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Determining the principal energy-transfer pathways responsible
for allosteric communication in biomolecules remains challeng-
ing, partially due to the intrinsic complexity of the systems and
the lack of effective characterization methods. In this work, we
introduce the eigenvector centrality metric based on mutual infor-
mation to elucidate allosteric mechanisms that regulate enzymatic
activity. Moreover, we propose a strategy to characterize the
range of correlations that underlie the allosteric processes. We
use the V-type allosteric enzyme imidazole glycerol phosphate
synthase (IGPS) to test the proposed methodology. The eigen-
vector centrality method identifies key amino acid residues of
IGPS with high susceptibility to effector binding. The findings
are validated by solution NMR measurements yielding impor-
tant biological insights, including direct experimental evidence for
interdomain motion, the central role played by helix ha1, and the
short-range nature of correlations responsible for the allosteric
mechanism. Beyond insights on IGPS allosteric pathways and the
nature of residues that could be targeted by therapeutic drugs
or site-directed mutagenesis, the reported findings demonstrate
the eigenvector centrality analysis as a general cost-effective
methodology to gain fundamental understanding of allosteric
mechanisms at the molecular level.

allostery | graph theory | eigenvector centrality | information
theory | IGPS

llostery establishes a wide range of regulatory processes

in biological macromolecules. The primary step in the
allosteric regulation often involves binding of a ligand effec-
tor that regulates catalytic activity far away from its biding site.
The mechanisms of energy transfer between the allosteric and
catalytic sites are essential for design of selective therapeutic
methods. However, they are typically poorly understood due to
the intrinsic complexity of the systems and the lack of effec-
tive characterization methods. Thus, establishing methodologies
for understanding communication pathways between physically
distant sites in allosteric enzymes remains an important out-
standing challenge. Such methods could expedite the design of
innovative drug therapies (1, 2) as well as protein engineering
strategies (3-5).

Significant efforts have been recently reported in the develop-
ment of computational tools to support, interpret, and/or predict
experiments focused on the elucidation of allosteric pathways
(2, 6-12). Network analysis has been extensively used in this
context by incorporating concepts and approaches from graph
theory in the realm of molecular dynamics (MD) simulations (9,
13-22). For instance, community network analysis (CNA) has
emerged as a powerful and increasingly popular approach to ana-
lyze the dynamics of enzymes and protein/DNA (and/or RNA)
complexes in studies of allosteric mechanisms (23-29).

Graph theory represents proteins as networks of nodes cor-
responding to amino acid residues or DNA/RNA bases, linked

www.pnas.org/cgi/doi/10.1073/pnas.1810452115

by edges. The length of the edges corresponds to the magnitude
of a physical property correlating the nodes, such as the dynam-
ical correlation (9, 30, 31), coupling strength (32), or distance
between residues (33). For a network of N nodes, the corre-
sponding graph is described by an N x N adjacency matrix A
with elements A;; defining the strength of the physical correlation
between nodes ¢ and ;.

One of the cornerstones of network analysis is the concept of
centrality—that is, the relative importance of an individual mem-
ber in a group. Measures of centrality are crucial to identify the
more influential nodes in a network. There are many measures
of centrality characterizing slightly different aspects of the net-
work. Probably the simplest of all is the degree centrality (DC),
ki, providing a measure of the relative connectivity of node ¢ in
the network, as follows:

ki IZAm (1]
=

where A;; defines the strength of the physical correlation
between nodes 7 and j. A node that is well connected is expected
to have a large “influence” on the graph. While the DC can

Significance

Allosteric processes are ubiquitous in macromolecules and
regulate biochemical information transfer between spatially
distant sites. Despite decades of study, allosteric processes
remain generally poorly understood at the molecular level.
Here, we introduce the eigenvector centrality measure of
mutual information to disentangle the complex interplay of
amino acid interactions giving rise to allosteric signaling.
The analysis of eigenvector centrality is tested in imidazole
glycerol phosphate synthase (IGPS), a prototypical V-type
allosteric enzyme. The resulting insights allow us to pinpoint
key amino acids in terms of their relevance in the allosteric
process, suggesting protein-engineering strategies for control
of enzymatic activity.

