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Refinement is the last step in protein structure prediction pipelines
to convert approximate homology models to experimental accu-
racy. Protocols based on molecular dynamics (MD) simulations
have shown promise, but current methods are limited to moderate
levels of consistent refinement. To explore the energy landscape
between homology models and native structures and analyze the
challenges of MD-based refinement, eight test cases were studied
via extensive simulations followed by Markov state modeling. In
all cases, native states were found very close to the experimental
structures and at the lowest free energies, but refinement was
hindered by a rough energy landscape. Transitions from the
homology model to the native states require the crossing of
significant kinetic barriers on at least microsecond time scales. A
significant energetic driving force toward the native state was
lacking until its immediate vicinity, and there was significant
sampling of off-pathway states competing for productive refine-
ment. The role of recent force field improvements is discussed and
transition paths are analyzed in detail to inform which key
transitions have to be overcome to achieve successful refinement.

protein structure prediction | Markov state model |
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Modern biochemistry relies on the detailed understanding of
molecular processes provided by the successes of structural

biology. Except for membrane proteins, structural coverage of
the majority of protein classes is comprehensive, at least in terms
of the fold space utilized by nature (1, 2). On the other hand, apart
from a few viruses, complete structural resolution of the proteins in
any specific organism is still a distant goal. For extensively studied
systems, a good number of structures are available in the Protein
Data Bank (PDB) (3), but the vast majority of organisms have very
sparse structural coverage. This situation is unlikely to change, as
experiments are limited by challenges in sample preparation, data
collection, and structure determination.
Computational protein structure prediction is an alternative to

experimental structure determination. A conceptually simple ap-
proach is ab initio folding from extended chains to follow the
folding process based on physical laws (4). This is feasible for the
smallest proteins but at significant computational expense (5–8). A
more practical method is homology modeling (9), where known
structures with related sequence are used as templates to generate
models for sequences without known structure (10). This approach
works best when the sequence similarity between the template and
target is high (10), but advanced methods can generate good models
when there are only distant homologs (11, 12). Homology models
typically capture the topology of a given protein but retain devia-
tions from experimental structures with Cα coordinate root-mean-
square deviations (RMSD) of 2 Å to 5 Å (13). This level of accuracy
is only sufficient for some applications, e.g., to identify candidates
for mutations in biochemical experiments. A higher level of accu-
racy is needed when structures are used as starting points for
computational studies (14), for solving X-ray structures via molec-
ular replacement (15), or for fitting cryo-EM densities (16).
Structure refinement methods aim at improving the accuracy

of homology models toward experimental quality (17). A com-
mon approach is to initiate extensive conformational sampling
from a given homology model to search for structures that are

closer to the true native state and identify those via suitable
scoring functions (18–26). Refinement is achieved when the
sampling generates conformations closer to the native state and
when the scoring protocol can discriminate such conformations
(19). In practice, such a protocol works best when selected en-
semble subsets are averaged to match the nature of experimental
structures and reduce scoring function noise (27, 28).
Conformational sampling via molecular dynamics (MD) simula-

tions based on atomistic force fields is an obvious choice for
structure refinement (19, 28). The resolution of the atomistic model
matches the resolution of experimental structures, and the general
physics-based nature of the underlying force fields provides, at least
in principle, universal applicability to any protein structure. First
reports of the successful refinement of homology models via MD
simulations emerged about a decade ago (29–31). Model re-
finement methods have been evaluated in blind tests during CASP
(Critical Assessment of protein Structure Prediction) since CASP8,
held in 2008 (32). Initially, refinement success was limited to a few
cases, and there was a lack of consistency. In fact, in most sub-
missions at that time, the quality of models deteriorated as a result
of “refinement” (17). Since CASP10, MD-based refinement pro-
tocols have started to achieve more consistent structural improve-
ments (33, 34), and such methods have become a key element in
structure refinement protocols (20, 21, 23, 28, 35–41). Despite the
progress, the overall degree of refinement, even with the best
methods, has remained modest (17, 42). The structural accuracy of
predictions is commonly assessed via GDT (global distance test)
scores (43) in addition to Cα RMSDs. The GDT-HA (high accu-
racy) variant captures the average percentage of Cα atoms that can
be superimposed within RMSD distance cutoffs of 0.5, 1, 2, and 4 Å.
Current protocols can reliably improve initial models by a few
GDT-HA units, and the refined models rarely decrease in RMSD
by more than 1 Å (33). To achieve consistency, MD-based
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refinement protocols commonly apply positional restraints with
respect to the initial homology models (28). Without such restraints,
initial models tend to move away from the native state (44) without
returning, even during simulations over 100 μs (40) and with en-
hanced sampling methods (24). However, the restraints also limit
progress toward the native state.
Given that atomistic MD simulations can successfully fold

