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Regulating behavior with the flip of a
translational switch
Efraı́n Ceh-Paviaa and Carrie L. Partcha,b,1

From the pioneering discovery of the first single-gene
mutants that controlled circadian behavior by Konopka
and Benzer (1), the quest to probe the fundamentally
important relationship between gene expression and
behavior has been ongoing. The ability to control cel-
lular function and behavior with exquisite precision
in vivo through genetic, optogenetic, and pharmaco-
logical manipulation already exists, but the search is
still afoot for approaches to rapidly and reversibly con-
trol gene expression. Genetic code expansion (GCE)
has proved to be a powerful tool to control protein
function in vitro and inside the cellular milieu (2) and,
more recently, in a wide array of vertebrates in vivo (3).
In PNAS, Maywood et al. (4) use GCE to create a fast,
conditional, and reversible translational switch to re-
constitute the molecular circadian clock in the supra-
chiasmatic nucleus (SCN) and circadian behavior in
arrhythmic mice. The rapid kinetics with which protein
expression is controlled with this translational switch
provides unprecedented temporal control over neu-
ronal function in vivo, restoring complex behavioral
responses reversibly on the timescale of about a
day. This pioneering approach should be broadly ap-
plicable to many other systems, from neurobiology to
the periphery, opening the door to a new era of ge-
netic control and biological insight.

In mammals, the SCN acts as the master circadian
pacemaker that provides temporal control over nearly
every biological process, from the secretion of mela-
tonin to body temperature (5). From its position in the
hypothalamus, the SCN receives retinal input that is
used to entrain clocks to the environmental light–dark
cycle. It also provides molecular cues to synchronize
the rhythms of molecular circadian clocks in peripheral
tissues to globally coordinate physiological and be-
havioral rhythms. Therefore, manipulating circadian
clocks in the SCN has powerful control over behavior-
al responses, making it a particularly tractable and in-
teresting initial target for the reversible control of
behavior upon reconstitution of a single gene. At the
molecular level, circadian rhythms are driven by a set

of interlocked transcriptional–translational negative
feedback loops. The core loop is established by the
transcription factor CLOCK:BMAL1, which activates
transcription of Period and Cryptochrome (Cry) genes
that feed back to repress their expression and complete
the feedback loop (6). At least one cryptochrome must
be present to interact directly with CLOCK:BMAL1 (7, 8)
and coordinate the assembly of large, multimeric repres-
sive complexes (9) that close the feedback loop.

Traditional approaches via single-gene knockouts
have demonstrated that Cry1−/− mice have a short
period, while Cry2−/− mice have a long period (10,
11), consistent with the observation that CRY1 is a
“stronger” repressor that binds to CLOCK:BMAL1
more tightly (12). Prior work from Hastings and col-
leagues (13) demonstrated that reconstitution of an
arrhythmic SCN clock in a Cry-deficient mouse via
adeno-associated virus delivery of a Cry1::EGFP fusion
expressed under its own minimal promoter (pCry1)
could reconstitute the clock with the expected long
period (14). In PNAS, Maywood et al. expand upon
this approach by using GCE to reversibly and rapidly
control Cry1::EGFP in neurons to advance our under-
standing of theminimal determinants needed to acutely
establish robust circadian rhythms.