Author contributions: C.EA.N., U.N.M.,, L.R., and V.S.B. designed research; C.FA.N., U.N.M.,
H.PH., R.P, G.P.L, J.PL, and J.H. performed research; C.FA.N. and U.N.M. contributed
new reagents/analytic tools; C.FA.N., UN.M., HP.H., G.P.L, and |.R. analyzed data; and
C.FAN., UN.M,, I.R., and V.S.B. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Published under the PNAS license.

"C.FA.N. and U.N.M. contributed equally to this work.

2To whom correspondence may be addressed. Email: uriel.morzan@yale.edu, cnegre@
lanl.gov, ivan.rivalta@ens-lyon.fr, or victor.batista@yale.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.

1073/pnas.1810452115/-/DCSupplemental.
Published online December 10, 2018.

PNAS | vol. 115 | no.52 | E12201-E12208

>
(]
S
=
]
< 20
o
8=
&2
>
T =
8
=2
=
]



https://www.pnas.org/site/aboutpnas/licenses.xhtml
mailto:uriel.morzan@yale.edu
mailto:cnegre@lanl.gov
mailto:cnegre@lanl.gov
mailto:ivan.rivalta@ens-lyon.fr
mailto:victor.batista@yale.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810452115/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810452115/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1810452115
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1810452115&domain=pdf

L T

/

1\

BN AS  PNAS D)

provide useful information, it is not a true “node centrality” as
defined by Ruhnau (34) and thus does not give a measure of cen-
trality based on a fixed scale that allows comparisons between
different graphs.

An alternative definition is the betweenness centrality (BC),
bi, which provides a measure of how information can flow
between nodes (or edges) in a network. The BC can be quan-
tified as the number of times a node acts as a bridge along the
geodesic (shortest) path between two other nodes,

bizz”it 2]

’
st gSt

where ng; is the number of shortest paths between nodes s and
t that pass through node ¢, and g is the total number of short-
est paths between nodes s and ¢. The nodes with high BC have
a large influence on the overall information passing by flow, and,
hence, the removal of such nodes may disrupt the communica-
tion in the network. However, communication does not always
take the shortest path, and, hence, the BC may provide only
partial information on the relevance of each amino acid in the
functional dynamics of a protein.

Somehow, in between these two definitions of centrality (i.e.,
degree and betweenness centralities), the eigenvector central-
ity (EC) emerges as an alternative that takes into account both
the number of connections of a given node and its relevance in
terms of information flow. The EC of a node, ¢;, is defined as the
weighted sum of the centralities of all nodes that are connected
to it by an edge, Ajj,

a=¢ Y Ayc, 3]
j=1

where c is the eigenvector associated to the eigenvalue € of A.
The EC is a measure of how well connected a node is to other
well-connected nodes in the network. Importantly, the EC serves
as a measure of the connectivity against a fixed scale when nor-
malized, so it can be used to reliably compare different networks
(34). For example, the normalization becomes essential when
analyzing differences between graphs, for example, to study the
pattern of centrality variation between the apo and holo states of
a protein.

In the present work, we illustrate the potential of the EC
measure to provide a molecular-level characterization of the
allosteric mechanism of enzymes. In particular, we focus on
the prototypical case of the imidazole glycerol phosphate syn-
thase (IGPS), a bacterial enzyme present in the amino acid
and purine biosynthetic pathways of most microorganisms, mak-
ing it an attractive target for antibiotic, pesticide, and herbicide
development (35). Structurally, IGPS is a tightly associated het-
erodimer (Fig. 1) in which each monomer catalyzes a different
reaction: The HisH enzyme promotes the hydrolysis of glutamine
(GIn) to produce ammonia, which diffuses to the HisF subunit
and reacts with the effector N-[(5-phosphoribulosyl)formimino]-
S-aminoimidazole-4-carboxamide ribonucleotide (PRFAR) to
form imidazole glycerol phosphate and AICAR. While Gln bind-
ing is unaffected by the presence of PRFAR, the hydrolysis
of Gln is accelerated 5,000-fold upon PRFAR binding through
a mechanism that, for many years, has remained elusive (36).
IGPS is thus a V-type enzyme and a model system to study
noncooperative allostery involving conformational changes.