proteins ab initio (7), it is puzzling that refinement of a model
that is already close to the native state would be so difficult. It
has remained unclear whether the MD simulations are limited by
sampling and/or inadequate force fields when applied to the
refinement problem or whether the refinement of homology
modeling is inherently difficult due to the nature of the energy
landscape between homology models and the native state.
Here, we describe results from extensive MD simulations

followed by Markov state modeling (MSM) to reconstruct the
conformational energy and kinetic landscapes between initial
homology models and native states for targets from previous
rounds of CASP to examine whether native states correspond to
global free energy minima. Further analysis focused on the na-
ture of the refinement paths and key kinetic barriers along such
paths. The relation to folding transition pathways is discussed,
and how the insight gained here informs the development of
more successful refinement protocols.

Results
MD simulations were applied in combination with MSM analysis
to explore refinement pathways from initial homology models to
native states for eight small proteins that were refinement targets in
previous rounds of CASP with moderate initial deviations and a
variety of different fold types and modeling errors (Fig. 1 and SI
Appendix, Table S1). The initial models deviated from the native
structures by 1.7 Å to 5.6 Å Cα RMSD or GDT-HA scores of 44 to
65. For each system, unbiased simulations were started from the
homology model and the experimental structure and then iterated by
restarting from intermediate states until a single MSM connecting
the native state and homology model was obtained (seeMethods and
SI Appendix, Table S2). While many types of conformational tran-
sitions have been studied via many different methods (45, 46), we
chose the iterative sampling protocol based on unbiased simulations
to study the refinement transition without having to make any pre-
sumptions about the pathway(s) or suitable progress variables.

Markov State Model Generation. Final Markov state models were
built based on the total combined sampling for each system
(between 15 μs and 56 μs). The conformational sampling was
initially clustered into 40 to 200 microstates that were lumped

into 11 to 50 macrostates based on lag times of 5 ns to 10 ns (SI
Appendix, Fig. S1 and Table S3). On average, the pairwise sim-
ilarity between macrostates was 2 Å to 3 Å RMSD. Uncertainties
in the free energies of the macrostates were evaluated by 20-fold
cross-validation from subsets of the MD trajectories to validate
the MSM models (SI Appendix, Fig. S2). The majority of mac-
rostates displayed little uncertainty in their free energies, im-
plying that the Markov state models were converged and not
biased by specific trajectories.

Initial and Native States. The macrostates closest to the initial ho-
mology model and the experimental structure were considered as the
MD-based “initial” and “native” states, respectively. The initial states
deviated by about 2 Å RMSD from the homology models for the
majority of systems (SI Appendix, Table S4). Larger deviations of 3 Å
(TR854) and 5 Å (TR872) were due to significant rearrangements of
the termini at the beginning of the simulations. Although restraints
were not applied here, the initial states reflect largely what a
restraint-based MD refinement protocol would achieve. The initial
states deviated between 1.5 Å and 4 Å RMSD from the experi-
mental structures, and, on average, the RMSD values were de-
creased by 0.1 Å and GDT-HA scores increased by 2.6 units over the
initial homology models. There was no significant improvement in
sidechain accuracy measured by global distance cutoff-side chain
(GDC-SC) scores, which is analogous to GDT-HA but based on
sidechain atoms (Table 1).
The native states were about 1 Å RMSD from the respective