GCE utilizes an engineered aminoacyl-tRNA syn-
thetase and tRNACUA pair that allows the incorporation
of a noncanonical amino acid (ncAA) into a protein of
interest in response to an amber stop codon (i.e., UAG).
Maywood et al. used a pyrrolysyl-tRNA synthetase/pyr-
rolysyl-tRNACUA pair that templated the insertion of the
ncAA alkyne lysine N6-[(2-propynyloxy)carbonyl]-L-
lysine (AlkK). Providing AlkK in the culture media for
SCN slices ex vivo, or in the drinking water for mice,
allowed for the rapid and reversible translation of
Cry1::EGFP. Remarkably, this led to reconstitution of
the molecular circadian clock and its resultant behav-
ioral control on a timescale of about a day (Fig. 1).
Carefully removing AlkK through a series of washouts
once again eliminated Cry1::EGFP expression and the
loss of molecular and behavioral circadian rhythms.
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One powerful feature of this approach is that increasing the
concentration of AlkK allowed for dose-dependent control over the
expression of Cry1::EGFP and circadian period, which could be
valuable for future studies of analysis of network perturbation by
titrating clock protein stoichiometries. Additionally, use of ncAAs like
AlkK opens the chemical biology toolkit by allowing for bioorthog-
onal labeling approaches via click chemistry (15). Here, Maywood
et al. use AlkK to label nascent Cry1::EGFP protein with an azido
fluorophore for imaging purposes. The ability to rapidly label a spe-
cific cellular population with superbright fluorophores, cross-linkers,
and other chemical moieties could open the door to new studies of
rare and/or transient endogenous protein complexes in situ.

GCE offers several improvements over conventional methods
to manipulate protein expression. Current strategies generally
target gene transcription, making use of well-studied constitutive
or inducible promoters to control expression of the protein of
interest. However, in many cases, changes in gene expression are
permanent, such as with the use of Cre-loxP and Flp-FRT systems.
Other systems, like those based on tetracycline (Tet)-controlled
transcriptional control (Tet-on/off), can reversibly regulate pro-
tein expression upon addition of doxycycline. However, leaky
control of gene expression and the use of orthogonal constitutive

promoters can disrupt circadian rhythms, because many clock
genes need to be expressed with temporal precision that is
encoded by their feedback loops (14, 16). This study therefore
establishes an elegant tool that should be applicable to other
systems in which transcription can remain under tight regulation,
further expanding the current genetic toolkit for studying and
controlling dynamic processes.

Through the use of the neuron-specific hSynapsin promoter,
this work demonstrates that, despite arrhythmic behavior in the
absence of Cry expression, the circadian network is apparently
primed and ready to run upon reconstitution with the CRY protein.
Given the complex network compensation that occurs upon perma-
nent gene knockouts in the circadian network (17), the reversibility
of this approach could be useful in parsing out compensation by
paralogs and bringing a deeper understanding of this complicated
and dynamic process. Furthermore, recent work has highlighted an
exciting role for astrocyte–neuron communication in establishing
circadian networks in the SCN (18, 19). Using cell type-specific pro-
moters, GCE now opens the door to further studying the roles of
intercellular communication in vivo.

In the future, it will be interesting to see whether GCE strate-
gies could be employed to reversibly manipulate posttranslational
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Fig. 1. Reversible control of the circadian clock using translational switching of the core clock gene, Cry1. Using the hSynapsin promoter
(Synapsin I), expression of Cry1::EGFP was restricted to neurons that expressed the required orthogonal tRNA synthetase (marked by
coexpressed mCherry protein) and the tRNACUA under the hU6 promoter. Cry1::Egfp mRNA was controlled by its own minimal promoter
(pCry1), which directs its rhythmic transcription. Translational of Cry1::EGFP was strictly conditional on the presence of AlkK, an ncAA that is
inserted into the protein upon readout of an amber stop codon (i.e., UAG). Circadian rhythms were monitored before and after AlkK
administration with Per2::Luc bioluminescence in SCN explants or behavioral analysis in mice.
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modifications of clock proteins. Most core components of the
clock are regulated by posttranslational modifications at differ-
ent points throughout the circadian cycle (20). Recent advances in
the use of GCE approaches to encode site-specific phosphoryla-
tion in mammalian cells (21) tease the possibility of probing clock
function at high temporal precision, thereby eliminating potential
artifacts from expressing genes with constitutive mimetic substitutions.

The future looks bright: As our toolkit for the genetic code ex-
pands, so will our insight into biology.
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