In a recent study (9), we carried out a BC-based CNA by
optimizing the modularity function to explore the underlying
allosteric mechanism of this enzyme. We now present an alter-
native strategy, exploring the description of allostery provided
by the EC compared with the CNA based on optimal modu-
larity (the connection between CNA and the EC is analyzed
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Fig. 1. Molecular representation of IGPS. Red labels indicate secondary
structure elements that are directly involved in the allosteric regulation.
Communities h2 (cyan) and f3 (red) in the sideR of IGPS are also depicted.

in detail in SI Appendix). This approach identifies the most
important amino acids for the allosteric signaling, providing an
ideal route for the identification of mutation targets to inhibit or
enhance the IGPS catalytic activity and opening the doors to a
plethora of combined theoretical-experimental studies oriented
to increase the control of its function and develop new alterna-
tives for drug discovery. Additionally, the strategy introduced in
this work allows us to capture long-range contributions to the
correlation pattern beyond our previous CNA study and funda-
mental aspects of the allosteric behavior of IGPS. In particular,
we show that while the correlation between residues is enhanced
by a conformational breathing motion, the allosteric pathway is
dominated by short-range contacts (9).

The present paper is organized as follows: We first summa-
rize the method of CNA and results for ref. 9. Next, the method
of EC is introduced and applied to the IGPS systems. Results
are discussed and compared with CNA. Correlation matrices
are obtained from the same trajectories and following the same
protocol as in ref. 9.

CNA

Consider a protein residue network where each node repre-
sents the a-carbon of an amino acid in the protein, and each
edge represents the dynamical correlation between the two
residues (nodes) it connects. The latter can be quantified by using
the generalized correlation coefficients, based on the mutual
information (MI) between two residues r[x;, x;] (30):

9 1/2
rur[Xi, Xj] = (1 — exp <—§I[X17Xj]>> , [4]

where the fluctuation or atomic displacements vectors x; are
computed from MD simulations. For clarity, we have kept the
original notation used in refs. 9 and 30, where a detailed explana-
tion on the calculation of the generalized correlation coefficients
can be found.

The MI between the two residues is computed as:

Ixi, %] = H[x;] + H[x;] — H[x;,%;], [5]

where
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Hix]=— / plxi] In(p[x]) dx:, (61

Hlxi, ;] = - / / p(x6 %)) In (p((x0,x,]) dxidx;,  [7]

are the marginal and joint Shannon entropies, respectively,
obtained as ensemble averages over the atomic displacements
(xi,X;), with marginal and joint probability distributions p[x;]
and pl[x;,x;] computed over thermal fluctuations sampled by
MD simulations of the system at equilibrium. The coefficient
ryr ranges from zero for uncorrelated variables to 1 for fully
correlated variables.

The protein graph connectivity is then built, excluding direct
connections of first neighbors (in amino acid sequence) and
according to two cutoffs: Two nodes are considered connected if
the distance between their a-carbons is within a distance cutoff
(generally 46 A) for a certain percentage of the MD trajecto-
ries (percentage cutoff, usually 65-85%). The distances between
all of the connected nodes (4, 7) in the graph topology define a

matrix of elements wg-) ) obtained from r [x, X,], according to:

ngo) = — lOg[rMI [Xi7 Xjﬂ7 [8]

setting the w;; distance to infinity (in practice to extremely large
values) when two nodes are not connected, as defined by the
connectivity rules. The Floyd—-Warshall algorithm (37) is then
used to determine the matrix of minimum distance (maximum
correlation), wg-"), considering direct distances as well as up to
N possible intermediate residues mediating indirect communi-
cation pathways (where N is the total number of residues in
the system). The total number of residues for the IGPS case
is N = 454.

The edge-betweenness matrix with elements b,; is defined
as the number of shortest paths that include edge (ms;) as
one of its communication segments. In other words, the edge-
betweenness matrix is an estimation of the information “traffic”
passing through the edge connecting residues ¢ and j in the net-
work. The edge-betweenness matrix is then used for partitioning
the network into communities according to the Girvan—-Newman
algorithm, which is based on maximizing the modularity @) mea-
sure (38, 39). Details of the computation of the community
structure based in the maximum modularity from the generalized
correlation matrix can be found in ref. 9.

