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Adaptive behavior requires animals to learn from experience. Ideally,
learning should both promote choices that lead to rewards and
reduce choices that lead to losses. Because the ventral striatum (VS)
contains neurons that respond to aversive stimuli and aversive stimuli
can drive dopamine release in the VS, it is possible that the VS
contributes to learning about aversive outcomes, including losses.
However, other work suggests that the VS may play a specific role
in learning to choose among rewards, with other systems mediating
learning from aversive outcomes. To examine the role of the VS in
learning from gains and losses, we compared the performance of
macaque monkeys with VS lesions and unoperated controls on a
reinforcement learning task. In the task, the monkeys gained or lost
tokens, which were periodically cashed out for juice, as outcomes for
choices. They learned over trials to choose cues associated with gains,
and not choose cues associated with losses. We found that monkeys
with VS lesions had a deficit in learning to choose between cues that
differed in reward magnitude. By contrast, monkeys with VS lesions
performed as well as controls when choices involved a potential loss.
We also fit reinforcement learning models to the behavior and
compared learning rates between groups. Relative to controls, the
monkeys with VS lesions had reduced learning rates for gain cues.
Therefore, in this task, the VS plays a specific role in learning to
choose between rewarding options.
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Adaptive behavior requires that organisms choose wisely to
gain rewards and avoid punishment. Reinforcement learn-

ing (RL) refers to the behavioral process of learning about the
value of choices, based on choice outcomes. From an algorithmic
point of view, rewards and punishments exist on opposite sides of
a single value axis. Simple distinctions between rewards and
punishments, however, and their theoretical expression on a
single value axis, hide the considerable complexities that underlie
appetitive and aversive RL. Most notably, both rewards and
punishments come in many forms. Food, sex, and ascending the
social hierarchy are rewarding. Correspondingly, loss of cached
food, pain, and social defeat are punishing (1). Whether threat,
pain, and loss of accumulated reward drive learning via the same
neural systems, at any level, is unclear. Furthermore, even when
gains and losses are expressed with money, which has objective
value, they can have differential subjective effects on behavior
(2–4).
Studies of RL often use paradigms in which participants learn

to choose options on the basis of reward frequency or reward
magnitude (5–7). These studies have shown that the striatum,
and the dopamine input to the striatum, underlies learning to
select rewarding options. Theoretical models of RL extend di-
rectly to learning from losses, and therefore striatal-mediated
learning may generalize to these conditions (8). This hypothe-
sis is supported by work that has shown that dopamine neurons,
which provide reward prediction error (RPE) signals to the
striatum, increase their firing rates when rewards are un-
expectedly delivered and decrease their firing rate when rewards
are unexpectedly omitted (9, 10). However, some studies have
explicitly examined learning from gains and losses (as opposed to

reward omission) and found that they are mediated by partially
overlapping, but partially distinct, systems that cross cortical and
subcortical circuits. For example, single-neuron studies in ma-
caques have shown that the dorsolateral prefrontal cortex, as
well as the anterior cingulate cortex, encode both losses and
gains in a competitive game in which conditioned reinforcers
could be gained and lost (11). In other work, the medial orbi-
tofrontal cortex was found to encode gains and avoidance of
losses, both of which have positive value (12). This study also
found that appetitive RPEs in reward trials (i.e., increases with
unexpected rewards) correlated with the extent of activation in
the ventral striatum (VS), whereas RPEs in aversive trials (i.e.,
increases with unexpected punishments) correlated with activa-
tion in the insula, consistent with other work (5). In addition to
the work in macaques and humans, work in rodents, which has
used various paradigms including conditioned place aversion and
Pavlovian threat of shock, has shown that basolateral amygdala
circuits through the VS encode reward-mediated approach
behavior, whereas circuits through the central nucleus of the
amygdala encode avoidance (13–15). Related experiments fo-
cusing on circuitry have found that dopamine inputs to the
infralimbic (IL)/prelimbic (PL) regions of medial prefrontal
cortex also encode avoidance behavior (16). Thus, there is ev-
idence that both overlapping and distinct systems underlie
learning from rewards and punishments, using some paradigms.
To examine the role of the VS in learning from both gains and

losses, we adapted a previously used token reward system (11) to
two-armed bandit RL tasks. In the tasks, rhesus monkeys made
choices among options and received tokens for their choices. The
tokens were represented by circles on the bottom of the screen,
and the animals periodically received juice in exchange for
accumulated tokens. The use of tokens, which are secondary
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reinforcers, allowed us to study the effects of gains and losses on
choices using one and the same unit of value. We ran four var-
iants of the task to address specific questions. Three variants used
deterministic outcomes, and one used stochastic. We compared the
behavioral performance of three monkeys with lesions of the VS
and four unoperated controls.

Results
The monkeys were run on a series of four tasks. In each task,
trials involved a forced choice between two images. Selection of
a particular image led to increases or decreases in accumulated
tokens (Fig. 1A). The outcome of each trial following a choice
was realized on the monitor screen as a change in the number of
tokens the animal had accumulated. Every four to seven trials,
with the interval chosen randomly, we cashed out the accumu-
lated tokens. During cash-out, the monkeys received one drop of
juice for each token. The animals had to learn over trials to
select the image from the pair that maximized their gains and
minimized their losses. When the monkeys had no tokens and
they chose a loss cue, there was no change in the tokens. The
animals could also not incur negative token counts.
The tasks were run in a fixed sequence (Fig. 1A). Each task

evaluated the monkeys’ choices during learning and performance
on novel or familiar stimulus–outcome associations. In the novel
blocks, the monkeys learned stimulus–reward associations for
a novel set of images. In the familiar blocks (SI Appendix, Figs. S1–
S4), the monkeys chose between stimuli they had repeatedly sam-
pled over the course of prior experimental sessions. The stimulus–
outcome associations of these familiar choice options were fixed for
the duration of the experiment. Novel and familiar blocks were
randomly interleaved each day. The novel blocks allowed us to
examine the rate at which cue–reward associations were learned,

whereas the familiar blocks allowed us to examine asymptotic per-
formance with overlearned cue–reward associations.

