Rodrigues et al. BVIC Plant Biology (2018) 18:379
https://doi.org/10.1186/s12870-018-1564-2

BMC Plant Biology

RESEARCH ARTICLE Open Access

Comprehensive assembly and analysis of

@ CrossMark

the transcriptome of maritime pine

developing embryos

Andreia S. Rodrigues'“', José J. De Vega®" and Célia M. Migue

|1,2,4*

Abstract

molecular markers for early embryogenesis.

Background: There are clear differences in embryo development between angiosperm and gymnosperm species.
Most of the current knowledge on gene expression and regulation during plant embryo development has derived
from studies on angiosperms species, in particular from the model plant Arabidopsis thaliana. The few published
studies on transcript profiling of conifer embryogenesis show the existence of many putative embryo-specific
transcripts without an assigned function. In order to extend the knowledge on the transcriptomic expression during
conifer embryogenesis, we sequenced the transcriptome of zygotic embryos for several developmental stages that
cover most of Pinus pinaster (maritime pine) embryogenesis.

Results: Total RNA samples collected from five zygotic embryo developmental stages were sequenced with
[llumina technology. A de novo transcriptome was assembled as no genome sequence is yet published for Pinus
pinaster. The transcriptome of reference for the period of zygotic embryogenesis in maritime pine contains 67,429
transcripts, which likely encode 58,527 proteins. The annotation shows a significant percentage, 31%, of predicted
proteins exclusively present in pine embryogenesis. Functional categories and enrichment analysis of the
differentially expressed transcripts evidenced carbohydrate transport and metabolism over-representation in early
embryo stages, as highlighted by the identification of many putative glycoside hydrolases, possibly associated with
cell wall modification, and carbohydrate transport transcripts. Moreover, the predominance of chromatin
remodelling events was detected in early to middle embryogenesis, associated with an active synthesis of histones
and their post-translational modifiers related to increased transcription, as well as silencing of transposons.

Conclusions: Our results extend the understanding of gene expression and regulation during zygotic embryogenesis in
conifers and are a valuable resource to support further improvements in somatic embryogenesis for vegetative
propagation of conifer species. Specific transcripts associated with carbohydrate metabolism, monosaccharide transport
and epigenetic regulation seem to play an important role in pine early embryogenesis and may be a source of reliable
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Background

In higher plants, embryogenesis starts with the zygote
formation and comprehends the whole developmental
process that leads to a full mature and dormant embryo,
enclosed by the seed tissues [1]. Most of current
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knowledge about plant embryogenesis derived from
studies on angiosperm species, in particular from the
model organism Arabidopsis thaliana (reviewed in [2]).
However, gymnosperm and angiosperm lineages are esti-
mated to have driven apart over 300 million years ago
[3] and their differences, in particular at the embryo-
genic phase, are well known (reviewed by [4]). Molecular
studies of embryogenesis in gymnosperms, and espe-
cially in conifers, have gained interest in the last few
years (reviewed in [5, 6]). This has been driven by a bet-
ter understanding of how the characteristic differences
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in embryo development between angiosperms and gymno-
sperms are established at the molecular level, and their evo-
lutionary implications. Moreover, further improvement of
somatic embryogenesis, an attractive technology for large
scale vegetative propagation of economically important co-
nifers, is largely dependent on additional knowledge about
the basic processes controlling embryo development.

Next-generation sequencing (NGS) technologies ap-
plied to mRNA discover and profiling (RNA-seq) have
proved useful to study plant gene regulation, in particu-
lar for the non-model species still missing a genome of
reference (reviewed by [7, 8]). Large RNA sequencing
projects such as the 1KP project alone achieved the tran-
scriptomic sequencing in over 1000 different plant spe-
cies which represents a huge effort with high impact in
phylogenetic and land plant evolution studies [http://
www.onekp.com; [9]]. RNA-seq data have considerably
advanced our knowledge about the regulation of plant
stress responses [10], plant development [11-13], syn-
thesis of commercially/biotechnologically relevant plant
products [14] or even the evolution of specific genes [15].
The embryo mRNA transcriptomes of several plant spe-
cies, including rice (Oryza sativa) [16], maize (Zea mays)
[17, 18], canola (Brassica napus) [19] and radish (Rapha-
nus sativus L.) [20], have been generated by RNA-seq
technology. In conifers, the transcriptome of early devel-
opmental stages of Scots pine (Pinus sylvestris) [21] dom-
inant embryo has been profiled using high-throughput
sequencing. Additionally, other studies addressing gymno-
sperm embryogenesis using NGS (reviewed by [22]) in-
clude the reports by Yakovlev et al. (2014) on embryo
transcriptome changes in Picea abies under different
temperature conditions [23], on the transcriptomes of em-
bryogenic and non-embryogenic tissues of Picea balfouri-
ana [24] on transcriptome comparative analysis of early
somatic embryo formation and seed development in
Araucaria angustifolia [25], on a comprehensive tran-
scriptome survey of several Pinus lambertiana tissue types
including embryos [26], on somatic embryo transcriptome
profiling in Picea abies and [27] on the identification of
carbohydrate-mediated responses associated with Arau-
caria angustifolia embryo formation.

Previously, a time-course transcriptomic study in Pinus
pinaster pointed out the relevance of epigenetic regulators
and specific transcription factors during the development
of the embryo [28]. In such study, a cross-species micro-
array hybridization approach was followed, limiting the
identification of candidate transcripts to the set of array
probes derived from Pinus taeda root and needle tissues.
Building upon that study, we extend here the scope of the
transcriptomic analysis by using a high-throughput se-
quencing approach, with its known benefits over microar-
rays (reviewed in [29]), including the capacity to retrieve
novel and/or lowly expressed transcripts, or alternative

Page 2 of 20

splice variants that might have been missed by microarray
analysis [12]. In this work, we generated a species-specific
transcriptome of the developing embryo aiming to have a
significantly extended catalogue of maritime pine tran-
scripts expressed during embryogenesis, targeting those
transcripts with higher differences in expression during
embryo development. By following this approach, we have
identified over-represented processes, namely carbohy-
drate metabolism and epigenetic regulation, in specific
phases of embryo development as well as specific tran-
scripts involved. This unique resource in maritime pine
further contributes for deepening our knowledge of the
transcriptional activity during embryogenesis in conifers.

Results

Comprehensive transcriptome assembly

We performed RNA-seq on five embryogenesis stages
(Day0, Day5, Dayll, Dayl5 and Day25) according to a
previously reported staging system [30], which cover the
whole developmental period of the zygotic embryo of P.
pinaster, up to the maturation stage. To capture the
transcriptome landscape of the embryo and major differ-
ences in gene expression throughout development
[lumina short-reads technology was used to sequence
the RNA-seq libraries. In the absence of a published
reference genome for P. pinaster, a comprehensive tran-
scriptome assembly approach ([31]; reviewed in [32])
was adopted, which combines a de novo assembly of the
reads using Trinity (version 2.0.6) [33] and a guided-as-
sembly by mapping both the reads and de novo assem-
bled transcripts against P. taeda genome (version 1.01)
[34]. A total of ca. 319 M read-pairs were obtained, with
an average of 63.8 M read-pairs per sample and each
sample contributing from 44.9M (14.1%) to 754 M
(23.6%) read-pairs. A 5.3% of the reads was removed by
the filtering steps. The resulting ca. 302 M read-pairs
were subsequently used for de novo transcriptome as-
sembly and mapping to the P. taeda genome. After
obtaining the comprehensive transcriptome assembly, a
total of 183.4 M read-pairs mapped in the correct dis-
tance and orientation (Properly paired) to this reference
for expression analysis, which represents 57.5% of the
raw reads (Table 1).

The final reference transcriptome of maritime pine
zygotic embryogenesis contains 67,429 transcripts (de-
posited at DDBJ/ENA/GenBank under the accession
GGEX01000000, https://www.ebi.ac.uk/ena/data/view/
GGEX01000000), varying in length from 148bp to
12,752 bp and with a mean length of 999 bp (Table 2).

Transcriptome annotation

All ORF possibilities were generated from the newly as-
sembled transcriptome, and only one per transcript (the
longest one in case of multiple possibilities) was translated


http://www.onekp.com
http://www.onekp.com
https://www.ebi.ac.uk/ena/data/view/GGEX01000000
https://www.ebi.ac.uk/ena/data/view/GGEX01000000

Rodrigues et al. BVIC Plant Biology (2018) 18:379

Page 3 of 20

Table 1 RNA-seq and mapping statistics of P. pinaster embryo developmental stages

Embryo developmental stage Day0 Day5 Day11 Day15 Day25
Read length? PE 50 bp PE 50 bp PE 50 bp PE 100 bp PE 100 bp
Raw pairs of reads 72,632,308 55,550,140 44,898,746 75,433,086 70,463,384
Clean pairs of reads 72,472,236 55,413,990 44,803,454 66,982,962 62,388,454
Pairs of reads mapping in correct distance and orientation 61,626,536 45975573 37,763,000 60,334,604 55,692,971
on P. taeda genome (Properly paired) used for assembly

Pairs of reads properly mapping on P. pinaster comprehensive 44,178,974 33,660,866 28,187,082 41,345,428 35,994,032

transcriptome used for expression

?PE = paired-end

to generate the final proteome containing 58,527 proteins
(Additional file 1). The annotation of the assembled devel-
oping embryo transcriptome was done using two sources
of information: best reciprocal hits (BRH) to the pro-
teomes of P. taeda, P. lambertiana and A. thaliana, and
homology to proteins in NCBI databases (Additional file 2).
The function and gene ontology (GO) terms from anno-
tated BRHs were assigned back to the P. pinaster protein,
to annotate as result 14,211 P. pinaster proteins. Blast2GO
(version 3.1) was used to annotate the transcripts, starting
from the BLASTX alignments of the transcriptome to the
NCBI non-redundant proteins database (E-value <1073,
Additional file 3). Nearly 30,000 sequences were annotated
with at least one GO term, and around 7500 transcripts
had a homologous in the NCBI database but could not
clearly be associated to a GO term. There were 28,780,
26,585 and 24,241 transcripts with at least one F:GO, P:GO
or C:GO term, respectively. There are 16,056 transcripts
with at least one GO term from each of the three categor-
ies. Over 20,000 P. pinaster protein sequences did not align
to any protein in the database (Additional file 4). The hom-
ologous proteins presented a mean similarity of 71%, while
54% of the BLAST hits had a sequence similarity over 70%

Table 2 Statistics of the assembled transcriptome from P.
pinaster embryo development

Reference transcriptome

Total assembled transcripts 67,429
ExN50° 1653 bp
Shorter assembled transcript 148 bp (Pp11025)

length (transcript)

Longer assembled transcript
length (transcript)

12,752 bp (Pp28188)

Mean length 999 bp
Median length 627 bp
Transcripts without N's bases 65,852
Mean gap percentage per 0.2%
transcript length

Predicted coding transcripts 58,527
Predicted non-coding transcripts 8896

PExN50 = transcript length metric that considers the top most highly expressed
transcripts and means that at least 50% of the assembled transcript
nucleotides were found in transcripts that were at least this length

(Additional file 5). The analysis of the highest scoring hom-
ologous sequence to each P. pinaster transcripts showed
that Picea sitchensis, a close relative of P. pinaster, is the
most represented species by far, with over 16,000 BLAST
Top-Hits. The other homologous belonged to species from
different plant taxonomic groups, including gymnosperms,
angiosperms and mosses. Four other Pinus species were
represented, namely P. taeda, P. radiata, P. sylvestris and P.
monticola (Additional file 6). The comparison with EBI’s
InterPro database (IPS) for protein sequences and functions
revealed about 37,500 P. pinaster sequences with a IPS re-
sult; IPS analysis contributed GO terms to over 20,000 P.
pinaster sequences (Additional file 7). Mapping results re-
vealed that UniProtKB and TAIR were the two main source
databases of GO terms associated to P. pinaster sequences
(Additional file 8).