experimental structures, with GDT-HA scores of 72 to 95 for all
but one system (Table 1). For TR872, the native state was about
2 Å RMSD from the experimental structure, with a GDT-HA
score close to 80. Given that the systems involve truncated struc-
tures and there is a possibility of crystal artifacts and other experi-
mental uncertainties, it may be reasonable to consider models
within 1 Å RMSD from the experimental structures or with GDT-
HA scores of 80 or more to approach experimental accuracy.
Moreover, sidechain accuracies were also improved as GDC-SC
scores reached values of 41 to 56, reflecting almost native-like
sidechain packing at the protein cores. This was achieved for all
of the systems tested here. On average, the MD-based native states
were improved over the initial homology models by 1.8 Å in RMSD,
by 28.5 GDT-HA units, and by 23.5 GDC-SC units with respect to
the experimental structures (Table 1).

Free Energy Landscapes. The free energy landscapes for each system,
projected onto the first two principal components from time
structure independent component analysis (tICA), are shown in Fig.
2. In all cases, there are a number of favorable states within 1 kcal/
mol to 2 kcal/mol of each other (see SI Appendix, Fig. S2). The
experimental structures are close to a major minimum in all of the
systems. In contrast, the initial models are generally in regions with
elevated energies, and, even when a favorable state is found near
the initial model (e.g., for TR769, TR782, TR894), those minima
have higher energies than the native state. Indeed, the native state
was favored over the initial state in all systems by 0.65 kcal/mol to
2.60 kcal/mol (Table 1). Moreover, the native state was always
found at the global free energy minimum relative to all other states
(SI Appendix, Fig. S2). In half of the cases, there is a significant free
energy gap of 0.5 kcal/mol or more to the state with the next highest
energy (SI Appendix, Fig. S2).
Closer inspection of Fig. 2 suggests pathways between the

initial and native states via a number of intermediate states. The
intermediate states are energetically similar to the initial state or
even higher in free energy in some cases (e.g., in TR816 and
TR894). This indicates a rough energy surface where the tran-
sition from the initial homology model to the native state is not
guided strongly by a downhill gradient. Furthermore, there are a
number of off-pathway states with energies comparable to on-
pathway intermediate states. These states are expected to dis-
tract sampling away from the native state in refinement appli-
cations where the experimental structure is not known.

Fig. 1. Protein test set. Experimental structures (yellow) and homology
models (blue) with CASP ID, PDB ID of the experimental structure, residue
ranges, and deviations in Cα-RMSD and GDT-HA. Red arrows and stick rep-
resentations identify modeling errors and key residues. For TR921, the
highlighted residues M66, N75, D40, and E119 indicate alignment errors.
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Kinetics of Transitions from Initial to Native States. The Markov
state models allow the construction of transition paths and the
extraction of kinetic rates between states. We focused the anal-
ysis on transitions from the initial to the native state to un-
derstand the kinetic factors of successful refinement. In all
systems, multiple transitions were necessary to reach the native
state from the initial state (Fig. 2 and Table 1 and detailed
pathways in Fig. 3 and SI Appendix, Figs. S5–S20). Individual
transition rates across the associated kinetic barriers and mean
first passage times were generally on the order of microseconds,
but the slowest transitions reached tens of microseconds for two
systems (TR837 and TR782) and hundreds of microseconds for
TR921 (Table 1). Most individual steps during the refinement
transitions involve continuous increases in GDT-HA scores, but
the largest increase in GDT scores often occur during the last
transition to the native state (such as from states 5/5′ to 6 in
TR816; Fig. 3). RMSD values generally decrease more gradually
as the native state is approached (SI Appendix, Fig. S4). On the
other hand, free energies do not decrease continuously for most
systems, and, in many cases, an intermediate state with higher

free energy than the initial state (e.g., 5′ in TR816) is visited
along the path.
TR816 is discussed as a representative example (Figs. 3 and 4