Deterministic RL of Stimulus–Outcome Associations. We first evalu-
ated the ability of the monkeys with or without lesions of the VS
to learn deterministic stimulus–outcome associations. In this
task, at the beginning of each novel block, the monkeys en-
countered four images they had not seen before. Each image was
associated with a fixed, deterministic gain or loss of tokens (+2,
+1, −1, or −2 tokens). Two of the images were presented as
choice options on each trial. This resulted in six unique pairs of
images, which we refer to as conditions. In each block, conditions
were randomly interleaved over intervals of 12 trials until each
condition occurred 18 times in novel (Fig. 2) blocks and 6 times
in familiar (SI Appendix, Fig. S1) blocks.
In novel blocks, the monkeys learned the stimulus–outcome

associations efficiently. With experience, they were able to
choose the better option of the pair on a high proportion of trials
(Fig. 2). There were differences in performance across conditions
[Condition; F(5,20) = 140, P < 0.001] and differences in performance
across trials in the different conditions [Condition × Trial; F(85,38) =
5.7, P < 0.001]. The monkeys performed best in the conditions in
which there was a loss paired with the largest reward. For example,
they most often picked the best cue when choosing between the
+2 and −1 and +2 and −2 conditions. This effect was driven largely
by the frequency with which they experienced the outcomes asso-
ciated with each cue and the differences in the values of the cues.
The animals most frequently picked the +2 cue across all condi-
tions, and therefore most frequently received feedback on its value,
and the value of this cue would also asymptote at +2.
In task 1, there were no differences between groups [Group;

F(1,9) = 0.1, P = 0.7611] and no differences between the groups
across conditions [Group × Condition; F(5,22) = 0.5, P = 0.7801].

Fig. 1. Tasks used and lesion map. (A) Diagram of the trial structure used in all tasks. The specific reward magnitudes used in each task are shown. TkD, Task
1 in which deterministic reward magnitudes were +2, +1, −1, and −2. NtK, Task 2 in which we include a null token giving deterministic reward magnitudes of +2, +1,
0, −1, and −2. TkS, Task 3 in which feedback was stochastic with magnitudes of +2, +1, −1, and −2. TkL, Task 4 in which deterministic reward magnitudes, including a
large loss, were +2, +1, −1, and −4. (B) Lesionmap of the three animals in the lesion group. Colors indicate number of animals that had lesion of corresponding extent.
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The monkeys did not perform well in the −1 vs. −2 condition, al-
though across the groups there was a significant positive correlation
between choice accuracy and trial, which indicates learning [t(6) =
9.1, P < 0.001]. When we examined the groups individually, we found
that both groups learned to choose the smaller loss more often with
experience [Control: t(3) = 6.9, P = 0.006; VS: t(2) = 13.4, P = 0.005].

Deterministic RL Augmented by a Null Cue. In task 2, we used five
cues in each block with cue–outcome mappings of +2, +1, 0, −1,
and −2. This resulted in 10 pairs of cues and therefore 10 con-
ditions. In task 2, both the novel (Fig. 3) and familiar (SI Ap-
pendix, Fig. S2) blocks were composed of 120 trials, 12 per
condition. Therefore, in the novel blocks, the monkeys saw each
pair of cues 12 times. Inclusion of the null cue allowed us to test
two specific hypotheses. First, does the absolute difference be-
tween the value of the cues drive performance independent of
the reward value associated with the cues? Second, can animals
learn to select the null cue when it is paired with a loss cue?
In the novel blocks (Fig. 3), there was again a difference in

performance across conditions [Condition; F(9,19) = 54.7, P <
0.001] and also a difference in performance across trials in the
different conditions [Condition × Trial; F(99,398) = 8.2, P <
0.001]. There were no differences between groups [Group;
F(1,9) = 0.1, P = 0.778] and no differences by condition [Group ×
Condition; F(9,14) = 0.6, P = 0.793]. There was also no difference
between groups when we examined only the 2 vs. 1 condition
[Group; F(1,5) = 3.6, P = 0.117].

Similar to task 1, when we grouped all of the animals together,
there was a significant correlation between trial and performance
when the animals had to choose between the two loss cues [t(6) =
3.3, P = 0.016]. However, when we separated the groups, neither
group reached significance alone [Controls: t(3) = 2.3, P = 0.103;
VS: t(2) = 3.1, P = 0.092]. There was also significant learning
when the animals had to choose between the 0 and −1 cue across
groups, but not in either group individually [t(6) = 3.9, P = 0.007;
Controls: t(3) = 2.9, P = 0.062; VS: t(2) = 2.1, P = 0.164]. When
the animals had to choose between the 0 and −2 cues there was
learning across groups [t(6) = 5.7, P = 0.001]. However, when we
examined the groups separately, we found that only the controls
performed significantly better than chance [Controls: t(3) = 3.5,
P = 0.037; VS: t(2) = 4.1, P = 0.053].