Fig. 1 shows the two most important communities h2 (cyan)
and f3 (red) projected onto the residue space of IGPS in the apo
state as determined in ref. 9. Secondary structural elements of
h2 involve h31, hB2, h33, hp4, hp11, hal, ha?2’, and Q-loop.
Secondary structural elements of f3 instead involve f31, £52, {53,
hg7, hB8, fal, fa2, fa3, ha4, and Loopl.

We have previously shown that the correlation between com-
munities h2 and f3 is enhanced (with larger interbetweenness)
after PRFAR binding. Furthermore, it was shown that the
explanation for this enhancement relies on the increase in the
frequency of an interdomain motion at the dimeric interface
(HisH-HisF) upon binding of PRFAR. This was described as
a low-frequency interdomain breathing motion that allows for
fluctuations between two states (open and closed IGPS het-
erodimer) that are accessible at thermal equilibrium in both the
apo and PRFAR complexes. Disruption of this breathing mode
with drug-like compounds was recently suggested as a method
for inhibiting the allosteric mechanism (20).

The recognition of the local interactions that determine varia-
tions in the breathing motion (and, thus, in the h2—f3 intercom-
munities correlations) has been performed by detailed compar-
ative analysis of chemical interactions along the MD trajectories
of apo and PRFAR-bound IGPS complexes (9). In particular,
it was observed that PRFAR binding affects specific hydropho-
bic interactions in Loopl and f32 (in HisF), altering salt-bridge
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formations at the surface-exposed fa2, fa3, and hal helices (at
the HisF/HisH interface) that, in turn, determine modification
of the breathing motion and of the hydrogen-bonding network
between the Omega loop and the oxyanion strand nearby the
HisH active site. Thus, among the secondary structure elements
of communities h2 and f3, the following elements have been
retained as allosteric pathways: Loopl, 32, fa2, fa3, hal, and
Q-loop (indicated with red labels in Fig. 1). The active allosteric
role of some of these residues has been recently proved by
single-site mutation experiments (40).

The CNA provides an introspection tool for visualizing the
most important transformations induced by the allosteric effec-
tor in a coarse-grained fashion, allowing easy detection of
effector-driven changes in the overall intercommunities infor-
mation flows. However, we have shown that to recover direct
information on allosteric pathways, a detailed analysis of the
MD trajectory is still necessary (9). Therefore, CNA can success-
fully assist the tedious allosteric pathway detection by indicating
major network changes due to the effector binding, but it can-
not provide an easy detection and immediate visualization of
the sequence of amino acids involved in the allosteric-to-active-
site signal propagation. Here, we show that a comparative EC
approach, on the other hand, can provide fast detection of
allosteric nodes and easy interpretation of the signal pathways
“activated” by the effector binding.

EC Analysis
Let us define the adjacency matrix as follows:
0, if i=j
Ay = N e g 9
’ {PMI[XuXﬂeXp(—dTJ) if i#j. Bl

Just as in the CNA approach, here, each node of the graph
corresponds to the a-carbon of an amino acid residue, and the
off-diagonal elements of A are the weights associated with every
edge. Additionally, an exponential damping factor with a length
parameter A has been introduced to Eq. 9. This parameter can
be adjusted to control the locality of the correlations under
consideration based on the average distance between residues

200
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Fig. 2. Largest 10 eigenvalues obtained from the adjacency matrix (as
defined by 9 in the limit of A — oo) for the apo (green) and PRFAR-bound
(red) IGPS.
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Fig. 3. Computed centrality values for both apo and PRFAR-bound IGPS.
The color scale goes from blue (c = 0.0) to red (maximum values of c).

(di). This means that if X is short enough, the correlation
between residues that are far away from one another will be
disregarded, and the effect of the locality in the allosteric path-
way will be revealed. On the other hand, if X\ is set to a very
large value, all correlations, including those between residues
separated by long distances, will be accounted for (i.e., A — oo,
Ay =rur[xi,x;] Vi#j). By adopting such damping factor, we
obtain a twofold benefit for the EC analysis: (i) By setting rea-
sonably small damping values, we could mimic the distance cutoff
used in the CNA, and we can then fairly compare EC and CNA
results; and (ii) comparison of EC values at various damping
distances provides direct information on the role of long-range
correlations in allosteric pathways. This will be discussed in
further detail in The Locality Factor.