Functional regulation during embryo development
The proteins from P. pinaster, P. taeda and P. lambertiana
were clustered together according to the eggNOG group of
their respective best orthologous sequenced in EMBLs egg-
NOG database of functionally annotated proteins (Add-
itional file 9). When comparing the number of groups in
the three species, P. pinaster had the highest number of ex-
clusive groups (4355). Still, most of the groups, in a total of
5698, had proteins from the three species (Fig. 1). The
groups with more protein members (Additional file 10) are
common to the three conifer species, and were annotated
as containing “pentatricopeptide -PPR- repeats”, either
implicated in replication, recombination and repair or with
a function unknown, “terminal inverse repeats -TIR-”,
“leucine rich repeats” or “NB-ARC domains”, which are
molecular switches implicated in signal transduction mech-
anisms. On the other hand, the groups exclusive of P.
pinaster that include at least 10 proteins were annotated as
“zinc finger proteins” (19 members), “sister chromatid
cohesion protein PDS5” (13 members), “GDP-L-galactose
phosphorylases” and “zinc ion binding proteins” (11 mem-
bers each), and several clusters annotated as “retrotrans-
poson proteins”. However, most of the groups exclusive of
P. pinaster contained only one protein.

Since each protein group was classified into a functional
eggNOG annotation [35], it was possible to condense the
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Ppi Pta

Pla

Fig. 1 Venn diagram of the number of eggNOGs found with the
predicted proteins of P. pinaster (Ppi) and two other relative conifer
species, P. taeda (Pta) and P. lambertiana (Pla). Proteins were first
annotated with the eggNOG numbers of their best homolog and
then those sharing the same eggNOG number were concatenated.
The numbers in the intersections represent the eggNOGs these
conifers have in common

functional information to 24 categories. Most of the pre-
dicted proteins and associated eggNOGs had function un-
known (5684 from the total 14,134 eggNOGS found in P.
pinaster) (Additional file 10). For the remaining, a heat-
map of functional categories expressed throughout P. pin-
aster embryo development (Fig. 2) shows three major
clusters of functional categories predominantly expressed
at the early (Day0), middle (Day5 and Dayll) or late
(Dayl5 and Day25) embryogenesis stages. At the early
embryo stages, functions associated to the cytoskeleton,
energy production and conversion, carbohydrate transport
and metabolism, amino acid transport and metabolism
and intracellular trafficking, secretion and vesicular
transport are prevalent, with the first three being just
up-regulated at these stages. In contrast, replication,
recombination and repair, and cell cycle control, cell
division, chromosome partitioning, and chromatin struc-
ture and dynamics follow the opposite trend and are
up-regulated in late embryo stages.

Regarding the overall metabolic activity of the develop-
ing embryo, carbohydrate transport and metabolism is up-
regulated at early embryo stages decreasing towards the
mature embryo, amino acid transport and metabolism is
predominant in early embryo to early cotyledonary em-
bryo stages, while secondary metabolites biosynthesis,
transport, and catabolism peak at the mature embryo

Z-score (expr)

- Transcription (K)
I - RNA processing & modifications (A)
- Signal transduction (T)
- Post-translational modifications (O)
- Translation, ribosomal biogenesis (J)
- Cytoskeleton (Z)
- Energy production & conversion (C)
- Carbohydrate transport & metabol. (G)
- Amino acid transport & metabol. (E)
- Intracellular trafficking, secretion (U)
- Second. metabolit. synth.& catabol.(Q)
- Cell wall or membrane biogenesis (M)
- Extracellular structures (W)
- Cell motility (N)
- Nuclear structure (Y)
- Nucleotide transport & metabolism (F)
- Defense mechanisms (V)
- Coenzyme transport & metabolism (H)
- Unknown (S)
- Inorganic ion transport & metabol. (P)
- Lipid transport & metabol. (1)
I- Replication, recombination & repair (L)

- Cell cycle, division, chrs. partition. (D)
- Chromatin structure & dynamics (B)

Q. F. 1
< o o
o o -~

Fig. 2 Heatmap of the eggNOG functional categories expressed
throughout P. pinaster embryo developmental stages. The heatmap
was built after the counts of each transcript belonging to a protein
group in such category were added up, and later transformed in
Z-scores. The capital letters in between brackets originate in the
eggNOGs database and are specific to the functional categories. The
hierarchical clustering on the left side of the image represents the
correlation of the expression levels associated with distinct

functional categories
. J

stage. Nucleotide transport and metabolism and coenzyme
transport and metabolism show highest expression at ma-
ture embryo stage, whereas lipid transport and metabol-
ism is relevant both in the pre-cotyledonary and mature
embryo stages.

Differentially expressed transcripts along embryo
development

From the 67,429 assembled transcripts, 64,766 are
clearly expressed in at least one developmental stage and
39,838 are expressed in all five stages (Additional file 11).
The number of transcripts expressed in each stage is
equivalent, over 10,000 expressed transcripts per stage.
A total of 4953 transcripts (7.3%) are expressed in only
one stage of embryo development: 848, 338, 282, 1703,
1782 are exclusively expressed in Day0, Day5, Dayll,
Day15, and Day25, respectively.

A differential expression analysis (FDR < 0.05) between
each pair of consecutive stages identified 1738 tran-
scripts (2.6%) differentially expressed in at least one
transition (Additional file 12). A total of 798, 383, 591
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and 568 transcripts were differentially expressed in the
first (from Day0 to Day5), second (from Day5 to Dayll),
third (from Dayl1 to Dayl15), and fourth (from Dayl5 to
Day25) transition, respectively. Up-regulation of differ-
entially expressed transcripts is predominant in the first
transition, accounting for 594 of the 1185 up-regulated
differentially expressed transcripts (Fig. 3) specific for
first transition, while down-regulation of differentially
expressed transcripts is more abundant in the last transi-
tion (Fig. 4), representing approximately 38% of the total
down-regulated transcripts. Each developmental transi-
tion shares few up- or down-regulated transcripts with
the consecutive transition, supporting that the develop-
mental stages selected for this study are clearly differen-
tiated in terms of ongoing transcriptional activity.

A gene enrichment analysis of the differentially
expressed transcripts retrieved over-represented GO
terms associated with the first and last stage transitions
(see Additional files 13, 14 and 15). Both transitions
share an enrichment of down-regulated transcripts asso-
ciated with regulation of cell cycle and cell division.
Moreover, the first transition seems to be characterized
by down-regulation of transcripts involved in monosac-
charide transport and plant-type cell wall cellulose me-
tabolism. The last transition is characterized by
down-regulated transcripts related with epigenetics and
annotated with the DNA-dependent DNA replication
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GO term. As for the up-regulated transcripts, those
found in the first transition are associated with terpenoid
catabolism and tertiary alcohol metabolism, while the
only enriched GO term found in last transition is the
molecular function nutrient reservoir activity (data not
shown). Overall, the terms carbohydrate transport and
metabolism (Table 3) and epigenetics related terms
(Table 4) are highly represented in the list of differen-
tially expressed transcripts.

Clustering of the differentially expressed transcripts

The 1738 differentially expressed transcripts throughout
embryo development could be grouped into 12 distinct
clusters (K) with similar patterns of expression by
k-means clustering analysis (Fig. 5). Overall, the clusters
could be further divided in four groups (A to D) accord-
ing to the embryo stage in which the expression peaks:
(A) early embryo stages (clusters 1, 2, 3, 9), (B)
early-cotyledonary and/or cotyledonary stages (clusters
6, 8, 10, 12), (C) pre-cotyledonary embryo stages (clus-
ters 4, 5), and (D) mature embryo stage (clusters 7, 11).
Following an enrichment analysis performed in each
cluster, several processes and functions were found
over-represented in different phases of embryo develop-
ment (Fig. 5). The transcripts in group A are enriched in
several GO terms including carbohydrate metabolism,
monosaccharide transport, sterol metabolism, cell wall

From DO
to D5

Expression increases

From D5
to D11

Fig. 3 Venn diagram of the 1185 differentially expressed transcripts found up-regulated between two consecutive embryo developmental stages.
The number of transcripts and respective percentage (relative to the total aforementioned 1185 transcripts) are represented for each transition.
The numbers in the intersections represent transcripts found up-regulated in more than one developmental transition

From D11

D15  FomD15

to D25

268
(22.6%)
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From D5

From DO to D11

to D5

Expression decreases

Fig. 4 Venn diagram of the 904 differentially expressed transcripts found down-regulated between two consecutive embryo developmental stages.
The number of transcripts and respective percentage (relative to the total aforementioned 904 transcripts) are represented for each transition. The
numbers in the intersections represent transcripts found down-regulated in more than one developmental transition

From D11

to D15 From D15

to D25

organization or biogenesis, DNA-dependent DNA replica-
tion, cell cycle, regulation of gene expression, epigenetic,
among others (Fig. 5). In cluster 2, processes related to
carbohydrate metabolism and monosaccharide transport
and to the cell wall are highly represented (Additional file 16).
In cluster 3, which differs from cluster 2 mainly because the
expression stays relatively high at mid-embryo stages before
decreasing towards the mature embryo stage, DNA-depen-
dent DNA replication is particularly relevant in terms of the
number of contributing transcripts (89 transcripts) and in-
cludes chromatin organization, DNA modification, DNA
methylation, histone lysine methylation, DNA packaging, his-
tone methylation, regulation of gene expression, epigenetic
(Additional file 17). The transcripts in group B are enriched
in GO terms such as steroid dehydrogenase activity, sesqui-
terpenoid catabolism, release of seed from dormancy and
tertiary alcohol metabolism. In group D, the most repre-
sented terms are nutrient reservoir activity, carbon-oxygen
lyase activity, alpha-bisabolene synthase activity and terpene
synthase activity.

Validation by gPCR

A subset of eight transcripts was selected based on their ex-
pression profile and putative involvement in carbohydrate
metabolism (Table 3) or epigenetic regulation (Table 4), to

independently validate the RNA-seq results using
RT-qPCR (information about the primers can be
found in Additional file 18). Five of these genes are differen-
tially expressed transcripts throughout embryo development
(FDR<0.05) and are included in different transcription
profiles (clusters 2, 3, 5, 10). The RT-qPCR and RNA-seq
expression results are generally in good agreement as dem-
onstrated by the values of Pearson correlation, which ranged
between 0.52 (Pp34678) and 0.93 (Pp38781), confirming the
peaks of expression associated with specific developmental
stages (Fig. 6). There is also a good agreement between
RT-qPCR and RNA-seq for transcripts which had not
been predicted as differentially expressed (Pp29536,
Pp34388 and Pp34678).