Stochastic RL. In task 3, we introduced four cues with cue–outcome
associations of +2, +1, −1, and −2. However, the cue–outcome
associations were stochastic. Therefore, when the animals chose one
of the options, they received the outcome associated with that op-
tion in 75% of the trials, and no outcome (i.e., no change in tokens)
in 25% of the trials. We introduced this task because we have
previously seen that monkeys with VS lesions learn poorly under
stochastic schedules (7), and the VS may be more important for
slow learning, which is more affected by trial-by-trial stochasticity
(17). Both novel (Fig. 4) and familiar (SI Appendix, Fig. S3) blocks
were 108 trials.

Fig. 2. Deterministic RL of stimulus–outcome associations. Task 1 choice behavior. Error bars are ±SEMwith n = number of animals. Plots show the fraction of
times monkeys chose the higher value option averaged across novel blocks for each group. Numbers at the top of each plot indicate the condition, which
corresponds to the cues that were shown in those trials.

Fig. 3. Deterministic RL augmented by a null cue. Task 2 choice behavior. Error bars are ±SEM with n = number of animals. Plots show the fraction of times
monkeys chose the higher value option averaged across novel blocks for each group. Numbers at the top of each plot indicate the condition, which cor-
responds to the cues that were shown in those trials.
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Performance was consistent with the previous tasks (Fig. 4). In
the novel blocks, there was a difference in performance across
conditions [Condition; F(5,38) = 315.0, P < 0.001] and learning
also differed across trials in the different conditions [Condition ×
Trial; F(85,135) = 7.4, P < 0.001]. In addition to these effects, and
unlike the case for the tasks with deterministic outcomes, there
was an overall effect of group [Group; F(1,70) = 15.2, P < 0.001].
When we examined differences between groups in each condi-
tion, we found that the 2 vs. 1 condition approached significance,
but this did not survive correction for six comparisons [Group;
F(1,5) = 6.73, P = 0.049]. In this task, monkeys showed learning
when choosing between the −1 and −2 cues [All animals: t(6) =
2.7, P = 0.037]. When we looked at the groups separately we
found that only controls learned to choose the smaller loss,
[Control: t(3) = 3.3, P = 0.045; VS: t(2) = 0.7, P = 0.523].

Deterministic RL with a Large Loss. In task 4, we introduced four
cues with cue–outcome associations of +2, +1, −1, and −4. We
added the larger loss cue to see whether animals would learn to
pick the smaller loss cue more effectively, when the difference
between the two loss cues was larger. We also gave the monkeys
an endowment of four tokens on the first trial after each cash-
out. We did this to ensure that the animals had sufficient tokens
to experience the large loss and to maintain motivation. Novel
(Fig. 5) and familiar (SI Appendix, Fig. S4) blocks were both
composed of 108 trials, with 18 trials per condition.
Performance in novel blocks again showed a difference in

performance across conditions [Fig. 5; Condition; F(5,43) = 231.0,
P < 0.001] and a difference in performance across trials in dif-
ferent conditions [Condition × Trial; F(85,313) = 4.6, P < 0.001].
There was also a main effect of group [Group; F(1,31) = 30.7, P <
0.001]. None of the group effects in individual conditions sur-
vived multiple-comparisons corrections. The monkeys were able
to learn to choose the smaller of the two losses [t(5) = 10.8, P <
0.001]. In addition, when we examined each group separately, we
found that both groups were able to learn to choose the smaller
of the two losses [Control: t(2) = 5.2, P = 0.035; VS: t(2) = 14.6,
P = 0.004].

RL Models.Next, we fit RL models to the data in the novel blocks
in all tasks. We fit two models that varied in the number of free
parameters used to model the choice behavior. One model used
one parameter for positive cues and one parameter for negative
cues (VALENCE model), thus allowing learning rates to vary for
positive vs. negative outcomes. The second model used one pa-
rameter for each cue (CUE model), allowing for different
learning rates for each outcome. The VALENCE model fit be-
havior well in most conditions, particularly in the control group
(SI Appendix, Fig. S5). However, the VALENCE model over-
predicted performance in the 2 vs. 1 condition. This could be
seen, for example, in task 3 which had stochastic outcomes, and
in which there was a large discrepancy between behavior and
model predictions in the 2 vs. 1 condition (SI Appendix, Fig. S5 B
and D). This effect was strongest for the VS animals (SI Ap-
pendix, Fig. S5D) but could also be seen for the control animals
(SI Appendix, Fig. S5B). In the other conditions, however, the
VALENCE model fit well. The CUE model did not show biases
in any condition in either group (SI Appendix, Fig. S5 A and C).
Averaged across tasks, the VALENCE model overpredicted

performance in the 2 vs. 1 condition in both groups [Fig. 6 A and
B; VALENCE model vs. Behavior, F(1,5) = 167.9, P < 0.001]. The
VALENCE model overpredicted behavior more for the VS
group than the controls [Group × VALENCE model vs. Be-
havior, F(1,5) = 19.4, P = 0.007]. The CUE model, on the other
hand, did not differ from behavior in the 2 vs. 1 condition, across
tasks [CUE model vs. behavior, F(1,5) = 0.2, P = 0.582], although
the fit did differ by group [CUE model vs. Behavior × Group,
F(1,5) = 14.2, P = 0.016], with a closer fit between behavior and
model in the VS group. We also used the Bayesian information
criterion to assess which model fit best in each session for each
animal and task. In all animals in both groups, averaged across
tasks, the CUE model was more frequently the best model than
the VALENCE model. Across groups, there was a preference for
the CUE model over the VALENCE model [t(6) = 2.84, P <
0.030; 57% of sessions best fit by CUE model]. This preference
was not significant individually in the control [t(3) = 1.6, P =
0.210; 57%] or VS animals [t(2) = 3.03, P = 0.094; 57%].
Next, we compared the learning rate parameters between groups

from the CUE model (Fig. 6C). We found that the parameters

Fig. 4. Stochastic RL. Task 3 choice behavior. Error bars are ±SEM with n = number of animals. Plots shows the fraction of times monkeys chose the higher
value option averaged across novel blocks for each group. Numbers at the top of each plot indicate the condition, which corresponds to the cues that were
shown in those trials.