As mentioned in the introduction, the EC arises from an
eigendecomposition of the adjacency matrix, Ac = ec, where ¢
is the vector containing the centralities ¢; for each node ¢ and
€ is the associated eigenvalue. Therefore, there is a set of N
solutions to this eigenvalue problem, with N being the number
of a-carbon atoms in the protein. However, we will rely here
on the assumption that the functional dynamics of the protein
can be assigned to the major collective mode of correlation.
Consequently, the eigenvectors associated with the remaining
eigenvalues will be neglected. The election of this leading eigen-
vector as the principal component of the correlation pattern
can be formally justified, considering that the adjacency matrix
A defined by Eq. 9 has the following mathematical properties:
(1) Ayj=Ay; V i,5; and (i) 0< Ay, <1V 4,5. Hence, unique-
ness of the definition of the EC is ensured by the Perron-
Frobenius theorem, which states that any symmetric matrix
(property i) with nonnegative entries (property ii) has a unique
largest real eigenvalue. Fig. 2 shows that the highest eigenvalue
exceeds the others by almost two orders of magnitude, illus-
trating the Frobenius theorem in practice for apo and PRFAR-
bound IGPS.

The EC values ¢; are computed by diagonalizing 4 and keep-
ing the eigenvector ¢ corresponding to the maximum eigenvalue.
The power method (41) is an alternative to matrix diagonal-
ization that is computationally more efficient and would be
more appropriate for large systems. The information encoded
on the resulting eigenvector ¢ reveals the importance of the
nodes for the whole connectivity of the network. The nodes with
the highest centralities will act as the principal “channels” for
momentum transmission across the protein. This strategy has
been applied as a means of visualizing dynamical phenomena in
other domains of science (42). The eigenvalue ¢, in turn, gives
a measure of the network degree of connectivity. At A — oo
(no exponential damping), the values of ¢ are 166.8 and 154.0
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for apo and PRFAR-bound, respectively. This indicates that
the system experiences an overall decrease of correlation as
a consequence of PRFAR binding as suggested by inspecting
the correlation matrix (9). Moreover, our solution NMR spec-
troscopic measures characterizing the conformational exchange
(kez) for numerous amino acids in the HisF domain indicate
that nearly every residue increases its flexibility upon PRFAR
binding (21). This increase in flexibility is translated into an effec-
tive reduction of the intermolecular connectivities and, hence,
results fully consistent with the predicted drop in the overall
correlation.

The EC values for each node can be easily visualized in the
protein structure (Fig. 3), displaying the ¢; coefficients for each
amino acid with a color scale from blue (zero centrality) to
red (maximum centrality). In all of the cases, a renormaliza-
tion of the centrality values was applied for plotting purposes
(SI Appendix). Fig. 3 shows the values of ¢ for both apo and
PRFAR-bound IGPS proteins, as computed by setting the damp-
ing distance to infinity. Importantly, the subgraph composed by
the most important nodes in the network changes dramatically
with the effector binding, highlighting the connection between
the EC distribution and the momentum transport pathway. As
indicated in Fig. 3, the highest EC values shift collectively from
sideL to sideR in IGPS upon PRFAR binding. This variation of
the relative EC distribution evidences a change in the correla-
tion pattern that is in agreement with our previous analysis and
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Fig. 4. (Upper) Comparison between the Euclidean norm of the elements
of the first essential mode associated with each C,, (orange line), the central-
ity coefficients obtained from the first eigenvector of the adjacency matrix
defined in Eq. 9 with A — oo (black line), and root-mean-square fluctua-
tion per residue (RMSF; blue line). (Lower) Effect of the length parameter
in the exponential damping factor of the adjacency matrix defined in Eq. 9.
Values of A=5 A, 15 A, and A — oo are depicted in red, green, and black,
respectively.
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Fig. 5. Centrality differences (PRFAR-bound — APO) for an exponential
damping A =5 A as a function of the residue index (Left) and plotted on
top of the protein representation (Right). Red and blue values are regions
that, respectively, gain and lose centrality upon PRFAR binding. The domains
with higher PRFAR-induced centrality increase are loop1 (HisF: 16-31), fa1
(HisF: 31-43), fa2 (HisF: 59-72), h31 (HisH: 1-5), ha1 (HisH: 12-25), and h;32
(HisH: 30-35).

consistent with the enhancement in the betweenness of h2—£3
pair of communities (9).