Discussion

In this work, RNA-seq is used to provide a comprehen-
sive overview of the transcriptome of the maritime pine
developing embryo. Previously, the first transcriptomic
analysis of the maritime pine embryo using the same
developmental stages as those analysed here, has relied
on the use of a loblolly pine (P. taeda) microarray to
identify transcripts present during embryogenesis which
are conserved between the two species [36]. Although the
microarray had been successfully used for cross-species
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Fig. 5 K-means clustering of differentially expressed transcripts along P. pinaster embryo development. Transcripts were clustered together according to
their expression profiles and a representative mean expression profile (dashed line) was represented for every cluster. The 12 k-means clusters generated
were further divided in four groups (A to D) depending on the embryo developmental stage in which the expression peaks. The inset displays the
processes and functions found over-represented among the transcripts from the different clusters (and groups). a Clusters K1, K2, K3, K9, showing
decreasing expression along development. Cellular carbohydrate metabolism, monosaccharide transport, carbohydrate metabolism, sterol metabolism,
cell wall organization or biogenesis, external encapsulating structure organization,cell wall macromolecule metabolism, DNA-dependent DNA replication,
biological regulation, organic cyclic compound metabolism, cellular aromatic compound metabolism, cellular component organization or biogenesis, cell
cycledevelopmental process, shoot system development, multicellular organismal process, mitotic cell cycle process, methylation, cell proliferation,
microtubule-based process. b Clusters K6, K8, K10, K12, with expression peaking at Day11 and/or Day15. Steroid dehydrogenase activity, acting on the
CH-CH group of donors, 3-oxo-5-alpha-steroid 4-dehydrogenase activity, abscisic acid catabolism, release of seed from dormancy. ¢ Clusters K4, K5, with
expression peaking at Day5. No GO-terms. d Clusters K7, K11, with increasing expression along development. Nutrient reservoir activity, carbon-oxygen
lyase activity, acting on phosphates, carbon-oxygen lyase activity, alpha-bisabolene synthase activity, terpene synthase activity
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Fig. 6 Validation of P. pinaster transcripts profile obtained by RNA-seq (red line) with RT-gPCR (blue line). Pearson correlation values (r) between
the two technologies are shown. Fold-change values are also shown for each developmental stage. Dotted lines connect relative expression
values calculated for Cq values detected in the last 5 cycles of the gPCR amplification program
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hybridization [37, 38], it contained approximately 25,000
unique ¢cDNAs from P. taeda representative of cDNA li-
braries exclusively prepared from root and needle tissues,
limiting the scope of the analysis considering our main
focus on embryo development. In the present study, such
limitation is overcome and the transcriptomic landscape
during embryogenesis has been significantly expanded.
Over 300 M read-pairs obtained from embryos at five
stages of development were assembled using a compre-
hensive strategy to produce a reference transcriptome for
maritime pine zygotic embryogenesis with 67,429 tran-
scripts. This number is three times the number of
expressed transcripts that had been previously identified
with the P. taeda microarray [36], corresponding to a
similar increase in the number of annotated proteins.
Nevertheless, Picea sitchensis, Vitis vinifera and Ricinus
communis remain the top three most represented species
in the distribution of all Top-BLAST hits.

The annotation of P. pinaster, P. taeda and P. lam-
bertiana predicted proteins with the eggNOG number of
its best homolog revealed that most annotated proteins
are shared by the three species (40.3% in P. pinaster,
51.1% in P. lambertiana, and 86.2% in P. taeda). P. pin-
aster and P. lambertiana predicted proteomes have ap-
proximately 10 times more proteins in common than
those shared with P. taeda, while the latter shares
roughly the same percentage of proteins with either
species. Moreover, the percentage of exclusive predicted
proteins was higher in P. pinaster (30.8%), against 3.0% in
P. taeda. The analysis of orthologous groups highlighted
some eggNOGs, shared by the three species, with a high
number of protein members, which include “PPR repeat”
and “Retrotransposon protein” involved in replication, re-
combination and repair, or with function unknown, and
several eggNOGs described as “Leucine Rich Repeat
(LRR)”, and “nucleotide binding domain with an ARC
motif (NB-ARC domain)” involved in signaling transduc-
tion mechanisms, and “toll/interleukin-1 receptor (TIR)”
with function unknown. These results are in close agree-
ment with the reported annotation of the shoot transcrip-
tome of Pinus patula in which the largest family that was
identified, including 1794 members, contained LRR, TIR,
NB-ARC, Golgi transport complex 5 (COG5) and pox-
virus A32 protein motifs [31].

Carbohydrate metabolism and transport in early
embryogenesis

This work gathered several evidences, both from the ana-
lysis of functional categories represented throughout
embryo development and from the analysis of specific
transcripts, pointing to a prominent role of carbohydrate
transport and metabolism early in P. pinaster embryogen-
esis. The analysis of functional categories assigned to
eggNOGs showed up-regulation of carbohydrate transport
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and metabolism in early embryo stages and a reduction in
expression towards later stages of embryogenesis. Also,
the enrichment analysis of all the differentially expressed
transcripts revealed a group of highly expressed tran-
scripts peaking at DayO (cluster 2 profile) enriched in
carbohydrate metabolism, including cellular carbohydrate
metabolism. In the same profile, cellular carbohydrate me-
tabolism appears associated to the metabolism of the
primary cell wall components cellulose, pectin, and glu-
can. Additionally, the 204 differentially expressed tran-
scripts down-regulated from Day0 to Day5 were enriched
in monosaccharide transport and plant-type cell wall
cellulose metabolism (see Additional file 13). A recent
study in P. sylvestris seed development has also pointed
out to an over-representation of carbohydrate metabolic
process and cell wall modification terms among the differen-
tially expressed transcripts over-represented at early devel-
opmental stages [21].

Many glycoside hydrolases encoding transcripts were
found more expressed in the first embryo stage (cluster 2),
including the Pp38781 homolog of AT4g02290 (glycosyl
hydrolase 9 family) whose expression profile was success-
fully validated by RT-qPCR. In particular, the presence of
several pine homologs of o-xylosidase and xyloglucan
endotransglycosylase  (previously named xyloglucan-
endo-p-glucanase) within this expression profile points out
the importance of xyloglucan mobilization and/or degrad-
ation in pine early embryogenesis [39]. Xyloglucan is the
main hemicellulose constituent of the primary cell walls of
spermatophytes except for grasses (reviewed by [40]), and
the glycosidases capable of trimming the xyloglucan side
chains are expected to act in the turnover or recycling of
xyloglucan during cell wall expansion (reviewed in [41]).
The Arabidopsis ALPHA-XYLOSIDASE 1/ ALTERED
XYLOGLUCAN 3/ THERMOINHIBITION RESISTANT
GERMINATION 1 (XYL1/ AXY3/ TRGI), whose putative
maritime pine homolog (Pp8434) was also up-regulated in
early embryogenesis, codes for an enzyme involved in
xyloglucan degradation into free monosaccharides [42]
and the only a-xylosidase active against xyloglucan [43].
Germinating seeds of Arabidopsis xy/l loss-of-function
mutants display cell wall loosening and reduced seed dor-
mancy due to alterations in primary cell wall integrity
[44]. Also a putative homolog (Pp38450) of the Arabidop-
sis ENDOXYLOGLUCAN TRANSFERASE A3/ XYLO-
GLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE
27 (EXGT-A3/ XTH27), involved in the differentiation of
tracheary elements through the degradation of the xylo-
glucan deposited in the cell walls [45], was identified with
the same expression profile (cluster 2), together with a pu-
tative homolog of XTHS5, a gibberellin (GA)-inducible
gene expressed in the embryonic axis and in the radicle of
seeds, involved in germination [46]. Overall, it seems that
the glycoside hydrolases involved in cell-wall modification
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during germination, are also relevant for the control of
early stages of pine embryogenesis. In fact, enzymes re-
sponsible for xyloglucan degradation have already been
found associated to somatic embryogenesis induction in
divergent species (reviewed by [47, 48]), including conifers
such as P. radiata where the up-regulation of a-D-galac-
tosidase (SEPR1) was detected [49]. In Picea abies somatic
embryogenesis a Xyloglucan:xyloglucosyl transferase and a
Glycosyl transferase family 1 protein were found differen-
tially expressed and down-regulated in the transitions from
proliferation to differentiation of early embryos and from
early embryos to development of late embryos [38].

Other members of the glycosyl hydrolase family were
found differentially expressed in our results, including a
putative homolog (Pp46170) of CELL WALL INVERT-
ASE 1 (CWINV1/CWII), described as playing a role in
plant sink tissues where it performs the hydrolysis of su-
crose, unloaded from the phloem via apoplast, into fruc-
tose and glucose (reviewed in [50]). Studies in cotton and
Arabidopsis seeds revealed that CWINV is expressed all
over the globular embryo but seems to be restricted to the
central zone of the torpedo embryo [51]. In a comparison
of the response to somatic embryogenesis induction in
shoot primordia derived from adult trees of Picea glauca,
up-regulation of CWINVI was detected only in non-re-
sponsive genotype, and a possible link with biotic stress
response was discussed [52]. There are also many evi-
dences that associate CWINV-mediated sucrose hydroly-
sis with the sugar signaling that promotes cell division in
early embryogenesis (reviewed by [50, 53]).

Many transcripts coding for putative carbohydrate
transporters also peaked at the first embryo stage
(Day0), most of them hexose (or monosaccharide) trans-
porters involved in transport and intake into the cyto-
plasm, possibly after CWIN has cleaved the sucrose
present in the apoplast [51]. Although still very little is
known about the role played by these hexose transporters
specifically in early plant embryogenesis (reviewed in
[54]), previous work on other sink tissues that, like the de-
veloping embryo, are also symplastically isolated, had
shown their dependence on transport proteins to uptake
the sucrose-derivatives through the plasma membrane
(reviewed by [55]). A putative pine homolog (Pp6019) of
the Arabidopsis SUGAR TRANSPORT PROTEIN 14
(AtSTPI14) belonging to the AtSTPs family, but specific for
galactose transport and expressed both in source (green
leaves) and in sink tissues (seed endosperm and cotyle-
dons) [56], was also detected. There are several evidences
pointing to a role of AtSTP14 in cell wall recycling,
namely in the transport of the cell wall-derived galactose
released upon cell wall degradation performed by
[-galactosidases (glycosyl hydrolases) and other enzymes
[56]. Yet another putative pine homolog (Pp32670) of the
Arabidopsis AtSTP13 was found in cluster 2, likely
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involved in the transport of monosaccharides derived
from the cell wall (reviewed in [54]).

The GO enrichment results from clusters 2 and 3,
which gather several glycosyl hydrolases, carbohydrate
transporters and kinases, as well as cell cycle related tran-
scripts, seem to support an active communication be-
tween regulators of carbohydrate metabolism and cell
cycle in P. pinaster early embryogenesis. So far, the impact
on plant cell cycle control and cell division derived from
the interaction between the nutritional state and genetic
control has been elucidated only in post-embryonic devel-
opment studies [57]. Observations in Arabidopsis show
that carbohydrates availability plays a role on cell decision
over G2/M transition by sugar signaling interaction with
specific key cell cycle regulators, such as CYCB1;1 and
CDKB1;1, which directly impacts proliferation of meri-
stematic tissues [58]. Among the five cyclin dependent
kinase b transcripts found among clusters 2 and 3
there is Pp42651, a putative pine homolog of the Ara-
bidopsis =~ CYCLIN-DEPENDENT  KINASE  B2;2
(CDKB2;2) which has been shown to be a regulator
of cell cycle progression and SAM organization, and
involved in hormone signaling [59].

Epigenetics associated transcripts in early to middle
embryogenesis

Many transcripts associated with different components
of epigenetic regulation are found differentially
expressed during maritime pine embryogenesis. Most of
them are included in cluster 3 profile, characterized by a
peak of expression at early embryogenesis.