and SI Appendix, Fig. S6). There are two significant errors in the
initial model: (i) The N terminus helix is misoriented with in-
correct hydrophobic interactions, and (ii) the helix at the N
terminus extends too far. We found two major paths to address
these errors via a number of conformational transitions. Along
the first path (Figs. 3 and 4A), the N-terminal helix H1 first loses
unfavorable incorrect hydrophobic interactions by tilting (1→2,
blue arrow in Fig. 4A and Movie S1), the overpredicted part of
H1 unwinds (2→3, red arrow in Fig. 4A and Movie S2), helix H1
rotates along the helix axis (3→4, green arrow in Fig. 4A), and
subsequent relaxation repacks residues to the native state (4→6).
The first transition takes the longest time because sidechains
encounter steric hindrance when passing each other. The second
transition requires a backbone torsion change but is less steri-
cally hindered because the structure is partially opened up. In
the alternative path (Fig. 4B and SI Appendix, Fig. S6), helix H1

Table 1. Energetics, kinetics, and structures from Markov state models of refinement landscapes

Target Initial model* Initial state* (MD†) Native state* (MD†)
ΔΔG (native − initial),‡

kcal/mol
MFPT§/slowest
transition, μs

Number of
transitions{

TR816 2.53/51.8/22.0 2.79/50.0/24.6 0.80/86.8/52.8 −2.46 (±0.02) 1.7/3.7 (5.1#) 5
TR837 2.95/43.8/21.1 3.93/36.0/16.7 0.88/80.2/55.1 −2.60 (±0.06) 43.4/33.1 7
TR854 2.27/60.4/28.2 2.69/66.8/31.8 1.04/80.0/45.7 −1.59 (±0.02) 1.5/1.0 3
TR782 1.93/65.2/37.1 1.99/66.8/36.2 0.94/86.4/55.4 −0.65 (±0.06) 39.6/31.0 5
TR872 5.59/56.8/38.1 2.98/67.9/43.1 1.97/79.8/55.8 −0.83 (±0.02) 2.9/2.2 2
TR921 3.51/48.4/27.1 3.32/54.2/30.4 0.90/87.3/57.8 −0.85 (±0.06) 637.9/623.0 15
TR769 1.74/59.8/33.0 1.47/65.5/35.2 1.14/72.4/41.2 −1.10 (±0.01) 0.8/0.5 2
TR894 2.23/54.2/23.6 2.49/54.2/24.8 0.85/95.4/54.2 −1.71 (±0.04) 6.0/3.9 5

*Structure similarity between structures in Cα RMSD, GDT-HA, and GDC-SC.
†Ensemble-averaged structures based on conformations for a given state sampled in the MD simulations.
‡Free energy difference between the native and the initial state with SEs evaluated from 20 MSM iterations with 95% trajectory subsets.
§Mean first passage time between initial and native state.
{Between initial and native states.
#Alternate transition path.

Fig. 2. Free energy landscapes and refinement pathways. Potentials of mean force projected onto the first two tIC principal coordinates according to the
color bar. Contour lines are drawn for every 0.5 kcal/mol up to 8.0 kcal/mol. For TR816, TR872, and TR769, themaps focus on themajor regions relevant for refinement.
The entire maps for these systems are shown in SI Appendix, Fig. S3. Projections of the experimental structures and initial homology models are indicated with blue
and black Xs, respectively. Refinement pathways and intermediate states identified from the MSM analysis are marked with arrows and numbered circles. Alternative
pathways are indicated with dashed lines, and additional off-pathway states discussed in Free Energy Landscapes are labeled with lowercase letters.
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finds its correct orientation first via a number of transitions
(1→2′→3′, blue arrows in Fig. 4B and Movie S3), and the
overpredicted helix then unwinds to a coil (3′→6, red arrows in
Fig. 4B and Movie S4). The last transition incurs slow kinetics
because multiple residues between H1 and the rest of the
structure have to be rearranged. The coil region is interacting
with a loop, and the loop hinders transitions. Therefore, it par-
tially unfolds (to state 5′ where RMSD is increased, Fig. 4B)
before refolding to overcome the energy barrier. The other sys-
tems followed similar sets of transitions (SI Appendix, Figs. S5–
S20). Generally, the structural transitions necessary to refine the
initial homology models can be classified as helix movements,
α-helix and β-sheet extensions and dissolutions, loop and ter-
minal reconfigurations of the backbone, sidechain flips, and
overall relaxation involving simultaneous adjustments of several
residues (SI Appendix, Fig. S21 and Table S6).

