Brigatinib

Brigatinib (AP26113, Ariad), is a dual 
ALK+/EGFRm inhibitor with preclinical 
activity against EML4–ALK (IC50 0.62 nM), 
included G1269S, G1202R, L1196M mutations 
and activity against ROS1 and T790M-mutant 
EGFR, without native EGFR inhibition [76]. The 
drug received breakthrough therapy designation 
by FDA for the treatment of ALK+ advanced 
NSCLCs resistant to crizotinib, based on results 
from a Phase I/II trial that showed antitumor 
activity in ALK+ NSCLC, including patients 
with active brain metastases. In the updated 
clinical data from this trial, objective responses 
were observed in ALK+ NSCLC patients, either 
TKI-naive or resistant to crizotinib. Of the 72 
ALK+ NSCLC patients evaluable for response, 
52 (72%) demonstrated an objective response 
with a median PFS of 13.4 months in the pre-
treated cohort. In a subgroup analysis, ten of 
14 (71%) ALK+ NSCLC patients with active 
brain metastases had evidence of radiographic 
improvement [77].

●● ASP3026 (Astellas Pharma)
ASP3026 is a potent inhibitor of ALK 
(IC50 3.5 nM) and activity against ROS1 
(IC50 8.9 nM) ACK, L1196M, evaluated 
in 30 patients from an open-label, Phase I, 
escalation trial in patients with advanced 
tumors, excluding leukemia (ALK positivity 
not required; NCT01401504) [78]. At the 2014 
ASCO annual report, 33 patients were enrolled 
in the dose escalation phase, including 3 ALK+ 
pts, plus another 13 ALK+ patients from the 
Phase Ib expansion cohort (n  =  46). Out of 
the pretreated crizotinib cohort (15 ALK+), 
seven (44%) had a partial response and eight 
(50%) stable disease, with a median PFS of 
5.9 months [79].
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●● PF-06463922 (Pfizer)
PF-06463922 is a dual inhibitor of ALK/ROS, 
with specific activity against ROS1 fusion vari-
ants including CD74–ROS1, SLC34A2–ROS1 
and Fig–ROS1 (IC50 0.1–1 nM), and greater 
activity than crizotinib, especially against the 
gatekeeper L1196M [80]. A Phase I/II trial 
(NCT01970865) of ALK+ or ROS1+ NSCLC 
patients with or without CNS metastases, TKI-
naive or 1–2 TKIs pretreated, has recently com-
pleted recruitment. Results from a Phase I por-
tion of this study, presented at ASCO, out of 
33 ALK+ and 11 ROS1+, 34 for overall tumor 
response and 25 for intracranial response, were 
evaluated: ORR was 44% in the whole popu-
lation, 36% for those with brain measurable 
disease [81].

●● entrectinib
Entrectinib (RXDX-101, NMS-E628, Ignyta) 
is a multikinase inhibitor of TrkA/B/C, ROS1 
and ALK kinases. Two Phase I/II clinical trials, 
ALKA-372-001 [82] and STARTRK-1 [83], have 
explored activity of this agent. The RR in the 
11 patients across both studies was 91%, with 
nine of them patients reaching durable responses 
for up to 16 cycles. Specifically: 3/3 responses 
in patients with NTRK1/2/3 fusions, including 
patients with NSCLC, colorectal and pancreatic 
cancer; 5/6 responses, including one complete 
response, in patients with NSCLC ROS1+; 2/2 
responses in patients with ALK fusions (one with 
NSCLC).

●● TSR-011
TSR-011 (Tesaro) is dual ALK (IC50 value of 
0.7 nM) and TrkA/B/C inhibitor (IC50 < 3 nM). 
Updated data from an ongoing Phase I/IIa trial 
[NCT02048488] have been recently presented: 
46 points with advanced cancer, including 19 
ALK+ and 11 TRK+ points, have been treated. 
Responses were achieved in: 3/5 ALK inhibitor-
naive patients (60%); 3/6 patients (50%) pro-
gressed after crizotinib, stable disease in three 
patients after ceritinib or alectinib [84].