Five putative histone subunits homologs are differen-
tially expressed across pine embryo development and
follow different expression profiles. Pp36206 and
Pp38724, putatively encoding core H3 and H2A histone
subunits, respectively, show a higher abundance in early
embryogenesis and generally decreasing towards late em-
bryogenesis (with a second minor peak at Day11). Also in
Picea abies somatic embryogenesis a Histone 3 was found
differentially expressed and down-regulated in the late
embryogeny phase [60]. Histone H3 is a known phosphor-
ylation target, in a cell cycle-dependent manner, of all
three Arabidopsis Aurora kinases [61, 62]. Interestingly, a
pine homolog of Aurora-2 (Pp32543) is present in the
same cluster. Additionally, the H1 (linker) histones, puta-
tively encoded by Pp46360, Pp14332 and Pp46359 pine
transcripts following an overall profile presenting a peak
of expression at D11/D15 stages (cluster 6 or 10), have
been reported as involved in DNA methylation and
demethylation, cell-cycle progression, and plant develop-
ment (reviewed by [63]). A microarray analysis of somatic
embryogenesis material from Picea abies revealed
up-regulation of Histone HI in proembryogenic masses
(PEMs) one day after withdrawal of plant growth
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regulators, when PEM-to-embryo transition is induced,
and in the transition from proliferation to differentiation
of early embryos [38].

Genes associated with chromatin formation or remod-
elling also appeared differentially expressed across pine
embryo development. A Serrated and early flowering/
SWRI complex subunit 6 (SEF/SWC6) pine homolog
(Pp30270) increased its expression throughout embryo
development (cluster 7). SEF encodes a subunit of
SWR1 chromatin-remodelling complex, which is respon-
sible for the ATP-dependent replacement of histone
H2A by H2A.Z variant, and is associated with flowering
repression in Arabidopsis by means of positive regula-
tion of the flowering repressors FLOWERING LOCUS C
(FLC) and MADS-AFFECTING FLOWERING 4 (MAF4)
[64—66]. Two other SNF2-related chromatin remodelling
putative transcripts follow different expression profiles.
Pp14163, the putative pine homolog of CHROMATIN RE-
MODELING 31 (CHR31) peaked at Day5 and Day15, while
the homolog of RAD5 (Pp26994), was over-represented at
early embryogenesis, pointing to a developmental stage
dependent expression of these genes. Also peaking in early
embryos was Pp34781, a putative FASCIATA 1 (FASI) pine
homolog encoding one of the three subunits of the histone
chaperone Chromatin Assembly Factor-1 (CAF-1). Its Ara-
bidopsis counterpart is required during post-embryonic de-
velopment, for proper organization and function of both
apical meristems, however it appears not to be needed dur-
ing embryo development, at least during Arabidopsis late
embryogenesis [67].

The transcriptome of P. pinaster embryogenesis is
abundant in transcripts possibly encoding enzymes for
post-translational modification of histone subunits, in
particular E2 ubiquitin-conjugating enzymes. Pp30887, a
putative pine homolog of E2 ubiquitin-conjugating en-
zyme 28 gene, is differentially expressed and up-regulated
in early and middle embryogenesis (cluster 1). These pro-
teins are known to perform H2B monoubiquitination that
has been associated with transcriptional activation
(reviewed in [68]). Histone lysine methylation also plays a
relevant role in pine embryogenesis considering the iden-
tification of the differentially expressed transcripts
Pp44003 and Pp33894, putatively coding for an ARABI-
DOPSIS TRITHORAX-RELATED PROTEIN 6 (ATXR6)
(in cluster 3) and a SU(VAR)3-9-RELATED protein 5
(SUVR5) (in cluster 10), respectively. ATXR5 and ATXR6,
involved in the repressive chromatin modification H3K27
mel, contribute to keep the constitutive heterochromatin
status, in most cases of transposons and other repetitive
and silent elements, and to prevent re-replication to occur
in the same cell cycle [69, 70]. On the other hand, SUVR5
is responsible for the repressive chromatin modification
H3K9me2, independently of the presence of DNA methyla-
tion [71], whose presence is usually associated to
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transposon silencing and DNA methylation control, being
predominant in pericentromeric/centromeric regions [72].

A putative homolog of VARIANT IN METHYLA-
TION 1/ORTHRUS 2 (VIM1/ORTH2) gene, a methyl
cytosine-binding protein that collaborates with DNA
METHYLTRANSFERASE 1 (MET1) to promote CpG
methylation and centromeres organization [73, 74], was
also found in our data (Pp11214) showing a maximum
expression in the earlier embryo stages (cluster 3) and
decreasing towards the mature embryo. In Picea abies,
VIM1 was found differentially expressed between som-
atic embryos in the early morphogenesis stage grown
under two distinct temperature conditions (18°C and
30°C), being up-regulated at higher temperature [23].
However, Pp3794, which is an homolog of the plant DO-
MAINS REARRANGED METHYLTRANSFERASE 2
(DRM?2), a major de novo DNA methyltransferase gene
responsible for DNA methylation in all sequence con-
texts (CG, CHG and CHH) (reviewed by [75]), followed
an expression profile peaking at Day5, but increasing
from middle embryogenesis towards maturation (cluster
5). DRM2 maintains CHH methylation through de novo
methylation, typically within the RNA-directed DNA
methylation (RADM) pathway (reviewed in [76]). Al-
though the expression of the pine putative DRM2
peaks before reaching maturation, a tendency for a
steady increase from the middle embryo stages up to
the mature embryo was detected. This observation is
in agreement with studies in Arabidopsis showing
that mature embryos exhibit saturation of the CHH
methylation sites, and a higher activity of RdADM and
expression of DRM2 when comparing with early em-
bryos [77, 78].

Finally, many transcripts associated with RNA silen-
cing have been found in the pine embryo transcriptome.
Within this group, it is worth highlighting Pp12441, a
putative pine homolog of the RNA silencing player
ARGONAUTE 2 which has been associated with biotic
stress response [79], up-regulated during early and mid-
dle embryogenesis (cluster 1).

Conclusions

This work provides an additional resource to help
understand the gene regulation and major events associ-
ated with embryogenesis progression in conifers. By
using RNA-seq technology to access the genes being
expressed at specific embryo developmental stages, we
have extended the previously published transcriptome
profiling of maritime pine zygotic embryogenesis which
had been obtained with DNA microarray hybridization
technology. One such important outcome is that
carbohydrate transport and metabolism was found
clearly over-represented in early embryo stages. Either
the analysis of functional categories assigned to
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eggNOGs, or the enrichment analysis of the differen-
tially expressed transcripts and identification of many
putative glycoside hydrolases and carbohydrate trans-
port genes, point towards their relevant role in pine
embryo development. Another relevant outcome pro-
viding strong support to previous studies is the predomin-
ance, during early and middle embryogenesis, of several
events of chromatin remodelling evidenced by an active
synthesis of histones and their post-translational modifiers
associated to increased transcription, as well as silencing
of transposons.

While there is no genome published for P. pinaster,
this transcriptome of reference for pine zygotic embryo-
genesis is useful to the plant research community fo-
cused on the improvement of the vegetative propagation
of conifers through somatic embryogenesis.

Methods

Plant material

Immature female cones were collected from open-polli-
nated P. pinaster Ait. trees growing in a clonal seed orchard
at Mata Nacional do Escaroupim, Portugal (Longitude 8°
44'W, latitude 39°4’'N). This seed orchard was established
by top grafting of clones genetically selected in a half-sib
progeny test. The plus trees were originally selected in Mata
Nacional de Leiria (Portugal) in 1963/64 [80]. The trees are
part of an experimental plantation established for research
on land of the Portuguese government. The cones were ob-
tained from INIAV (Oeiras, Portugal), Ministério da Agri-
cultura, Florestas e Desenvolvimento Rural, and were
provided upon permission by the forest engineers Alex-
andre Aguiar and Isabel Carrasquinho, complying with in-
stitutional and national guidelines.

The collection period occurred between mid June and
end of July. Seeds were removed and used to isolate em-
bryos as previously described in [36]. Each embryo was
quickly evaluated for developmental stage following the
staging system described by [30], the suspensor was re-
moved, and the embryo immediately frozen in liquid ni-
trogen into different pools according to the stage. Five
different embryo developmental stages were considered
as follows: Day0 included the early embryo stages TO, T1
and T2; Day5 included the pre-cotyledonary embryo
stages T3 and T4; Dayl1 included the early cotyledonary
embryo stage T4B; Dayl5 included the cotyledonary
embryo stage T5; and Day25 included the mature em-
bryo stage T7. Depending on the embryo stages, each
pool contained 20-65 zygotic embryos. Several separate
pools were prepared for each stage and samples were
stored at — 80 °C until further analysis.

RNA extraction and sequencing
RNA extraction from each embryo pool was performed
with RNeasy Plant Mini kit (Qiagen, Valencia CA, USA),
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using buffer RLC, according to the manufacturer’s instruc-
tions. RNA vyield and purity were determined using
ND-1000 spectrophotometer (NanoDrop, Wilmington DE,
USA), and integrity was checked by electrophoresis in 0.8%
agarose gel and staining with RedSafe™ Nucleic Acid Stain-
ing Solution (iNtRON Biotechnology). RNA samples were
cleaned from DNA contamination using RNase-Free
DNase I (Qiagen), according to manufacturer’s instructions.
Total RNA samples from the five embryo stage pools (one
biological replicate), were sent to the sequencing service
provider where Illumina RNA-seq libraries were prepared
and sequenced using the HiSeq 2000 platform.

RNA-seq data pre-processing and comprehensive assembly
A comprehensive transcriptome assembly approach [31]
reviewed in [32] was adopted to generate the reference
transcriptome (Software was run with default parameters
unless otherwise indicated): The raw reads were filtered
with Trimmomatic (v 0.32; [81]) using the default options
for paired-end (PE) reads to remove Illumina adaptor se-
quences, reads with low quality or complexity (SLIDING-
WINDOW:4:5), 5bp from both ends (LEADING:5
TRAILING:5) and reads shorter than 25 bp (MINLEN:25).
All the clean reads were used for de novo assembly with
Trinity, but only pairs where both reads remained were
used for the guided assembly or expression analysis. Trinity
(v 2.0.6; [33]) was used to generate a de novo assembly with
default parameters, plus “--min_glue 4 --CuffFly --group_-
pairs_distance 600 --genome_guided_max_intron 10000”.
The P. taeda genome and annotations (v 1.01) were
downloaded from the genome project at the University of
California [34]. Clean pairs of reads from each embryo
stage were independently aligned to this P. taeda genome
using GSNAP without gene annotation (v 2014-08-04;
[82]). We only used “concordant paired” alignments where
both reads in a pair align with a minimum length of 25 bp
(50 bp per alignment), in the right forward-reverse orien-
tation and insert length distance. The read alignments
from all the stages, together with the P. taeda gene anno-
tation, were used as input in Cufflinks (v. 2.2.1; [83]) to re-
construct another set of transcripts. The final step
involves combining both set of transcripts, from Trinity
and Cufflinks: These transcripts were aligned to the P.
taeda genome with GMAP (v 2014-12-22, [84]), and the
aligning transcripts were clustered by locus with PASA
(release 20,140,417; [85]). However, the transcripts that
did not align on the P. taeda genome were clustered by
sequence using CD-HIT with “-pid 1”7 (v 4.6.3; [86]), later
validated by checking the presence of a clear ORF within
each of them with TransDecoder (v 2.0.1; [87]) using all
the Viridiplantae proteins in UniProt as reference, and fi-
nally concatenated to the previous transcripts (those clus-
tered by locus). To produce the final comprehensive
transcriptome, we filtered out the 602 short transcripts
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without an ORF and shorter than 200 bp. These 602 tran-
scripts are listed in Additional file 2.