The methodology introduced above resembles the well-known
essential dynamics (ED) scheme in which the global trajectory
of a system is analyzed in terms of its major collective modes
of fluctuation. (43-46) These modes—usually called essential
modes—are obtained by diagonalizing the covariance matrix,
defined as

Cij = ((xi () = (xa(8))) (x5 (1) = (% (£))))- [10]

Normally, despite not being formally guaranteed, it is observed
that the protein dynamics is dominated by a few essential modes.
Therefore, this scheme also provides a way to obtain eigenvec-
tor coefficients that reveal the relevance of each node in the
overall behavior of the network. Nevertheless, the measure of
relevance can have several meanings; in particular, Fig. 4, Upper
shows that the nature of the eigenvector coefficients obtained
from the first essential mode (the one associated to the highest
eigenvalue) is qualitatively different from that of the EC coef-
ficients. There are two main reasons that justify this difference:
(i) While in the latter case, the generalized MI matrix is only a
measure of the dynamical correlation between pairs of nodes, in
the former case, the covariance matrix is both a measure of cor-
relation and the amount of fluctuation. (if) On the other hand,
the covariance measure fails to account for noncolinear corre-
lations. The first observation is consistent with the fact that the
behavior of the essential mode coefficients (orange line, Fig. 4,
Upper) is quite similar to the root-mean-square fluctuation per
residue (blue curve, Fig. 4, Upper). Therefore, this analysis illus-
trates that the ED and the EC extracted from the MI are two
complementary methodologies that provide different insight on
the system’s dynamics. In particular, the technique presented in
this work constitutes a powerful alternative to analyze alloster-
ism because it isolates the principal component in terms of
the correlation and not in terms of flexibility, as in the case
of ED.

Fig. 4, Lower shows the effect of the length parameter A
defined in Eq. 9. In the limit of A — oo, the off-diagonal elements
of the adjacency matrix become equivalent to the generalized
correlation function for each pair of nodes. The centrality coef-
ficients obtained in this way exhibit a smooth variation. In
contrast, when A is short enough, only the local components of
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the correlations survive, and the centrality coefficients reveal the
relevance of each residue in terms of its dynamical correlation
with neighboring amino acids. In this context, the exponential
damping filters out long-range correlations, thus providing a
strategy to elucidate the allosteric paths triggered by short-range
molecular correlations.

Centrality Variation Triggered by Effector Binding

We have examined the EC differences associated with PRFAR
binding (c/#F4% — AP0 for each residue 4 to analyze changes
in the EC distribution caused by binding of the effector PRFAR
(Fig. 3). Fig. 5 shows that there is significant redistribution
of the EC values upon PRFAR binding. Two protein regions
feature increased centralities, namely, residues around fL.10-
fG80: loopl (HisF: 16-31), fal (HisF: 31-43), fa2 (HisF: 59—
72), and hM1-hQ36: hpl (HisH: 1-5), hal (HisH: 12-25),
and hg2 in HisH. Connections between the loopl and -
loop are hence established after PRFAR is bound to IGPS,
as depicted in the centrality-differences analysis presented
in Fig. 5.

Previous studies have postulated the existence of two dynami-
cally differentiated sides in IGPS—that is, left and right or sideL
and sideR, respectively (9, 20) (Fig. 5). Detailed inspection of
MD trajectories have suggested that the allosteric signal prop-
agates through sideR. Importantly, in agreement with that obser-
vation, Fig. 5 shows that binding of the effector PRFAR causes
an increase in the centrality values of sideR amino acids. More-
over, the pattern shown by the centrality distribution allows clear
identification of the two sides of IGPS, confirming our previous
hypothesis.

The identified residues, including 10-80 (in HisF) and 1-36
(in HisH) (Fig. 5, highlighted in red), represent promising tar-
gets for site-directed mutagenesis studies since they exhibit the
highest increase in centrality upon PRFAR binding. Importantly,
we identify helix ha1 as one of the domains with higher centrality
increase upon PRFAR binding. We anticipate that these findings
should stimulate significant interest for site-directed mutagen-
esis studies or the use of small allosteric drugs targeting helix
hal. Therefore, the reported results provide biological insights
that are potentially useful for therapeutic applications that
could aim at disrupting IGPS functionality by targeting the hal
dynamics.