●● X-376 & X-396
X-376 and X-396 (Xcovery) are potent inhibitors 
of ALK, less active for MET compared with cri-
zotinib. X-396 showed activity against L1196M 
and C1156Y ALK mutants, and it demon-
strated to penetrate blood–brain barrier [85]. In 
a Phase I/II trial of X-396, among 11 evaluable 
patients (both crizotinib-naive and resistant), six 

reached a PR and two SD, as well as two patients 
with brain disease. The expansion trail in ALK+ 
NSCLCs is ongoing (NCT01625234) [86].

●● CeP-28122 & CeP-37440
CEP-28122 (Teva) is a selective ALK inhibitor 
(IC50 1.9  nM) with activity against InsR, IGF-R1 
and c-MET [87]. CEP-37440 is a dual ALK/focal 
adhesion kinase inhibitor currently under inves-
tigation in a Phase I trial (NCT01922752). Focal 
adhesion kinase is implicated in cell adhesion 
and cell membrane–extracellular matrix interac-
tions, thought to be involved in the carcinogen-
esis of colon cancer and other tumors of epithelial 
origin [88].

●● Hsp90 inhibitors
Heat shock protein 90 (Hsp90) is a molecular 
chaperone essential for cellular survival pre-
venting cellular proteins, included fusion pro-
teins as EML4–ALK, from degradation by the 
ubiquitin–proteasome system in conditions of 
stress [89]. Main clinical trials evaluating Hsp90 
activity in NSCLC are listed in Table 3.

Future perspectives in ALK-rearranged 
NSCLC
As per EGFR mutations, a potential effect of 
ALK translocation on PD-1/PD-L1 checkpoint 
expression cannot be excluded. Two recent stud-
ies had demonstrated that PD-L1 levels, were 
higher in patients with ALK translocations com-
pared with the negative cohort; however, the 
association was not statistically significant and 
no evaluation about the clinical impact of differ-
ent checkpoint expressions, emerged [99,100]. In 
mouse models, a vaccine against ALK induced a 
strong and specific immune response that both 
prophylactically and therapeutically impaired 
the growth of ALK-positive lung tumors. 
The vaccine used in combination with ALK 
TKI treatment, significantly delayed tumor 
relapses after TKI suspension. The study also 
confirmed that lung tumors containing ALK 
rearrangements induced an immunosuppressive 
microenvironment, regulating the expression 
of PD-L1 on the surface of lung tumor cells. 
High PD-L1 expression reduced ALK vaccine 
efficacy, which could be restored by adminis-
tration of anti-PD-1 immunotherapy [101]. The 
hopes and concerns, about combination therapy 
with ALK-inhibitors and immunotherapy are 
pretty the same described with EGFR muta-
tions, with a special interest in adverse events 
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(i.e., pneumonitis), which are actually under 
focus in Phase I trials.

Conclusion
The identification of specific molecular targets 
in a significant fraction of NSCLC has led to 
the development of oncogene-directed therapies 
that have significantly changed the treatment 
of the advanced disease. TKI-sensitizing EGFR 
mutations and ALK rearrangements are the most 
important predictive biomarker for PFS and OS 
prolongation, as well as for a significant improve-
ment in symptoms and quality of life, when 
TKIs are used for patients with advanced lung 
cancer. Therefore, the main challenge remains 
on how to overcome the inevitable acquired 
resistance to these therapies. Mechanisms of 
acquired resistances are roughly divided into 
two categories. The first involves onset of new 
genetic alterations in the native oncogene that 
guarantees the maintenance of the signal trans-
mission. Resistance may also occur through 

several bypass signaling pathways, phenotypic 
transformation, chemical–physical barriers such 
as the blood–brain barrier.

This leads to two main implications: on the 
one hand the need of a new molecular charac-
terization, via invasive tissue rebiopsy and/or liq-
uid biopsies of circulating tumor DNA, when 
resistance occurs. On the other side, combina-
tion strategies (i.e., with immunotherapy) may 
represent a chance for more persistent remissions 
or to overcome mechanisms of relapse.
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