Fig. 5. Deterministic RL with a large loss. Task 4 choice behavior. Error bars are ±SEM with n = number of animals. Plots shows the fraction of times monkeys
chose the higher value option averaged across novel blocks for each group. Numbers at the top of each plot indicate the condition, which corresponds to the
cues that were shown in those trials.
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varied across cues [Fig. 6C; F(3,15) = 45.6, P < 0.001] and tasks
[F(3,14) = 4.0, P = 0.030]. Learning rates were lower in the VS
group [Group; F(1,5) = 9.75, P = 0.026]. The groups did not differ
across cues [Group × Cue, F(3,15) = 2.9, P = 0.070] or tasks
[Group × Task, F(3,14) = 1.8, P = 0.193]. We also examined ef-
fects within the gain cues and within the loss cues, separately.
There were group differences within the gain cues [Group,
F(1,5) = 10.35, P = 0.024], and these effects differed marginally
across the two cues [Group × Cue, F(1,5) = 9.3, P = 0.029]. There
were no group differences in the loss cues [Group, F(1,5) = 2.1,
P = 0.206], but the groups did differ by cue [Group × Cue,
F(1,5) = 9.2, P = 0.029]. When we examined group differences in
the individual tasks, we found a difference in groups across cues
for task 3 with stochastic outcomes [Fig. 6D; Group × Cue,
F(3,15) = 5.0, P = 0.014] but no other group differences in the
other tasks (P > 0.05). We also examined the inverse tempera-
tures from the model fits. These differed by experiment [F(3,14) =
4.4, P = 0.021]. However, there were no differences across groups
[F(1,5) = 0.0, P = 0.887] or by group across experiments [F(3,14) =
1.5, P = 0.267]. None of the choice autocorrelation parameters
(Methods) varied by group (P > 0.05).
Therefore, across tasks, the animals with VS lesions consis-

tently had deficits in learning to discriminate between the two
gain cues in the 2 vs. 1 condition, and this manifested as a sig-
nificantly larger deficit relative to the VALENCE model pre-
dictions in the 2 vs. 1 condition and a significant reduction in
learning rates relative to controls specifically for the gain cues.

Aborted Trials and Reaction Times.We also examined aborted trials
and reaction times across tasks (Fig. 7). It was sometimes the case
that, when the two images were presented, the animals broke fix-
ation and did not select either image in the novel (Fig. 7A) and
familiar conditions (Fig. 7B). The monkeys broke fixation more fre-
quently when they had to choose between the −1 and −2 cues. This
was true even though following an error we repeated the same
condition. This differed by condition [Novel: F(24,116) = 17.9,
P < 0.001; Familiar; F(24,116) = 9.92, P < 0.001] and task
[Novel: F(3,23) = 4,653.0, P < 0.001; F(3,16) = 155.9, P < 0.001].

There were, however, no interactions of task with other variables,
and there was no effect of group [Novel: F(1,5) = 2.26, P = 0.189;
Familiar: F(1,5) = 0.85, P = 0.400]. In novel and familiar
blocks, both groups aborted more trials in the −1 vs. −2 condition
than any of the other conditions, when compared pairwise
(Controls: P < 0.001; VS: P < 0.001 for all pairs). The number of
aborted trials was also larger in the familiar than novel tasks in
the −1 vs. −2 condition [Novel vs. Familiar, F(1,5) = 8.95,
P = 0.031].

Fig. 6. Best-fitting RL models. (A) Overlay of behavior and predicted performance, averaged across experiments, for the 2 vs. 1 condition for the control
animals. (B) Same as D for the VS animals. (C) Learning-rate parameters averaged across tasks, extracted from the RL CUE model. Error bars are SEM across
monkeys in each group. (D) Average learning rates for the CUE model, cue parameters, in task 3, with stochastic feedback.

Fig. 7. Aborted trials and reaction times averaged across tasks. Note that
the data from task 2 are averaged here except the conditions that included a
Null cue (i.e., 0/1, 0/−1, etc.). See SI Appendix, Fig. S6 for all conditions of task
2. In addition, the ANOVA model included all conditions, as they were
nested under Task. (A) Aborted trials in the novel conditions. Errors indicate
the fraction of trials where the animals held initial fixation, but then failed
to select one of the choice options. (B) Aborted trials in the familiar condi-
tion. (C) Reaction times in novel conditions. (D) Reaction times in familiar
conditions.
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Next, we examined reaction times. In both novel (Fig. 7C) and
familiar (Fig. 7D) blocks, there were differences in reaction
times across conditions [Novel: F(24,116) = 11.4, P < 0.001; Fa-
miliar: F(24,115) = 15.2, P < 0.001] and marginal differences
across tasks [Novel: F(3,14) = 3.4, P = 0.046; Familiar: F(3,14) =
4.09, P = 0.029]. However, there were no differences between
groups [Novel: F(1,5) = 0.45, P = 0.534; Familiar: F(1,5) = 0.25,
P = 0.636] and no higher-order interactions (P > 0.05). In both
the novel and familiar blocks, animals in both groups were
slowest when choosing between the two loss cues relative to all
other conditions (Controls: P < 0.001; VS: P < 0.001 for
all pairs).