Alternative Initial States. Alternative initial models submitted for
each of the targets during CASP (see Methods) were projected
onto the free energy landscape diagrams (SI Appendix, Fig. S32).
Most of the alternative models map onto the original energy land-
scape, but, in a few cases, models lie outside the originally generated
landscapes. Outliers analyzed in detail (SI Appendix, Fig. S33) show
deviations in secondary structure elements that may be due to se-
quence alignment errors. Since the reconfiguration of secondary
structure elements incurs significant kinetic barriers (SI Appendix, Fig.
S21), it is not surprising that these states were not reached in our
simulations. On the other hand, these outliers are located farther
away from the native state in the energy landscapes and are therefore
not likely intermediates on the refinement pathways described in
Kinetics of Transitions from Initial to Native States. A few initial models
appear close to the native state when projected onto the tIC coor-
dinates (SI Appendix, Fig. S32). The analysis of two such examples (SI
Appendix, Fig. S33) suggests that the modeling errors present in the
original initial models were largely absent in these models, but other
modeling errors were present instead. Therefore, these models would
require orthogonal refinement paths rather than being alternate
states that could be reached easily from the original initial models.
Three alternative initial models were selected for each target

to carry out additional simulations (see Methods). The resulting
sampling largely overlapped with the previously generated free
energy landscapes (SI Appendix, Fig. S34), and it resembled the
first iteration started from the original initial model (SI Appen-
dix, Fig. S35). In the cases where there was significant sampling
outside the original free energy landscapes (e.g., TR769 and
TR854), those conformations became unstable and unfolded

partially. A combined Markov state model was constructed from
the sampling with different initial models. This allowed us to
estimate the relative free energies including the additional
sampling (SI Appendix, Fig. S36). As before, the native state
remained at the lowest free energy for all targets.

Refinement vs. (Un)folding Transition.Additional sampling was also
generated via high-temperature unfolding starting from the na-
tive state (see Methods). Interestingly, the initial unfolding
pathways partially overlap with the refinement pathways, and, for

Fig. 3. Refinement path transition in TR816.
Ensemble-averaged structures for MSM states during
refinement transitions (magenta) are compared with
experimental structures (yellow) for one of two
paths. The alternative path is shown in SI Appendix,
Fig. S6. The numbering of states corresponds to the
states identified in Fig. 2. Cα-RMSD values, GDT-HA
scores, and free energies in kilocalories per mole are
given for each state, and mean first passage times
(MFPT) refer to transitions toward the native state.
Blue arrows indicate key structural changes after
each transition.

Fig. 4. Structural transitions during refinement of TR816. Progress in terms of
Cα-RMSD, rotation, and tilt angles of the N-terminal helix (H1, residues 4 to 15)
with respect to the experimental structure, and φ backbone torsion for residue
3 along subsampled refinement trajectories. Two alternative paths are shown
in A and B along states numbered as in Figs. 2 and 3. Key transitions are in-
dicated with arrows. Dashed lines show values in the experimental structure
(blue) and the initial homology model (red). Selected transition states are shown
in molecular detail (magenta) with structures before (yellow) and after (blue).
Colored arrows are referred to in Kinetics of Transitions from Initial to Native
States. Additional details are shown in SI Appendix, Fig. S13.
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most targets, sampling projected onto the tIC coordinates remained
within the already sampled energy landscapes (SI Appendix, Fig. S37).
In some cases, we find more significant deviations due to substantial
unfolding, but the initial homology models were never reached. This
suggests that the initial homology models are off-pathway with re-
spect to the folding transition, although the final parts of the
refinement pathways may overlap with folding pathways.