Functional annotation
Transcripts were compared with the NCBI non-redundant
(nr) and Arabidopsis TAIR protein databases using NCBI
BLASTX with an E-value of 1le-10. Results were imported
in Blast2GO [88] to annotate the GO terms, enzymatic pro-
tein codes and KEGG pathways. The conserved motifs and
structures in the transcripts were identified by comparison
against the motifs databases in EBI InterPro (http://www.e
bi.ac.uk/interpro/interproscan.html). We used the Plant
Transcription  Factor  database (PLNTFEDB, http://
plntfdb.bio.uni-potsdam.de/) as reference to identify the TFs
and other transcriptional regulators in our transcriptome.
The database contains close to 30,000 protein sequences of
experimentally-identified elements from diverse plant spe-
cies, and their classification in families according to their
protein domains by HMM methods. The sequences of the
differentially expressed transcripts were aligned to the
PLNTEDB using BLASTX and a minimum E-value of
le-10. We considered any transcript with a result under that
threshold as a TF/transcriptional regulator, and annotated it
within the family of the homologous with a lower E-value.
All ORF possibilities were generated from the newly
assembled transcriptome using TransDecoder as previ-
ously described, but only the longest ORF per transcript
was retained in the final P. pinaster proteome. We clas-
sified any assembled transcript where TransDecoder
could not identify an ORF as non-coding. The transcrip-
tomes of other conifers were downloaded from the Pine-
RefSeq project at University of Davis. The proteome for
each of them was built in a similar way as for P. pinaster
with TransDecoder. Best reciprocal hits (BRH) were
identified by aligning all the proteins against each other
with BLASTP with an E-value of le-5. Any annotation
from the close relatives was assigned back to the original
P. pinaster transcript. The proteins from P. pinaster, P.
taeda and P. lambertiana were clustered together ac-
cording the eggNOG group of their respective best
orthologous sequenced in EBI's eggNOG database of
functionally annotated proteins. Each protein was firstly
aligned to a database of proteins that have already been
categorized, and then annotated with the eggNOG num-
ber of its best homolog. Clusters of proteins were made
among the three conifer species by concatenating the
proteins annotated with the same eggNOG number. The
annotated database of protein sequences and descrip-
tions is available to download at EMBL (http://eggnogdb
.embl.de/).

Analysis of expression, gene enrichment and clustering
The clean reads from each of the developing stages were
aligned to the comprehensive transcriptome with Bowtie
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(v 2.2.5; [89]) and retaining only pairs of reads mapping
in the right distance and orientation (--very-sensitive -X
1000 --no-mixed --no-discordant). From these align-
ments, the abundance of each transcript was quantified
in each stage using eXpress (v. 1.5.1; [90]) to produce a
table of counts that was used downstream in edgeR [91].
Transcripts with less than 10 counts were discarded at
this point. Due to the technical difficulties in isolating
enough amounts of zygotic embryos at the very early
stages of development, we do not have replicated
libraries. To minimize the impact of the lack of repli-
cates, we followed the protocol recommended by the
developers in such cases [92]: a common dispersion was
calculated for the whole dataset with “x = DGEList(roun-
d(read.delim(‘eXpress.eff_counts)),group=c(1,1,1,1,1); x =
calcNormFactors(x); x = estimateDisp(x);”, and later dif-
ferentially expressed transcripts were identified between
each pair of consecutive stages at FDR < 0.05 using edgeR’s
exact test “exactTest()”, which allows both common
dispersion and single factor experiments (time in ours).
Differentially expressed transcripts were divided in
clusters according to the normalized number of aligned
reads in each stage by K-means clustering implemented
in Mayday [93] based on Euclidian correlation between
expression values. The list of transcripts in each cluster
was used in Blast2GO to identify the enriched GO
terms. The enrichment analysis was based on a F-fisher
test (FDR<0.05). The relation among GO terms was
assigned using REVIGO with the Resvik algorithm
option [94] and plotted in R with the Treemap library
(github.com/mtennekes/treemap.git). To build the ex-
pression heatmap by functional categories, the counts of
each transcript belonging to a protein group in such cat-
egory were added up, and later transformed in Z-scores,
clustered, and plotted in a heatmap using Mayday [93].

Expression validation by RT-qPCR
A subset of genes from the de novo assembled P. pinaster
transcriptome was selected, based on differential expression
and/or epigenetic-related annotation, to validate the
RNA-seq results by RT-qPCR. Primer3Plus (http://pri
mer3plus.com/cgi-bin/dev/primer3plus.cgi) was used to de-
sign the RT-qPCR primers, with the following conditions:
50-60% of GC content and Tm between 50 and 65 °C
(according to Nearest Neighbor Tm); should bind the 5°
or 3" less conserved regions of the transcript; the ampli-
con size of 75-200 bp (Additional file 18). The quality of
the primers was verified with PCR Primer Stats (http://
www.bioinformatics.org/sms2/pcr_primer_stats.html) and
OligoAnalyzer 3.1 (https://eu.idtdna.com/calc/analyzer).
RNA samples were first quantified in Qubit 3.0 Fluor-
imeter using the RNA BR Assay kit (Thermo Fisher
Scientific). The ¢cDNA synthesis was performed using
the Transcriptor High Fidelity ¢cDNA Synthesis Kit
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(Roche Diagnostics), according to the manufacturer’s in-
structions in the Standard Procedure for Quantitative
RT-PCR, adding 1000 ng of total RNA per 20 uL reac-
tion mix. Three biological replicates were prepared for
each embryo stage pool.

All qPCR experiments were performed in a Light-
Cycler 480 (Roche Diagnostics) with 96-well white
plates (Roche Diagnostics), where each 20 ul. qPCR
reaction mixture included 1X SYBR Green I Master
(Roche Diagnostics), 500 nM of each primer and 2 uL
of 1:20 diluted ¢cDNA. Three technical replicates were
prepared for each biological replicate. The amplifica-
tion program was the same for all genes, with slight
differences in the annealing temperatures: 95°C for
10 min, 40cycles of 10s at 95°C, 20s at annealing
temperature and 8s at 72°C (annealing temperatures
in Additional file 18). To check for the presence of a
single peak upon amplification, melting curves were
obtained. In order to discard any possibility of
remnant gDNA contamination, control samples were
prepared from the same RNAs but in the absence of
the Reverse Transcriptase enzyme, and used as tem-
plates in qPCR amplification with the ELF1A primers,
where the absence of signal proved the effectiveness
of the previous RNase-free DNase I (Qiagen) treat-
ment. As additional controls, non-template controls
(NTC) and positive controls were included in all runs.
Additionally, three biological replicates of a pool sam-
ple, prepared from equal amounts of total RNA from
each of the five embryo stage pools, were also in-
cluded in all runs. The efficiency of each pair of
primers was manually calculated according to [95],
using the Cp values retrieved by the ROCHE LC480
software (Additional file 18). The relative expression
of each gene of interest (GOI) was efficiency cor-
rected as described in [95], using ELF1A, ATUB and
Histo3 as reference genes, which showed up as reli-
able reference genes in a previous study on P. pinas-
ter somatic embryogenesis [96].

The data obtained from the RNA-seq experiment
and the RT-qPCR were compared. From the
RNA-seq a logarithmic ratio of base 2 between the
counts (from eXpress) of a gene in each developmen-
tal stage and the mean counts of the same gene in
all developmental stages were made. A similar ap-
proach was followed for the data obtained by
RT-qPCR by doing a logarithmic ratio of base 2 be-
tween the normalized quantities (delta-delta-Ct) of
the gene of interest in each developmental stage and
the mean normalized quantities of the same gene in
all developmental stages in analysis. If expression
could not be detected by RT-qPCR after 35 cycles,
we assigned an expression value lower than the pre-
vious detected.
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Additional files

Additional file 1: List of all sequences of proteins in the final proteome
encoded by the reference transcriptome of P. pinaster zygotic embryogenesis.
Only the longest ORF possibility per transcript was translated into protein
sequence to generate the final proteome. (FASTA 14164 kb)

Additional file 2: Reference transcriptome of P. pinaster zygotic
embryogenesis with annotations from BRH to the proteomes of P. taeda, P.
lambertiana and A. thaliana, and from homology to proteins in NCBI databases.
Table ST: List of assembled transcripts, longest ORFs, and corresponding
predicted proteins. Table S2: Annotation information for the predicted proteins
derived from the longest ORFs. Table S3: List of short non-coding transcripts
without an ORF that were excluded. (XLSX 11164 kb)

Additional file 3: E-value distribution of the BLAST hits resulting from
the BLASTX alignment of the P. pinaster transcriptome to the NCBI non-
redundant proteins database. (PNG 74 kb)

Additional file 4: The functional annotation of P. pinaster transcriptome
done with Blast2GO generated different charts. The “data distribution” chart
shows the distribution of un-blasted (with BLAST (without hits)), blasted
(with BLAST hits), mapped (with mapping) and annotated (with GO annota-
tion) transcripts over the whole transcriptome. The “GO mapping distribu-
tion” chart is a representation of the amount of GO terms assigned to each
sequence during the GO Mapping step. The third chart represents the num-
ber of annotations achieved at distinct GO levels (0-to-15), listing the GO
terms by biological process (P), molecular function (F) and cellular compo-
nent (C). The “annotation distribution” chart shows the number of se-
quences annotated with different amounts of GO terms. (PDF 2905 kb)

Additional file 5: Distribution of the sequence similarities (percentage)
that were calculated for the BLAST hits. (PNG 79 kb)

Additional file 6: Distribution of species to which most transcripts were
aligned when only considering the Top-BLAST hits. (PNG 103 kb)

Additional file 7: InterProScan (IPS) results showing the number of
transcripts with and without IPS as well as with GO terms retrieved by
this annotation step. (PNG 45 kb)

Additional file 8: Distribution of the number of GO terms, retrieved by
the Blast2GO mapping step, per database resource. (PNG 24 kb)

Additional file 9: List of proteins from P. pinaster, P. taeda and P.
lambertiana clustered together according to the eggNOG group of their
respective best orthologous sequenced in EMBL's eggNOG database of
functionally annotated proteins. (TXT 3127 kb)

Additional file 10: Number of proteins from P. pinaster, P. taeda and P.
lambertiana clustered together according to the eggNOG group of their
respective best orthologous sequenced in EMBL's eggNOG database of
functionally annotated proteins. Information on each eggNOG group is
complemented by a general category and its description. (XLSX 844 kb)

Additional file 11: Transcripts abundance per developmental time
point (0D_eff_counts to 25D_eff_counts). (XLSX 4407 kb)

Additional file 12: Results from the edgeR analysis for the identification
of differentially expressed transcripts between each pair of consecutive
stages at FDR < 0.05. Fold-change (FC), counts per million (CPM) and p-value
data are shown per developmental transition and transcript. Table S4:
Complete list of transcripts analysed with edgeR. Table S5: Exclusive list of
1738 differentially expressed transcripts along embryo development, includ-
ing the number of the cluster of expression profile. (XLSX 2943 kb)

Additional file 13: REVIGO TreeMap representation of GO terms
enrichment analysis associated with biological process GO terms found in
the list of 204 differentially expressed transcripts down-regulated in transi-
tion from DayO to Day5. (PNG 62 kb)

Additional file 14: REVIGO TreeMap representation of GO terms
enrichment analysis associated with biological process GO terms found in
the list of 594 differentially expressed transcripts up-regulated in transi-
tion from Day0 to Day5. (PNG 50 kb)

Additional file 15: REVIGO TreeMap representation of GO terms enrichment
analysis associated with biological process GO terms found in the list of 344
differentially expressed transcripts down-regulated in transition from Day15 to

Day?25. (PNG 167 kb)
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Additional file 16: REVIGO TreeMap representation of GO terms
enrichment analysis associated with biological process GO terms found in the
list of differentially expressed transcripts included in cluster 2. (PNG 53 kb)

Additional file 17: REVIGO TreeMap representation of GO terms enrichment
analysis associated with biological process GO terms found in the list of
differentially expressed transcripts included in cluster 3. (PNG 75 kb)

Additional file 18: Transcripts with BRHs validated by relative RT-qPCR.
The order of preference for annotating each P. pinaster transcript after its

homologs is: A. thaliana, P. taeda, and P. lambertiana. (DOCX 15 kb)
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BRH: Best reciprocal hits; GO: Gene ontology; IPS: InterPro database; NGS: Next-
generation sequencing; ORF: Open reading frame; RNA-seq: RNA sequencing

Acknowledgments

Isabel Carrasquinho and Alexandre Aguiar from INIAV are acknowledged for
provision of plant material. Marta Simoes is acknowledged for participation
in the preparation of plant material.