Discussion
We carried out four tasks in which we examined learning from
gains and losses, using tokens as secondary reinforcers. We
found that monkeys learned to make choices that increased their
tokens and to avoid choices that decreased their tokens. When
we examined group differences in learning novel cues, monkeys
with VS lesions were impaired when the feedback was stochastic,
and when the large loss choice had a value of −4. We also fit RL
models to behavior and found a preference for the CUE model,
which had a separate learning rate for each of the cues, relative
to the VALENCE model, which had one learning rate for pos-
itive outcomes and one for negative outcomes. When we com-
pared learning rates from this model between groups, we found
that animals with VS lesions had significantly reduced learning
rates specifically for the gain cues. Furthermore, when we ex-
amined behavior relative to the VALENCE model, to see where
it failed to account well for choices, we found that it specifically
overpredicted performance in the 2 vs. 1 condition, and this
overprediction was larger in the VS animals than the control
animals. This was after optimizing learning rates in this model.
Therefore, animals with VS lesions show specific deficits in
learning to choose between secondarily reinforced rewarding
options, with no apparent deficits in learning to choose between
gain and loss cues, or between two loss cues.
Token-based reward mechanisms have been used previously to

motivate behavior in macaques (11). We found that monkeys
learned effectively to choose options that increased their tokens
and avoid options that decreased their tokens. In addition,
aversive stimuli can affect behavior in multiple ways (1). Con-
sistent with this, we found that when monkeys had to choose
between two loss options, they learned to choose the option
leading to the smaller loss. They also aborted significantly more
trials and had the longest reaction times when they had to choose
between two losses. By these measures, our monkeys found
losing tokens to be aversive. We found effects of VS lesions on
choice behavior, but not reaction times or aborted trial behavior.
Therefore, these behaviors may be mediated by different sys-
tems, or the VS may contribute more to choice behavior than
speed of response and avoidance.

Distinct Circuitry Underlying Appetitive and Aversive Learning. Re-
cent work has attempted to delineate separable neural circuits
underlying appetitive and aversive learning. For example, Lammel
et al. (16) suggested that a circuit from the lateral habenula, through
a subset of dopamine neurons that responded to aversive stimuli, to
the IL/PL region of medial prefrontal cortex, was important for
aversive learning. Distinct from this, another circuit from the
rostral-medial tegmental nucleus, through a subset of dopamine
neurons that responded to appetitive stimuli, to the VS, was
important for appetitive learning. However, subsequent ana-
tomical work has not supported the suggestion that dopamine
neurons with different projection targets have different inputs
(18, 19). Other work has suggested that basolateral amygdala
neurons that project to the VS are important for appetitive
learning, and basolateral amygdala neurons that project to the

central nucleus of the amygdala are important for aversive
learning (13, 20). Circuitry connecting the amygdala to the
dorsal anterior cingulate cortex has also been implicated in
aversive learning (21). Inactivation of both ventrolateral pre-
frontal cortex, and orbitofrontal cortex has also been shown
to increase sensitivity to punishment (22). In addition, there
is extensive work supporting the amygdala’s role in aversive
learning (23).
In addition to the circuit work in rodents and nonhuman

primates, other work has directly examined learning in the
context of winning money, or not losing money, which has sim-
ilarities to our use of tokens. This work has also suggested that
the VS, and dopamine modulation of VS activity, is important
for learning to choose rewarding options (5). The same study
suggested that the insular cortex was important for learning to
avoid losing money, a finding supported by work in patients with
insular cortex lesions (24). Notably, avoiding monetary losses has
consistently been shown to be independent of dopamine (5, 25).
Additional work has shown that aversive pruning, which is the
process of eliminating choices that lead to future situations in
which large punishments might be experienced, engages the
subgenual cingulate cortex (26). It has also been shown that
microstimulation in a related subgenual cingulate region can bias
choices away from aversive options, although not in the context
of learning (27). Thus, the VS has often been implicated in ap-
petitive learning. Aversive learning, on the other hand, has been
linked to dorsal cingulate cortex, subgenual cingulate cortex,
insular cortex, and the central nucleus of the amygdala. Our data
are consistent with the hypothesis that the VS plays a specific role in
learning about gains, without contributing to learning about or
choosing when losses are involved. In our behavioral data, the
deficits in learning about gains were specific to choosing between
pairs of gains and did not manifest when a gain was paired with a
loss. However, the RL model showed that learning rates were
overall lower for gain cues.
The differences between the circuit work in rodents and the

systems work in humans and monkeys, which have identified
different systems for aversive learning, may in part be due to
differences in the appetitive and aversive modalities used. Ap-
petitive and aversive stimuli come in many forms, and these are
processed in separable systems, at some level (1, 28). For ex-
ample, nociceptive information relayed via the dorsal horn of the
spinal cord is distinct from information about threats from
conspecifics, which may arrive via the auditory or visual system,
depending on the nature of the threats. In addition, the pro-
cessing of token losses would presumably involve different neural
circuits from conditioned defensive responses to shock or loud
noise. It is currently not clear where information about appeti-
tive or aversive outcomes arising from different modalities is in-
tegrated, or if it is ever integrated. Thus, there may be no simple
circuit that processes all appetitive or aversive information, in-
dependent of modality.
Although the VS is not often implicated in aversive learning,

