Skip to main content
. Author manuscript; available in PMC: 2018 Dec 29.
Published in final edited form as: J Biomech. 2016 Dec 1;53:1–8. doi: 10.1016/j.jbiomech.2016.11.059

Table 2:

Control gains to stabilize walking model with minimal control effort. At heelstrike, the deviation of the state from the limit cycle in all 6 dimensions represents the state of the discrete system. Each row of the table shows the gains using a given control mechanism: using lateral foot placement only, external foot rotation only, or both lateral foot placement and external foot rotation in a multi-input controller.

gains, K =
Controller [KΔqroll KΔqstance  KΔqswing KΔq˙roll KΔq˙stance KΔq˙swing]T
Lateral placement −1.9664 −0.2210 −0.0121 −2.0901 −0.2753 −0.0007
Foot rotation −4.3512 −0.4891 −0.0267 −4.6248 −0.6091 −0.0016
Lateral placement −0.9757 0.2182 0.0500 −1.1258 0.3720 −0.0086
and Foot rotation −2.0726 0.0694 0.4961 −2.1707 −0.8156 0.0612