Funding

This work was supported through projects funded by (1) the European
Commission Seventh Framework Programme (FP7, Grant Agreement N°
289841-PROCOGEN), and (2) Fundagédo para a Ciéncia e a Tecnologia (FCT),
through grants GREEN-it (UID/Multi/04551/2013), IF/01168/2013 and the doc-
toral fellowship SFRH/BD/79779/2011 (to ASR). JDV was supported by an In-
stitute Programme Grant to Earlham Institute (BBS/E/T/000PR9818) from the
Biotechnology and Biological Science Research Council (BBSRC), UK. The
funding bodies had no role in the design of the study, collection, analysis,
and interpretation of data, or in writing the manuscript.

Availability of data and materials

The data were deposited in the European Nucleotide Archive (ENA) under the
study PRJIEB21602, with the run accessions ERR2238559 (stages TO/T1/T2),
ERR2238560 (stages T3/T4), ERR2238561 (stage T4B), ERR2021873 (stage T5) and
ERR2021874 (stage T7) [https.//www.ebiac.uk/ena/data/view/PRJEB21602]. The
Transcriptome Shotgun Assembly project has been deposited at DDBJ/ENA/
GenBank under the accession GGEX00000000. The version described here is the
first version, GGEX01000000 [https.//www.ebiac.uk/ena/data/view/GGEX010
00000].

Authors’ contributions

This study was conceived and directed by CMM. ASR did the experimental
work, including preparation of total RNA for sequencing and gene expression
validation by RT-gPCR. JDV performed the bioinformatics analysis. ASR; JDV and
CMM participated in the analysis of results and their biological interpretation.
ASR, JDV and CMM wrote the paper. All authors read and approved the final
manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'Instituto de Biologia Experimental e Tecnoldgica (iBET), Apartado 12,
2780-901 Oeiras, Portugal. Instituto de Tecnologia Quimica e Bioldgica
Antonio Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da Republica,
2780-157 Qeiras, Portugal. 3Earlham Institute, Norwich Research Park,
Norwich NR4 7UZ, UK. *Universidade de Lisboa, Faculdade de Ciéncias, BiolS!
- Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016
Lisbon, Portugal.

Page 18 of 20

Received: 6 May 2018 Accepted: 22 November 2018
Published online: 29 December 2018

References

1. Goldberg RB, de Paiva G, Yadegari R. Plant embryogenesis: zygote to seed.
Science (80- ). 1994;266:605-614. doi:https://doi.org/10.1126/science.266.
5185.605.

2. De Smet |, Lau S, Mayer U, Jirgens G. Embryogenesis - the humble
beginnings of plant life. Plant J. 2010,61:959-70. https.//doi.org/10.1111/j.
1365-313X.2010.04143 x.

3. Smith SA, Beaulieu JM, Donoghue MJ. An uncorrelated relaxed-clock analysis
suggests an earlier origin for flowering plants. Proc Natl Acad Sci U S A. 2010;
107:5897-902. https://doi.org/10.1073/pnas.1001225107.

4. Raghavan V, Sharma KK. Zygotic Embryogenesis in Gymnosperms and
Angiosperms. In: Thorpe TA, editor. In Vitro Embryogenesis in Plants; 1995.
p. 73-115.

5. Miguel CM, Rupps A, Raschke J, Rodrigues AS, Trontin JF. Impact of
molecular studies on somatic embryogenesis development for
implementation in conifer multivarietal forestry. In: Park YS, Bonga JM,
Moon HK, editors. Vegetative propagation of Forest trees. Seoul: National
Institute of Forest Science; 2016. p. 373-421.

6. Lelu-Walter MA, Klimaszewska K, Miguel C, Aronen T, Hargreaves C, Teyssier
C, et al. Somatic embryogenesis for more effective breeding and
deployment of improved varieties in Pinus spp.: bottlenecks and recent
advances. In: Somatic Embryogenesis - Fundamental Aspects and
Applications. Loyola-Vargas VM, Ochoa-Alejo N, editors. Springer
International Publishing; 2016. p. 319-365.

7. Brautigam A, Gowik U. What can next generation sequencing do for you?
Next generation sequencing as a valuable tool in plant research. Plant Biol
(Stuttg). 2010;12:831-41. https://doi.org/10.1111/}.1438-8677.2010.00373 x.

8. Strickler SR, Bombarely A, Mueller LA. Designing a transcriptome next-
generation sequencing project for a nonmodel plant species. Am J Bot.
2012,99:257-66. https://doi.org/10.3732/ajb.1100292.

9. Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N, et al.
Phylotranscriptomic analysis of the origin and early diversification of land
plants. Proc Natl Acad Sci U S A. 2014;111:E4859-68. https://doi.org/10.1073/
pnas.1323926111.

10. Sun H, Paulin L, Alatalo E, Asiegbu FO. Response of living tissues of Pinus
sylvestris to the saprotrophic biocontrol fungus Phlebiopsis gigantea. Tree
Physiol. 2011;31:438-51. https://doi.org/10.1093/treephys/tpr027.

11. Miguel A, de Vega-Bartol J, Marum L, Chaves |, Santo T, Leitéo J, et al.
Characterization of the cork oak transcriptome dynamics during acorn
development. BMC Plant Biol. 2015;15:158. https://doi.org/10.1186/512870-
015-0534-1.

12. Narsai R, Gouil Q, Secco D, Srivastava A, Karpievitch YV, Liew LC, et al.
Extensive transcriptomic and epigenomic remodelling occurs during
Arabidopsis thaliana germination. Genome Biol. 2017;18:172. https://doi.org/
10.1186/513059-017-1302-3.

13. Zenoni S, Ferrarini A, Giacomelli E, Xumerle L, Fasoli M, Malerba G, et al.
Characterization of transcriptional complexity during berry development in
Vitis vinifera using RNA-Seq. Plant Physiol. 2010;152:1787-95. https.//doi.org/
10.1104/pp.109.149716.

14. Xiao M, Zhang Y, Chen X, Lee E-J, Barber CJS, Chakrabarty R, et al.
Transcriptome analysis based on next-generation sequencing of non-model
plants producing specialized metabolites of biotechnological interest.

J Biotechnol. 2013;166:122-34. https://doi.org/10.1016/j jbiotec.2013.04.004.

15. Jayasena AS, Secco D, Bernath-Levin K, Berkowitz O, Whelan J, Mylne JS. Next
generation sequencing and de novo transcriptomics to study gene evolution.
Plant Methods. 2014;10:34. https//doi.org/10.1186/1746-4811-10-34.

16. Xu H, Gao Y, Wang J. Transcriptomic analysis of rice (Oryza sativa)
developing embryos using the RNA-Seq technique. PLoS One. 2012;7:
€30646. https://doi.org/10.1371/journal pone.0030646.

17. Chen J, Zeng B, Zhang M, Xie S, Wang G, Hauck A, et al. Dynamic
transcriptome landscape of maize embryo and endosperm development.
Plant Physiol. 2014;166:252-64. https.//doi.org/10.1104/pp.114.240689.

18. Teoh KT, Requesens DV, Devaiah SP, Johnson D, Huang X, Howard JA, et al.
Transcriptome analysis of embryo maturation in maize. BMC Plant Biol.
2013;13:19. https://doi.org/10.1186/1471-2229-13-19.

19. Deng W, Yan F, Zhang X, Tang Y, Yuan Y. Transcriptional profiling of canola
developing embryo and identification of the important roles of BnDof5.6 in


https://doi.org/10.1186/s12870-018-1564-2
https://doi.org/10.1186/s12870-018-1564-2
https://doi.org/10.1186/s12870-018-1564-2
https://www.ebi.ac.uk/ena/data/view/PRJEB21602
https://www.ebi.ac.uk/ena/data/view/GGEX01000000
https://www.ebi.ac.uk/ena/data/view/GGEX01000000
https://doi.org/10.1126/science.266.5185.605
https://doi.org/10.1126/science.266.5185.605
https://doi.org/10.1111/j.1365-313X.2010.04143.x
https://doi.org/10.1111/j.1365-313X.2010.04143.x
https://doi.org/10.1073/pnas.1001225107
https://doi.org/10.1111/j.1438-8677.2010.00373.x
https://doi.org/10.3732/ajb.1100292
https://doi.org/10.1073/pnas.1323926111
https://doi.org/10.1073/pnas.1323926111
https://doi.org/10.1093/treephys/tpr027
https://doi.org/10.1186/s12870-015-0534-1
https://doi.org/10.1186/s12870-015-0534-1
https://doi.org/10.1186/s13059-017-1302-3
https://doi.org/10.1186/s13059-017-1302-3
https://doi.org/10.1104/pp.109.149716
https://doi.org/10.1104/pp.109.149716
https://doi.org/10.1016/j.jbiotec.2013.04.004
https://doi.org/10.1186/1746-4811-10-34
https://doi.org/10.1371/journal.pone.0030646
https://doi.org/10.1104/pp.114.240689
https://doi.org/10.1186/1471-2229-13-19

Rodrigues et al. BVIC Plant Biology

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

32.

33.

34.

35.

36.

37.

38.

(2018) 18:379

embryo development and fatty acids synthesis. Plant Cell Physiol. 2015;56:
1624-40. https://doi.org/10.1093/pcp/pcv074.

Zhai L, Xu L, Wang Y, Zhu X, Feng H, Li C, et al. Transcriptional identification
and characterization of differentially expressed genes associated with
embryogenesis in radish (Raphanus sativus L.). Sci Rep. 2016,6:21652. https.//
doi.org/10.1038/srep21652.

Merino |, Abrahamsson M, Sterck L, Craven-Bartle B, Canovas F, von Armold S.
Transcript profiling for early stages during embryo development in scots pine.
BMC Plant Biol. 2016;16:255. https//doi.org/10.1186/512870-016-0939-5.
Trontin J-F, Klimaszewska K, Morel A, Hargreaves C, Lelu-Walter M-A.
Molecular aspects of conifer zygotic and somatic embryo development: a
review of genome-wide approaches and recent insights. Methods Mol Biol.
2016;1359:167-207. https://doi.org/10.1007/978-1-4939-3061-6_8.

Yakovlev IA, Lee Y, Rotter B, Olsen JE, Skrgppa T, Johnsen @, et al.
Temperature-dependent differential transcriptomes during formation of an
epigenetic memory in Norway spruce embryogenesis. Tree Genet
Genomes. 2014;10:355-66. https://doi.org/10.1007/511295-013-0691-z.

Li Q, Zhang S, Wang J. Transcriptome analysis of callus from Picea
balfouriana. BMC Genomics. 2014;15:553. https;//doi.org/10.1186/1471-
2164-15-553.

Elbl P, Lira BS, Andrade SCS, Jo L, dos Santos ALW, Coutinho LL, et al.
Comparative transcriptome analysis of early somatic embryo formation and
seed development in Brazilian pine, Araucaria angustifolia (Bertol.) Kuntze.
Plant Cell Tissue Organ Cult. 2015;120:903-15. https://doi.org/10.1007/
$11240-014-0523-3.