studies have shown that VS neurons respond to both rewarding
and aversive stimuli (29). In addition, VS neurons respond to
rewarding stimuli that have been subsequently negatively con-
ditioned using injections of lithium chloride (30). Other work has
shown that cues that have been negatively conditioned can lead
to increased dopamine release in the VS shell, but decreased
dopamine release in the VS core (31). In contrast to this, how-
ever, tail pinch has been shown to increase dopamine release in
the dorsal striatum and the core of the VS (32, 33). Removal of
tail pinch also leads to increased dopamine release in the VS
shell (32), consistent with the hypothesis that pain relief can be
rewarding (34). Further work has shown that oral infusions of
quinine, which is aversive, leads to decreased dopamine con-
centration in the VS core, whereas oral infusion of sucrose leads to
increased dopamine concentration (35). Therefore, the relationship
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between single-neuron responses, dopamine concentration, and
appetitive and aversive stimuli in the VS core and shell is com-
plex and depends on the modality of the stimulus and perhaps
anesthesia state.

Learning Deficits in VS-Lesioned Animals. In our study in the novel
condition, we found differences between monkeys with VS le-
sions and unoperated controls in both task 3, in which outcomes
were stochastic, and task 4, in which we used a large loss. We
have previously found that animals with VS lesions learn more
effectively when outcomes are deterministic, and have sub-
stantial deficits when outcomes are stochastic (7, 36, 37). The
deficits are consistently largest when the monkeys with VS le-
sions have to learn to choose between two options that have the
same reward magnitude, but differ in reward probability. This
may be consistent with work showing that lesions of the VS affect
dopamine coding of prediction errors for reward delays, but not
reward magnitudes (38). Reward rate estimation, which is re-
quired for learning values in tasks with stochastic outcomes, re-
quires estimates of time between rewards.
In the current study, the two options always had different re-

ward magnitudes but the same reward probabilities. While the
monkeys with VS lesions had deficits in these tasks, the effect
was smaller than we observed in a series of tasks with stochastic
outcomes. We have suggested that the amygdala, and also cor-
tical systems (8, 39), learn in parallel with the VS. The amygdala,
however, learns with a higher learning rate than the VS (7, 17).
Therefore, in monkeys with VS lesions, the amygdala and ana-
tomically related cortical systems may play a larger role in
learning than in intact monkeys. The higher learning rate
amygdala system is more susceptible to noise, because it rapidly
updates value estimates following a nonrewarded choice, and
values therefore tend to oscillate when feedback is stochastic
(17). The VS updates values with a slower learning rate than the
amygdala. When the VS is intact, learning is less affected by
stochastic outcomes because the VS value estimates are updated
less, after individual outcomes, thereby offsetting the rapid
updating carried out by the amygdala. Thus, lesions of the VS
lead to larger deficits when feedback is stochastic, and particu-
larly large deficits when only reward probability, and not reward
magnitude, can be used to optimize choices. It is likely that the
cortex, and mediodorsal thalamus, also contribute to learning in
these tasks (39–41). However, how this monosynaptically con-
nected circuit works together to mediate learning is a topic for
future research.
We also found group differences in the familiar condition in

all tasks. Except in task 1, however, the behavioral differences
tended to be rather subtle. One possible explanation for the
finding of subtle yet significant differences in the familiar con-
ditions is that the controls often had near-perfect performance in
some conditions. Because accuracy is a bounded variable (and
despite the fact that we used a transform to normality before
running the ANOVAs), this near-perfect performance leads to
very small variance, which leads to significant differences. There-
fore, the subtle differences in choice accuracy were significant. In
most conditions, performance was very high in the conditions that
had at least one gain cue. Performance in the −1 vs. −2 condition,
or in the 0 vs. loss conditions in task 2, never reached high levels,
even after extensive experience.
In previous tasks, we also found that monkeys with VS lesions

responded faster than controls (7, 36). In the current task, there
were no group differences in reaction times, and there was a
trend for the monkeys with VS lesions to respond more slowly
than the controls. Thus, the presence of loss cues in the token
tasks slowed the reaction times of the VS animals. Previously, we
also found that much of the deficit in the VS animals, relative to
controls, could be accounted for if reaction times were matched
between groups (7). This followed because there was a speed–

accuracy trade-off, such that responding quickly led to less
consistent choice of the best cue. Thus, the slowed reaction times
in the current task may partially explain the accurate perfor-
mance of the VS-lesioned animals in several conditions.

RL Model. An RL model with a separate learning rate for each
cue (CUE model) best fit the data for both the control and VS
groups in all tasks. For most of our tasks, the VALENCE model
is the same as a model that would fit one learning rate for
positive RPEs and one for negative RPEs, because values start
out at 0 and outcomes are deterministic. When we examined
learning rates across experiments, the monkeys with VS lesions
had reduced learning rates specifically for gain cues. When we
examined performance of the models in each condition, to see
where the VALENCE model failed to account for behavior, we
found that it overpredicted performance in the 2 vs. 1 condition
in both groups, but that this effect was larger in the monkeys with
VS lesions relative to controls. Therefore, analysis of learning
across experiments showed specific deficits in the animals with
VS lesions in learning the values of gain cues, with no overall
deficits in learning the values of loss cues.
As a final point, the monkeys in both groups also appeared to

learn poorly in the −1 vs. −2 condition, although they did show
statistically significant learning in all tasks. We did not find,
however, that allowing for a different choice consistency pa-
rameter (i.e., inverse temperature) for loss choices improved the
fit of the RL model. Both the CUE and VALENCE models used
different learning rates for gain and loss cues and learning was
slower in the loss conditions. In addition to the smaller learning
rates for the loss cues, however, these cues were also chosen less
often, and therefore their values were less frequently updated.
For example, the +2 cue was frequently chosen in every pair it
was part of, whereas the −2 cue was rarely chosen. Value updates
only happen in the RL model when an option is chosen and the
outcome is experienced. Therefore, the decreased learning in
the −1 vs. −2 condition follows both from decreased learning
rates and less experience with the outcomes associated with
those options.