Discussion and Conclusions
Free Energy Landscapes During Refinement. For small, single-
domain proteins, protein folding transitions from extended to
native states are believed to be guided by cooperative transitions
involving few or no barriers on funnel-like landscapes (47). In
contrast, the conversion of near-native homology models to na-
tive states appears to take place on rough energy landscapes
where multiple native-like minima and significant kinetic barriers
hinder conformational sampling. The presence of a significant
number of native-like states with energies similar to the true
native state has been described in earlier studies (48). In that
work, the argument has been made that crystallization and/or
ligand binding focuses native-like conformations onto the ex-
perimentally observed conformation. While that may also apply
here, we found that unfolding trajectories beginning from the
native states overlap only with part of the refinement landscape.
Therefore, the rough energy landscape encountered during re-
finement may be away from the main folding funnel.
The sampling described here was focused on the space between

the homology models and experimental structures. Therefore, the
extent of a largely flat rugged energy landscape around the ho-
mology model could be even greater. However, at least with respect
to possible alternative initial models for the targets studied here, the
presented energy landscapes seem to cover the majority of acces-
sible states. Alternative initial models were largely found to map
onto the energy landscapes, and additional sampling from selected
alternative models also largely overlapped with the already gener-
ated landscapes. Therefore, the presented energy landscapes are
believed to be representative not just for the chosen initial model
but also for likely alternative models.
In computational structure refinement, a rough landscape pre-

sents significant challenges. The existence of many competing off-
pathway states explains why simulations started from homology
models are often seen to deviate significantly away from the native
state when restraints are not applied. Moreover, the time scales of
the kinetic barriers even on the most direct path to the native state
exceed the length of typical MD simulations applied during struc-
ture refinement for most of the systems studied here.

Importance of the Force Field and Rescoring with Other Functions. A
central question has been whether MD simulations would reach
the native state if simulations are long enough to overcome the
kinetic barriers. In other words, does the native state correspond
to the lowest free energy with a given force field? For the systems
studied here, this appears to be the case. To assess the impor-
tance of the force field, we compared free energies of the MSM
states with reweighted energies based on older versions of the
Chemistry at Harvard Macromolecular Mechanics (CHARMM)
force field [c22/CMAP (49) and c36 (50)]. This analysis assumes that
the overall conformational sampling remains the same with different
force fields, and only the relative weights of different conformations
are altered. We found that, with reweighted energies based on c36
(SI Appendix, Fig. S22), the native state remained energetically lower
than the initial states but, for four systems (TR837, TR782, TR769,
and TR894), the native state was not found at the global free energy
minimum anymore. With c22/CMAP, the situation became worse.
The native state also did not correspond to the lowest free energy for
four systems (TR816, TR837, TR854, and TR872), and, in two of
these cases (TR816 and TR837), the native state had a higher free
energy than the initial state. While a more comprehensive test may
be necessary to come to full conclusions, this analysis suggests that
the quality of the force field is important and that the latest
CHARMM force field, c36m (51), performs best among the

CHARMM force fields. This is consistent with previous findings
that improvements in force fields benefit protein structure re-
finement (35, 38).
Although the native state was found at the free energy minimum

for the systems studied here, this may not always be the case, even
with the best force fields. Moreover, reliable free energy estimates
require multiple transitions to and from the native state (and other
states), while it may be difficult enough to reach the native state just
once in blind refinement applications. Therefore, we tested whether
scoring functions could also identify the native state without hav-
ing to rely on free energies estimated directly from theMD sampling.
We applied molecular mechanics generalized born/surface area
(MMGB/SA)-type scoring functions based on CHARMM (c36m,
c36, and c22/CMAP) and Amber (ff14sb) force fields as well as the
statistical potentials random walk plus (RWplus) (52) and dipolar
distance-scaled, finite ideal-gas reference (dDFIRE) (53). For most
targets, the lowest scores correlate indeed with the lowest RMSD
structures (SI Appendix, Figs. S23–S30), so that native-like structures
could be identified just based on scoring. As alternative initial models
have higher relative free energies, the sampled conformations also
have higher RWplus scores (SI Appendix, Fig. S38). The MMGB/SA
and statistical potentials perform similarly well, but the statistical
potentials generate a more pronounced energy gradient away from
the native state that would be helpful during refinement to guide
progress toward the native state. We did, however, find only mod-
erate correlation between scores averaged over MSM states and the
MD-based free energies with correlation coefficients of 0.32 to 0.37
for the force field-based MMGB/SA scores and 0.24 with the sta-
tistical potentials (SI Appendix, Table S5). The correlation was
highest with the recent CHARMM c36m and Amber ff14sb force
fields, again indicating the benefit of recent force field improvements.