Gonzalez-Ibeas D, Martinez-Garcia PJ, Famula RA, Delfino-Mix A, Stevens KA,
Loopstra CA, et al. Assessing the Gene Content of the Megagenome: Sugar
Pine (Pinus lambertiana). G3 (Bethesda). 2016;6:3787-802. https.//doi.org/10.
1534/93.116.032805.

Dobrowolska |, Businge E, Abreu IN, Moritz T, Egertsdotter U. Metabolome
and transcriptome profiling reveal new insights into somatic embryo
germination in Norway spruce (Picea abies). Tree Physiol. 2017,37:1752-66.
https://doi.org/10.1093/treephys/tpx078.

Navarro BV, Elbl P, De Souza AP, Jardim V, de Oliveira LF, Macedo AF, et al.
Carbohydrate-mediated responses during zygotic and early somatic
embryogenesis in the endangered conifer. Araucaria angustifolia PLoS One.
2017;12:¢0180051. https://doi.org/10.1371/journal.pone.0180051.

De Vega-Bartol JJ, Simées M, Lorenz WW, Rodrigues AS, Alba R, Dean JFD,
et al. Transcriptomic analysis highlights epigenetic and transcriptional
regulation during zygotic embryo development of Pinus pinaster. BMC
Plant Biol. 2013;13:123. https://doi.org/10.1186/1471-2229-13-123.

Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for

transcriptomics. Nat Rev Genet. 2009;10:57-63. https//doi.org/10.1038/nrg2484.

Gongalves S, Cairney J, Maroco J, Oliveira MM, Miguel C. Evaluation of
control transcripts in real-time RT-PCR expression analysis during maritime
pine embryogenesis. Planta. 2005;222:556-63. https://doi.org/10.1007/
500425-005-1562-0.

Visser EA, Wegrzyn JL, Steenkmap ET, Myburg AA, Naidoo S. Combined de
novo and genome guided assembly and annotation of the Pinus patula
juvenile shoot transcriptome. BMC Genomics. 2015;16:1057. https://doi.org/
10.1186/512864-015-2277-7.

Martin JA, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet.
2011;12:671-82. https://doi.org/10.1038/nrg3068.

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit |, et al. Full-
length transcriptome assembly from RNA-Seq data without a reference
genome. Nat Biotechnol. 2011;29:644-52. https://doi.org/10.1038/nbt.1883.
Wegrzyn JL, Liechty JD, Stevens KA, Wu L-S, Loopstra CA, Vasquez-Gross HA,
et al. Unique features of the loblolly pine (Pinus taeda L) megagenome
revealed through sequence annotation. Genetics. 2014;196:891-909. https://
doi.org/10.1534/genetics.113.159996.

Powell S, Szklarczyk D, Trachana K, Roth A, Kuhn M, Muller J, et al. eggNOG
v3.0: orthologous groups covering 1133 organisms at 41 different
taxonomic ranges. Nucleic Acids Res. 2012;40(Database issue):D284-9.
https://doi.org/10.1093/nar/gkr1060.

Van Zyl L, von Arnold S, Bozhkov P, Chen Y, Egertsdotter U, Mackay J, et al.
Heterologous array analysis in Pinaceae: hybridization of Pinus taeda cDNA
arrays with cDNA from needles and embryogenic cultures of P. Taeda, P.
Sylvestris or Picea abies. Comp Funct Genomics. 2002;3:306-18. https://doi.
0rg/10.1002/cfg.199.

Vestman D, Larsson E, Uddenberg D, Cairney J, Clapham D, Sundberg E, et
al. Important processes during differentiation and early development of

39.

40.

42.

43.

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

Page 19 of 20

somatic embryos of Norway spruce as revealed by changes in global gene
expression. Tree Genet Genomes. 2011,7:347-62. https://doi.org/10.1007/
$11295-010-0336-4.

Edwards M, Dea IC, Bulpin PV, Reid JS. Xyloglucan (amyloid) mobilisation in
the cotyledons of Tropaeolum majus L. seeds following germination. Planta.
1985;163:133-40. https://doi.org/10.1007/BF00395907.

Scheller HV, Ulvskov P. Hemicelluloses. Annu Rev Plant Biol. 2010;61:263-89.
https://doi.org/10.1146/annurev-arplant-042809-112315.

Park YB, Cosgrove DJ. Xyloglucan and its interactions with other
components of the growing cell wall. Plant Cell Physiol. 2015;56:180-94.
https://doi.org/10.1093/pcp/pcu204.

Sampedro J, Sieiro C, Revilla G, Gonzalez-Villa T, Zarra |. Cloning and expression
pattern of a gene encoding an alpha-xylosidase active against xyloglucan
oligosaccharides from Arabidopsis. Plant Physiol. 2001;126:910-20.

Sampedro J, Pardo B, Gianzo C, Guitidn E, Revilla G, Zarra I. Lack of a-
xylosidase activity in Arabidopsis alters xyloglucan composition and results
in growth defects. Plant Physiol. 2010;154:1105-15. https://doi.org/10.1104/
pp.110.163212.

Shigeyama T, Watanabe A, Tokuchi K, Toh S, Sakurai N, Shibuya N, et al. a-
Xylosidase plays essential roles in xyloglucan remodelling, maintenance of
cell wall integrity, and seed germination in Arabidopsis thaliana. J Exp Bot.
2016,67:5615-29. https://doi.org/10.1093/jxb/erw321.

Matsui A, Yokoyama R, Seki M, Ito T, Shinozaki K, Takahashi T, et al. AtXTH27
plays an essential role in cell wall modification during the development of
tracheary elements. Plant J. 2005;42:525-34. https://doi.org/10.1111/j.1365-
313X.2005.02395x.

Ogawa M. Gibberellin biosynthesis and response during Arabidopsis seed
germination. THE PLANT CELL ONLINE. 2003;15:1591-604. https://doi.org/10.
1105/tpc.011650.

Malinowski R, Filipecki M. The role of cell wall in plant embryogenesis. Cell
Mol Biol Lett. 2002;7:1137-51.

Smertenko A, Bozhkov PV. Somatic embryogenesis: life and death processes
during apical-basal patterning. J Exp Bot. 2014;,65:1343-60. https.//doi.org/
10.1093/jxb/eru005.

Aquea F, Arce-Johnson P. Identification of genes expressed during early
somatic embryogenesis in Pinus radiata. Plant Physiol Biochem. 2008;46:
559-68. https://doi.org/10.1016/j.plaphy.2008.02.012.

Ruan Y-L. Sucrose metabolism: gateway to diverse carbon use and sugar
signaling. Annu Rev Plant Biol. 2014;,65:33-67. https://doi.org/10.1146/
annurev-arplant-050213-040251.

Wang L, Ruan Y-L. New insights into roles of cell wall invertase in early seed
development revealed by comprehensive spatial and temporal expression
patterns of GhCWINT in cotton. Plant Physiol. 2012;160:777-87. https;//doi.
0rg/10.1104/pp.112.203893.

Rutledge RG, Stewart D, Caron S, Overton C, Boyle B, MacKay J, et al.
Potential link between biotic defense activation and recalcitrance to
induction of somatic embryogenesis in shoot primordia from adult trees of
white spruce (Picea glauca). BMC Plant Biol. 2013;13:116. https://doi.org/10.
1186/1471-2229-13-116.

Weber H, Borisjuk L, Wobus U. Molecular physiology of legume seed
development. Annu Rev Plant Biol. 2005;56:253-79. https://doi.org/10.1146/
annurev.arplant.56.032604.144201.

Slewinski TL. Diverse functional roles of monosaccharide transporters and
their homologs in vascular plants: a physiological perspective. Mol Plant.
2011,4:641-62. https;//doi.org/10.1093/mp/ssr051.

Bittner M, Sauer N. Monosaccharide transporters in plants: structure,
function and physiology. Biochim Biophys Acta. 2000;1465:263-74.

Poschet G, Hannich B, Buttner M. Identification and characterization of
AtSTP14, a novel galactose transporter from Arabidopsis. Plant Cell Physiol.
2010;51:1571-80. https://doi.org/10.1093/pcp/pcq100.

Peng L, Skylar A, Chang PL, Bisova K, Wu X. CYCP2;1 integrates genetic and
nutritional information to promote meristem cell division in Arabidopsis.
Dev Biol. 2014;393:160-70. https://doi.org/10.1016/jydbio.2014.06.008.
Skylar A, Sung F, Hong F, Chory J, Wu X. Metabolic sugar signal promotes
Arabidopsis meristematic proliferation via G2. Dev Biol. 2011;351:82-9.
https://doi.org/10.1016/jydbio.2010.12.019.

Andersen SU, Buechel S, Zhao Z, Ljung K, Novék O, Busch W, et al. Requirement
of B2-type cyclin-dependent kinases for meristem integrity in Arabidopsis
thaliana. Plant Cell. 2008,20:88-100. https.//doi.org/10.1105/tpc.107.054676.
Stasolla C, Bozhkov PV, Chu TM, van Zyl L, Egertsdotter U, Suarez MF, et al.
Variation in transcript abundance during somatic embryogenesis in


https://doi.org/10.1093/pcp/pcv074
https://doi.org/10.1038/srep21652
https://doi.org/10.1038/srep21652
https://doi.org/10.1186/s12870-016-0939-5
https://doi.org/10.1007/978-1-4939-3061-6_8
https://doi.org/10.1007/s11295-013-0691-z
https://doi.org/10.1186/1471-2164-15-553
https://doi.org/10.1186/1471-2164-15-553
https://doi.org/10.1007/s11240-014-0523-3
https://doi.org/10.1007/s11240-014-0523-3
https://doi.org/10.1534/g3.116.032805
https://doi.org/10.1534/g3.116.032805
https://doi.org/10.1093/treephys/tpx078
https://doi.org/10.1371/journal.pone.0180051
https://doi.org/10.1186/1471-2229-13-123
https://doi.org/10.1038/nrg2484
https://doi.org/10.1007/s00425-005-1562-0
https://doi.org/10.1007/s00425-005-1562-0
https://doi.org/10.1186/s12864-015-2277-7
https://doi.org/10.1186/s12864-015-2277-7
https://doi.org/10.1038/nrg3068
https://doi.org/10.1038/nbt.1883
https://doi.org/10.1534/genetics.113.159996
https://doi.org/10.1534/genetics.113.159996
https://doi.org/10.1093/nar/gkr1060
https://doi.org/10.1002/cfg.199
https://doi.org/10.1002/cfg.199
https://doi.org/10.1007/s11295-010-0336-4
https://doi.org/10.1007/s11295-010-0336-4
https://doi.org/10.1007/BF00395907
https://doi.org/10.1146/annurev-arplant-042809-112315
https://doi.org/10.1093/pcp/pcu204
https://doi.org/10.1104/pp.110.163212
https://doi.org/10.1104/pp.110.163212
https://doi.org/10.1093/jxb/erw321
https://doi.org/10.1111/j.1365-313X.2005.02395.x
https://doi.org/10.1111/j.1365-313X.2005.02395.x
https://doi.org/10.1105/tpc.011650
https://doi.org/10.1105/tpc.011650
https://doi.org/10.1093/jxb/eru005
https://doi.org/10.1093/jxb/eru005
https://doi.org/10.1016/j.plaphy.2008.02.012
https://doi.org/10.1146/annurev-arplant-050213-040251
https://doi.org/10.1146/annurev-arplant-050213-040251
https://doi.org/10.1104/pp.112.203893
https://doi.org/10.1104/pp.112.203893
https://doi.org/10.1186/1471-2229-13-116
https://doi.org/10.1186/1471-2229-13-116
https://doi.org/10.1146/annurev.arplant.56.032604.144201
https://doi.org/10.1146/annurev.arplant.56.032604.144201
https://doi.org/10.1093/mp/ssr051
https://doi.org/10.1093/pcp/pcq100
https://doi.org/10.1016/j.ydbio.2014.06.008
https://doi.org/10.1016/j.ydbio.2010.12.019
https://doi.org/10.1105/tpc.107.054676

Rodrigues et al. BVIC Plant Biology

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

(2018) 18:379

gymnosperms. Tree Physiol. 2004;24:1073-85. https://doi.org/10.1093/
treephys/24.10.1073.