In addition, instead of focusing on the nodes that are impor-
tant per se, another criteria that can be relevant to guide muta-
genesis efforts is to focus on the “neighborhood” of those nodes.
This sort of modification may play a more subtle role in altering
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Fig. 6. Difference between EC and DC, ¢/, for the PRFAR-binding process
(PRFAR-bound - apo) for an exponential damping of A =5 A as a function
or the residue index (Left) and plotted on top of the protein representation
(Right). Red and blue values are regions that, respectively, gain and lose
correlation with central amino acids upon PRFAR binding. The domains with
higher PRFAR-induced ¢; increase are labeled.
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Fig. 7. Centrality differences (PRFAR-bound — APO) for different values
of . Regions in red and blue correspond to gains and lose of centrality,
respectively.

the protein activity, which can be potentially relevant for appli-
cations like drug discovery in which the desired effect comes
from disrupting the environment of key residues in the protein.
Given that the difference between DC (Eq. 1) and the EC is the
fact that the former weights the correlation by the centrality of
the neighbors, a strategy to obtain this neighborhood-centrality
measure is to subtract the DC coefficients from the original
EC values:

[11]

n n

/ -1

Cc, =€ E Aijcj - E Ak
j=1 k=1

Fig. 6 illustrates the c] coefficients associated with the tran-
sition between the apo and PRFAR-bound states [ie., c; =
ci(PRFAR) — ¢;(APO)]. This analysis highlights residues fN14,
fv48, fR59, fT61, fL65, fQ67, V69, fRI5, fG96, and hN14 as
the ones neighboring the amino acids with a large increase of
centrality upon PRFAR binding. With the exception of residues
fT61, fL.65, and V69, all of the amino acids pointed out by this
analysis coincide with those that have large PRFAR-induced EC
variation. Remarkably, single-point mutation of residues fV48
and fN98 (in the vicinity fG96) have a dramatic effect on the
PRFAR-induced activation of IGPS catalytic activity (40). On
the other hand, the relevance of V48 as part of the hydrophobic
cluster in £52 and fE67 and fR95 as part of the surface salt-bridge
network at fa2/fa3 have been suggested by tedious inspection
of MD trajectories, while here they are rapidly detected by the
comparative EC analysis.

Interestingly, the amplitude of the distribution ¢’ = EC —
DC increases with the reduction of the locality factor A (SI
Appendix, Fig. S2, Upper). This result shows that the difference
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between EC and DC arise mainly from short-range correla-
tions, which is fully consistent with the neighborhood-centrality
interpretation (Eq. 11).

The Locality Factor

Fig. 7 shows the calculated EC coefficients at different val-
ues of X to further analyze the impact of the locality factor in
the overall centrality distribution. We note that reducing the
damping parameter down to A=3.3 A does not significantly
affect the overall EC differences between apo and PRFAR-
bound IGPS. The same allosteric pathway for IGPS is revealed
whether or not we include the correlations between residues sep-
arated by long distances. Moreover, the sideL/sideR structure
is maintained at all \’s. These results imply that the allosteric
pathway is dominated by short-range correlations. We note that
the locality factor decays with the average distance between
residues along the entire MD trajectory. Thus, the locality factor
filters long-range correlations and also infrequent short-range
correlations ( i.e., short-lived local interactions). Since no qual-
itative changes are observed for a broad range of damping
factors (Fig. 7), we conclude that the flow of allosteric com-
munication does not include infrequent contacts or long-range
conformational motions. These findings point to a very funda-
mental aspect of IGPS allosterism with implications for design of
therapeutic agents.

The average C,, — C, distance is ~3.8 A. Therefore, the cor-
relation matrix becomes almost diagonal (SI Appendix) when
A< 4 A, and the key EC trend is most likely masked by numeri-
cal errors.

sideL sideRt

Fig. 8. Variation in the PRFAR-induced centrality coefficients caused by the
application of the locality factor (\=5 A). Red to blue scale character-
izes a gain or loss of centrality, respectively, upon the application of the
locality factor.
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Fig. 9. NMR relaxation dispersion experiments characterizing the PRFAR-
induced millisecond motions in the HisF subunit of IGPS. Right highlights
the residues that show the highest variation on their relaxation-dispersion
profile upon PRFAR binding. Left shows two representative relaxation dis-
persion curves for residues Leu160 (Upper) and Leu193 (Lower) in the apo
and PRFAR-bound states (black and red, respectively).