Implications for Practical Refinement Applications. It appears that pro-
tein structure refinement of homology models to experimental ac-
curacy via MD simulations is indeed possible. For all of the systems
studied here, we found direct paths from initial homology models to
states close to the experimental structures, and those states corre-
sponded to the lowest free energies. Therefore, it appears to be
simply a matter of time before regular MD simulations can reach
sufficiently long time scales to refine homology models to experi-
mental accuracy. In the meantime, the practical question is whether
one can develop more effective refinement protocols with more
moderate computer resources, based on the insights gained here.
Restraints have been used in previous protocols to limit the

sampling of states that are farther away from the experimental
structure than the initial model. It is clear that, in most cases, such
restraints do not allow refinement all of the way to the native state,
simply because the native state is too far and would incur a signif-
icant energetic penalty from the restraint potential. In past proto-
cols, weak harmonic restraints were applied, with the idea that any
significant deviation from the initial state likely leads away from the
native state. A better choice may be a flat-bottom potential that is
just wide enough to allow the native state and transition interme-
diates to be reached while still limiting off-pathway states that are
farther away. An analysis of RMSD deviations from the initial
model for the states along the refinement pathways (SI Appendix,
Fig. S31) suggests that flat-bottom widths of 2 Å to 4 Å appear to
be enough to provide such a balance for the systems studied here.
It would be interesting to test such a restraint potential with
established refinement protocols.
Even if conformational sampling is limited to just the re-

finement pathway, it is clear that significant kinetic barriers have
to be overcome. In principle, enhanced sampling techniques (54)
could be applied to specific barriers, e.g., to facilitate helix
movements or the crossing of backbone and sidechain torsion
barriers. Moreover, sidechain adjustments hindered by steric
interactions could be facilitated by soft Lennard-Jones interac-
tions. However, the practical success of such refinement proto-
cols depends on being able to identify which residues are most
likely in need of refinement, for example, via quality assessment
methods (55). One could also imagine nonequilibrium methods
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to rapidly generate new conformations in specific directions of con-
formational space. In such a case, the application of scoring functions
as discussed in Importance of the Force Field and Rescoring with Other
Functions would be especially valuable for identifying which of the
generated states are closest to the native state.

Summary. Structure refinement from homology models to experi-
mental accuracy is the missing piece for generating high-resolution
protein structures for sequences where no structural information is
available from experiment. This study indicates that this is becoming
possible with MD-based methods. The next step is the development
of practical protocols that can deliver such structure refinement
routinely with moderate computational resources followed by test-
ing on blind predictions within CASP.

Methods
Multiple rounds of unrestrained MD simulations were employed to build
Markov state models covering the conformational space between a given

homology model and the experimental structure. In the first round of the
simulations, 10 100-ns-long MD simulations were started each from the
homology model and the experimental structure. Residues present in only
one of the structures were removed in the other to match systems. The
resulting conformations were classified via tICA from Cα−Cα distance matrices
and clustered based on Euclidian distances in tICA space as the distance metric.
New clusters that were located between the native and homology structures
were then preferentially used as starting points for subsequent simulations.
Several simulation trajectories were generated for each starting structure at
the next iteration, and the procedure was repeated until there was sufficient
overlap between the sampling initiated from the experimental structure and
the homology model to build a single combined Markov state model. Further
details of the simulation methodology, MSM construction, and scoring and
reweighting protocols are given in SI Appendix.
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