Conclusion. We compared learning from gains and losses in ani-
mals with VS lesions and an unoperated control group. We
found behavioral deficits in monkeys with VS lesions in two of
the four tasks, when comparing choice accuracy. These deficits
were consistently driven by trials in which animals had to choose
between two cues that differed in positive reward magnitude.
There were no deficits when animals had to choose between
options, one of which was associated with a loss. We also fit RL
models to the data and found that learning rates were lower for
gain cues in the VS animals relative to controls. Thus, lesions of
the VS, in this task, specifically affected learning to choose be-
tween rewarding options and had no effect on learning to
avoid losses.

Methods
Subjects. The subjects included sixmale and one female rhesus macaques with
weights ranging from 6 to 11 kg. Three of the male monkeys received bi-
lateral excitotoxic lesions of the VS. The remaining four monkeys served as
unoperated controls (three males and one female). One of the male control
animals was not able to complete all four tasks, and therefore task 4 only has
three controls. For the duration of the study, monkeys were placed on water
control. On testing days, monkeys earned their fluid from their performance
on the task. Experimental procedures for all monkeys were performed in
accordance with Guide for the Care and Use of Laboratory Animals (42) and
were approved by the National Institute of Mental Health Animal Care and
Use Committee.

Surgery. Three monkeys received two separate stereotaxic surgeries, one for
each hemisphere, which targeted the VS using quinolinic acid. After both
lesion surgeries, each monkey received a cranial implant of a titanium head
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post to facilitate head restraint. Unoperated controls received the same
cranial implant. Behavioral testing for all monkeys began after they had
recovered from the implant surgery. Lesioned animals were used in three
previous studies (7, 36, 37).

Lesion Assessment. Lesions of the VS were assessed from postoperative MRI
scans. We evaluated the extent of the damage with T2-weighted scans taken
after the initial surgeries. For the lesioned monkeys, MR scan slices were
matched to drawings of coronal sections from a standard rhesus monkey
brain at 1-mm intervals. We then plotted the lesions onto standard sections.

Task and Apparatus. We tested rhesus macaques on three deterministic and
one stochastic two-arm bandit learning task. We conditioned tokens as re-
inforcers, which allowed us to assess learning from both gains and losses
within the same dimension. All animals completed the four tasks in the same
order. Each experimental session was composed of nine novel and three
familiar blocks that were randomly interleaved. In each novel block, we
introduced images the animal had never seen before and they had to learn
the cue–outcome associations. The images in the familiar blocks were kept
constant for the duration of a task. We completed testing on each task
before beginning the next.

During the experiment, the animals were seated in a primate chair facing a
computer screen. Eye movements were used as behavioral readouts. In each
single trial, the animals first acquired fixation (Fig. 1A). After a fixation hold
period, we presented two images, left and right of fixation. The animals
made an eye movement to one of the images to indicate their choice. They
were allowed to make an eye movement as soon as the targets appeared.
After a hold period, the number of tokens associated with their choice was
added or subtracted from their accumulated tokens. Every four to seven
trials, with the interval randomly selected, the animals received one drop of
juice for each token they had at the time of cash-out. When each drop of
juice was delivered, one of the tokens disappeared from the screen.

TkD: Token Task 1 (Deterministic Learning). In the first task (TkD), novel blocks
consisted of 108 trials and familiar blocks of 36 trials. Novel blocks consisted of
four images the animals had never seen before. Associated with each image
was a value (+2, +1, −1, −2), such that if that image was chosen, the animal
gained or lost the corresponding number of tokens. On each trial, monkeys
had to acquire and hold central fixation for 500 ms. After monkeys held
central fixation, two of the images would appear to the left and the right of
the fixation point. The animal chose one by making a saccade to the image
and holding for 500 ms. The number of tokens associated with the image
was then added or subtracted from their total count, represented by circles
at the bottom of the screen. The animals could not have less than zero to-
kens, however. Therefore, if they had one token and they chose a −2 image,
they were reduced to 0 tokens. Every four to seven trials, their tokens were
cashed out. At cash-out, the animals were given one drop of juice for each
token. When each drop of juice was delivered, one token was removed from
the screen. There were six individual conditions in this task, defined by the
possible pairs of images. The conditions within a block of 108 trials were
presented pseudorandomly. The animals saw each condition twice, once on
the left and once on the right, every 12 trials before seeing any condition a
third time. At the end of each 108-trial block, we introduced four new im-
ages and the animals began the learning from scratch.

TkN: Token Task 2 (Deterministic Learning). In the second task, we included an
image in the set that, if chosen, led to no change in the number of tokens.
Thus, at the beginning of each novel block, we introduced five new images.
The images had associated token outcomes of +2, +1, 0, −1, and −2. There
were, therefore, 10 different pairs of objects, which we refer to as condi-
tions. These were administered in blocks of 120 trials. Each pair of images
was seen twice every 20 trials, with each image presented once on the left
and once on the right. As before, the conditions were randomly interleaved
every 12 trials.