As discussed above, it is possible to select the correlations
whose range is below a certain distance threshold from the over-
all motion of the system simply by introducing the locality factor
A. On the other hand, it is possible to analyze the nature of
long-range contributions, even though short-range components
dominate the overall correlation pattern. Fig. 8 shows varia-
tions in the EC coefficients due to the long-range component of
correlations, computed as follows:

Xo _ [ PRFAR __APO PRFAR APO
a7 =[ci — ¢ oo —[a — ¢ Ja=x
Aooo  A=)Ag A—oo  A=Xp [12]
=[¢; —c; |prEAR — [CF - ¢ Japo,

for Ao = 5 A. Remarkably, the long-range d; distribution also
preserves the qualitative sideL/sideR structure, although the
trends are inverted with respect to the short-range picture, and
the largest increase in the long-range centrality coefficients
upon PRFAR binding is mainly located on sideL. These results
are consistent with the presence of an interdomain “breathing”
motion, as reported (9, 20) (Fig. 8, dashed black lines forming
an angle ¢). The large structural (long-range) rearrangement
associated with this motion increases its frequency upon PRFAR
binding almost fourfold (20). Consequently, the highest gain
of long-range correlation that occurs mainly in sidel. can be
assigned to this low-frequency motion. In agreement with this,
our solution NMR relaxation dispersion experiments show
that the PRFAR-induced millisecond motions are primarily
located on sideL (Fig. 9), which supports the existence of a
large motion with maximum amplitude on sideL, as deter-
mined by the long-range centrality analysis. Furthermore,
effectors weaker than PRFAR induce weaker perturbations
on sideL of HisF (21), suggesting that the breathing motion
influences the allosteric activation of IGPS. Remarkably,
Fig. 9 shows experimental evidence of the suggested breathing
motion (47).
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The NMR study presented in Fig. 9 also provides an exper-
imental proof for the presence of the sideL/sideR structure
predicted by the EC analysis, in which the two sides of IGPS
display clear differences in terms of their dynamical features.
Interestingly, the overall difference between sideR and sideL d;
values is considerably reduced when going from A= 5 to 10
A, and for A=20 A the d; distribution becomes almost uni-
form. This indicates that the characteristic correlation distances
involved in the breathing mode are within the range of 5-20 A
(SI Appendix).

Conclusions

We have introduced a methodology based on the EC of MI to
elucidate allosteric pathways at an atomistic level. The method
allows for identification of amino acid residues that are critical
for allosteric signaling and characterization of the correlation
distances that determine allosterism. Furthermore, the analy-
sis of DC allows us to identify key residues neighboring amino
acids with a large increase in centrality, consistent with recent
site-directed mutagenesis experiments (40).

The EC scheme introduced in this work provides a valu-
able approach to obtain the main mode of collective correlation
responsible for the allosteric signal, beyond the capabilities of
standard principal component methods. The analysis is based on
the generalized MI which correctly captures noncollinear corre-
lations beyond the well-known limitations of methods based on
the Pearson correlation coefficients.

We have applied the EC method to the IGPS enzyme
to demonstrate the capabilities of our approach to iden-
tify the most important amino acid residues involved in the
allosteric mechanism triggered upon effector binding. The EC
results show excellent agreement with our solution NMR relax-
ation experiments, providing experimental evidence of the
previously hypothesized interdomain breathing motion (9, 20,
40, 47).

The locality-based centrality analysis shows that the allosteric
pathway is established by short-range correlations. Neverthe-
less, as observed (20), the resulting breathing motion enhances
the allosteric signal. Furthermore, the EC method identi-
fies helix hal (HisH: 12-25) as one of the domains with
higher centrality increase upon PRFAR binding. We antic-
ipate that site-directed mutagenesis or the use of allosteric
drugs could target helix hal to control enzymatic activity. The
reported results should motivate a wide range of studies to
control IGPS activity by disrupting hal dynamics, consider-
ing that IGPS is a potential therapeutic target that is found
in bacteria as well as in some plants and fungi, but not in
mammals.
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