Demidov D, Van Damme D, Geelen D, Blattner FR, Houben A. Identification
and dynamics of two classes of aurora-like kinases in Arabidopsis and other
plants. Plant Cell. 2005;17:836-48. https://doi.org/10.1105/tpc.104.029710.
Kawabe A, Matsunaga S, Nakagawa K, Kurihara D, Yoneda A, Hasezawa S,
et al. Characterization of plant Aurora kinases during mitosis. Plant Mol Biol.
2005;58:1-13. https://doi.org/10.1007/511103-005-3454-x.

Over RS, Michaels SD. Open and closed: the roles of linker histones in plants
and animals. Mol Plant. 2014;7:481-91. https://doi.org/10.1093/mp/sst164.
March-Diaz R, Garcia-Dominguez M, Florencio FJ, Reyes JC. SEF, a new protein
required for flowering repression in Arabidopsis, interacts with PIET and ARP6.
Plant Physiol. 2007;143:893-901. https://doi.org/10.1104/pp.106.092270.

Choi K, Park C, Lee J, Oh M, Noh B, Lee I. Arabidopsis homologs of
components of the SWR1 complex regulate flowering and plant development.
Development. 2007;134:1931-41. https://doi.org/10.1242/dev.001891.

Lazaro A, Gdmez-Zambrano A, Lépez-Gonzalez L, Pifieiro M, Jarillo JA.
Mutations in the Arabidopsis SWC6 gene, encoding a component of the
SWR1 chromatin remodelling complex, accelerate flowering time and alter
leaf and flower development. J Exp Bot. 2008;59:653-66. https://doi.org/10.
1093/jxb/erm332.

Kaya H, Shibahara KI, Taoka K, lwabuchi M, Stillman B, Araki T. FASCIATA
genes for chromatin assembly factor-1 in arabidopsis maintain the cellular
organization of apical meristems. Cell. 2001;104:131-42. https.//doi.org/10.
1016/50092-8674(01)00197-0.

Berr A, Shafig S, Shen W-H. Histone modifications in transcriptional
activation during plant development. Biochim Biophys Acta. 1809,2011:567-
76. https;//doi.org/10.1016/j.bbagrm.2011.07.001.

Jacob Y, Feng S, LeBlanc CA, Bernatavichute YV, Stroud H, Cokus S, et al.
ATXRS5 and ATXR6 are H3K27 monomethyltransferases required for
chromatin structure and gene silencing. Nat Struct Mol Biol. 2009;16:763-8.
https://doi.org/10.1038/nsmb.1611.

Jacob Y, Stroud H, Leblanc C, Feng S, Zhuo L, Caro E, et al. Regulation of
heterochromatic DNA replication by histone H3 lysine 27 methyltransferases.
Nature. 2010;466:987-91. https://doi.org/10.1038/nature09290.

Caro E, Stroud H, Greenberg MVC, Bernatavichute YV, Feng S, Groth M, et al.
The SET-domain protein SUVRS mediates H3K9me2 deposition and silencing
at stimulus response genes in a DNA methylation-independent manner. PLoS
Genet. 2012,8:¢1002995. https://doi.org/10.1371/journal.pgen.1002995.
Bernatavichute YV, Zhang X, Cokus S, Pellegrini M, Jacobsen SE. Genome-
wide association of histone H3 lysine nine methylation with CHG DNA
methylation in Arabidopsis thaliana. PLoS One. 2008;3:e3156. https.//doi.org/
10.1371/journal.pone.0003156.

Woo HR, Pontes O, Pikaard CS, Richards EJ. VIM1, a methylcytosine-binding
protein required for centromeric heterochromatinization. Genes Dev. 2007;
21:267-77. https;//doi.org/10.1101/gad.1512007.

Woo HR, Dittmer TA, Richards EJ. Three SRA-domain methylcytosine-binding
proteins cooperate to maintain global CpG methylation and epigenetic
silencing in Arabidopsis. PLoS Genet. 2008;4:21000156. https://doi.org/10.
1371/journal.pgen.1000156.

Pikaard CS, Mittelsten SO. Epigenetic regulation in plants. Cold Spring Harb
Perspect Biol. 2014,6:a019315. https://doi.org/10.1101/cshperspect.a019315.
Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA
methylation patterns in plants and animals. Nat Rev Genet. 2010;11:204-20.
https://doi.org/10.1038/nrg2719.

Bouyer D, Kramdi A, Kassam M, Heese M, Schnittger A, Roudier F, et al. DNA
methylation dynamics during early plant life. Genome Biol. 2017;18:179.
https://doi.org/10.1186/513059-017-1313-0.

Kawakatsu T, Nery JR, Castanon R, Ecker JR. Dynamic DNA methylation
reconfiguration during seed development and germination. Genome Biol.
2017;18:171. https://doi.org/10.1186/513059-017-1251-x.

Fatyol K, Ludman M, Burgyéan J. Functional dissection of a plant Argonaute.
Nucleic Acids Res. 2016;44:1384-97. https://doi.org/10.1093/nar/gkv1371.
Aguiar A, Almeida MH. Borralho N. Silva Lusitana: Genetic Control of
Growth, Wood Density and Stem Characteristics of Pinus pinaster in
Portugal; 2003.

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for lllumina
sequence data. Bioinformatics. 2014;30:2114-20. https://doi.org/10.1093/
bioinformatics/btu170.

82.

83.

84.

85.

86.

87.

88.

89.

90.

9.

92.

93.

94.

95.

96.

Page 20 of 20

Wu TD, Nacu S. Fast and SNP-tolerant detection of complex variants and
splicing in short reads. Bioinformatics. 2010;26:873-81. https://doi.org/10.
1093/bioinformatics/btq057.

Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al.
Transcript assembly and quantification by RNA-Seq reveals unannotated
transcripts and isoform switching during cell differentiation. Nat Biotechnol.
2010;28:511-5. https;//doi.org/10.1038/nbt.1621.

Wu TD, Watanabe CK. GMAP: a genomic mapping and alignment program
for mRNA and EST sequences. Bioinformatics. 2005;21:1859-75. https://doi.
0rg/10.1093/bioinformatics/bti310.

Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith RK, Hannick LI, et al.
Improving the Arabidopsis genome annotation using maximal transcript
alignment assembilies. Nucleic Acids Res. 2003;31:5654-66. https://doi.org/
10.1093/nar/gkg770.

Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large
sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658-9.
https://doi.org/10.1093/bioinformatics/btl158.

Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al.
De novo transcript sequence reconstruction from RNA-seq using the trinity
platform for reference generation and analysis. Nat Protoc. 2013;8:1494-512.
https://doi.org/10.1038/nprot.2013.084.

Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talén M, Robles M. Blast2GO: a
universal tool for annotation, visualization and analysis in functional
genomics research. Bioinformatics. 2005;21:3674-6. https://doi.org/10.1093/
bioinformatics/bti610.

Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat
Methods. 2012;9:357-9. https://doi.org/10.1038/nmeth.1923.

Roberts A, Pachter L. Streaming fragment assignment for real-time analysis
of sequencing experiments. Nat Methods. 2013;10:71-3. https.//doi.org/10.
1038/nmeth.2251.

Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data. Bioinformatics.
2010;26:139-40. https://doi.org/10.1093/bioinformatics/btp616.

Chen Y, McCarthy D, Ritchie M, Robinson M, Smyth GK. edgeR: differential
expression analysis of digital gene expression data User's Guide. 2008.
Battke F, Symons S, Nieselt K. Mayday--integrative analytics for expression data.
BMC Bioinformatics. 2010;11:121. https//doi.org/10.1186/1471-2105-11-121.
Supek F, Bognjak M, Skunca N, Smuc T. REVIGO summarizes and visualizes
long lists of gene ontology terms. PLoS One. 2011;6:221800. https://doi.org/
10.1371/journal.pone.0021800.

Pfaffl MW. Relative quantification. In: Real-time PCR. Dorak MT, editor.
Garland Science; 2007. p. 63-82.

De Vega-Bartol JJ, Santos RR, Simées M, Miguel CM. Normalizing gene
expression by quantitative PCR during somatic embryogenesis in two
representative conifer species: Pinus pinaster and Picea abies. Plant Cell Rep.
2013;32:715-29. https://doi.org/10.1007/500299-013-1407-4.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions


https://doi.org/10.1093/treephys/24.10.1073
https://doi.org/10.1093/treephys/24.10.1073
https://doi.org/10.1105/tpc.104.029710
https://doi.org/10.1007/s11103-005-3454-x
https://doi.org/10.1093/mp/sst164
https://doi.org/10.1104/pp.106.092270
https://doi.org/10.1242/dev.001891
https://doi.org/10.1093/jxb/erm332
https://doi.org/10.1093/jxb/erm332
https://doi.org/10.1016/S0092-8674(01)00197-0
https://doi.org/10.1016/S0092-8674(01)00197-0
https://doi.org/10.1016/j.bbagrm.2011.07.001
https://doi.org/10.1038/nsmb.1611
https://doi.org/10.1038/nature09290
https://doi.org/10.1371/journal.pgen.1002995
https://doi.org/10.1371/journal.pone.0003156
https://doi.org/10.1371/journal.pone.0003156
https://doi.org/10.1101/gad.1512007
https://doi.org/10.1371/journal.pgen.1000156
https://doi.org/10.1371/journal.pgen.1000156
https://doi.org/10.1101/cshperspect.a019315
https://doi.org/10.1038/nrg2719
https://doi.org/10.1186/s13059-017-1313-0
https://doi.org/10.1186/s13059-017-1251-x
https://doi.org/10.1093/nar/gkv1371
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btq057
https://doi.org/10.1093/bioinformatics/btq057
https://doi.org/10.1038/nbt.1621
https://doi.org/10.1093/bioinformatics/bti310
https://doi.org/10.1093/bioinformatics/bti310
https://doi.org/10.1093/nar/gkg770
https://doi.org/10.1093/nar/gkg770
https://doi.org/10.1093/bioinformatics/btl158
https://doi.org/10.1038/nprot.2013.084
https://doi.org/10.1093/bioinformatics/bti610
https://doi.org/10.1093/bioinformatics/bti610
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1038/nmeth.2251
https://doi.org/10.1038/nmeth.2251
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1186/1471-2105-11-121
https://doi.org/10.1371/journal.pone.0021800
https://doi.org/10.1371/journal.pone.0021800
https://doi.org/10.1007/s00299-013-1407-4

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Comprehensive transcriptome assembly
	Transcriptome annotation
	Functional regulation during embryo development
	Differentially expressed transcripts along embryo development
	Clustering of the differentially expressed transcripts
	Validation by qPCR

	Discussion
	Carbohydrate metabolism and transport in early embryogenesis
	Epigenetics associated transcripts in early to middle embryogenesis

	Conclusions
	Methods
	Plant material
	RNA extraction and sequencing
	RNA-seq data pre-processing and comprehensive assembly
	Functional annotation
	Analysis of expression, gene enrichment and clustering
	Expression validation by RT-qPCR

	Additional files
	Abbreviations
	Acknowledgments
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