TkS: Token Task 3 (Stochastic Learning). In the third task, we examined per-
formance when feedbackwas stochastic. In this task, at the beginning of each
block, we introduced four new images with associated reward magnitudes of
+2, +1, −1, and −2. The design was otherwise the same as the first token
task. Except, in this task, in 75% of the trials the number of tokens was
adjusted by the magnitude associated with the chosen option, but in 25% of
the trials there was no change in the number of tokens. This makes learning
more difficult, and information has to be integrated across a larger number
of trials to learn the correct choice.

TkL: Token Task 4 (Deterministic Learning). In the final task, we again used
deterministic feedback to examined performance. This version of the taskwas
similar to task 1 (TkD) with two differences. First, we changed the value of
the −2 cue to −4. So the cues for this task were +2, +1, −1, and −4. Second,
we gave the animals an endowment of four tokens after every cash-out to
maintain motivation, and to increase the number of trials on which they
would experience the actual four-token loss.

In some trials, the animals had zero tokens and chose a loss cue. In this case,
they had no change in tokens. Therefore, the animals would know that they
had not chosen a gain token, but they would not know the magnitude of the
loss. In task 1, this happened 12.5%of the time; in task 2, 17.5%of the time; in
task 3, 13.2% of the time; and in task 4, 2.6% of the time.

Images and Eye Tracking. Images provided as choice options were normalized
for luminance and spatial frequency using the SHINE toolbox for MATLAB
(43). All images were converted to grayscale and subjected to a 2D fast
Fourier transform to control spatial frequency. To obtain a goal amplitude
spectrum, the amplitude at each spatial frequency was summed across the
two image dimensions and then averaged across images. Next, all images
were normalized to have this amplitude spectrum. Using luminance histo-
gram matching, we normalized the luminance histogram of each color
channel in each image so it matched the mean luminance histogram of the
corresponding color channel, averaged across all images. Spatial frequency
normalization always preceded the luminance histogram matching. Each
day before the monkeys began the task, we manually screened each image
to verify its integrity. Any image that was unrecognizable after processing
was replaced with an image that remained recognizable. Eye movements
were monitored and the image presentation was controlled by PC com-
puters running the Monkeylogic (version 1.1) toolbox for MATLAB (44) and
Arrington Viewpoint eye-tracking system (Arrington Research).

Reinforcement Learning Models.We fit a large set of models that varied in the
number of parameters they used to model the conditions. In the results, we
focus on twomodels thatmost often accounted for behavior. All models were
built around a Rescorla–Wagner, or stateless RL value update equation given
by the following:

viðt + 1Þ=   viðtÞ+  αcðR−   viðtÞÞ. [1]

These values were then passed through a soft-max function to give choice
probabilities for the pair presented in each trial:

djðtÞ=
�
1+   eβkðvi ðtÞ−vj ðtÞ+hi ðtÞ−hj ðtÞÞ�−1

,   diðkÞ= 1−   djðkÞ. [2]

The variable vi is the value estimate for option i, R is the change in the
number of tokens that followed the choice in trial t, and αc is the condition-
dependent learning rate parameter, for condition c. In addition, we also
used, for some models, condition-dependent values of the choice consis-
tency or inverse temperature parameter, βk. The variable hiðtÞ implemented
a choice autocorrelation function (45), which increased the value of a cue
that had occurred in the same location, recently. The autocorrelation func-
tion was defined as follows:

hiðtÞ=  κe−λðt−tlðiÞÞ, [3]

where the variables κ and λ were free parameters scaling the size of the
effect and the decay rate, respectively. The variable tlðiÞ indicates the last trial
on which a given cue, i, was chosen in a given location. There were eight
separate values for tlðiÞ as it tracked the four cues across locations, except for
task 2 (TkN), which had 10 values.

We then maximized the likelihood of the animal’s choices, D, given the
parameters present in the model under consideration, using as a cost
function:

f
�
Djαj , βk , κ, λ

�
=∏

t
½d1ðkÞc1ðkÞ+d2ðkÞc2ðkÞ�, [4]

where c1ðkÞ was an indicator variable that took on a value of 1 if option
1 was chosen and zero otherwise, and c2ðkÞ took on a value of 1 if option
2 was chosen and 0 otherwise.

The VALENCEmodel had one inverse temperature, and two learning rates,
one for positive cues and one for negative cues. The CUE model had one
inverse temperature, and one learning rate for each cue. Note that the null
cue in task 2 would always have a 0 RPE, because the reward associated with
this cue was 0, and its values started at 0. Therefore, it does not need
a learning rate.
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We also explored additional models that had the following: (i) one inverse
temperature and one learning rate; (ii) two inverse temperatures, one for
the loss–loss condition and one for the rest of the conditions, and two
learning rates, one for positive outcomes and one for negative outcomes;
(iii) two inverse temperatures, one for the 2 vs. 1 condition, and one for the
rest of the conditions, and two learning rates, one for positive feedback and
one for negative feedback. None of these models predicted behavior well,
however, so to simplify presentation we do not show their results.

Statistics. To quantify differences between choice behavior in each group, we
performed an arcsine transformation on the choice accuracy values from each
session, as this transformation normalizes the data (46). We then carried out
an N-way ANOVA (ANOVAN). Monkey and session were included as random

effects with session nested under monkey. All other factors were fixed ef-
fects. The ANOVA on learning-rate parameters across experiments was also
done as a mixed-effects ANOVA with session and monkey as random effects
and experiment and cue as fixed effects.

All within-group post hoc analysis of aborted trials and reaction time
was done using the multcompare function in MATLAB, specifically using
the Bonferroni method. Unless otherwise stated, multcompare within
group stats will only be reported for the condition that is the least
significant.
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