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Abstract

The development and widespread use of vaccines, defined by the World Health Organization 

(WHO) as, “biological preparations that improve immunity to a particular disease”, represents one 

of the most significant strides in medicine. Vaccination was first applied to reduce mortality and 

morbidity from infectious diseases. The WHO estimates that vaccines prevent 2–3 million human 

deaths annually, and these numbers would rise by at least 6 million if all children received the 

recommended vaccination schedule.1 However, the origins of allergen immunotherapy shared the 

same intellectual paradigm and subsequent innovations in vaccine technology have been applied 

beyond the prevention of infection, including in the treatment of cancer and allergic diseases. This 

review will focus on how new, more rational approaches to vaccine development utilize novel 

biotechnology, target new mechanisms, and shape the immune system response with an emphasis 

on discoveries that have direct translational relevance to the treatment of allergic diseases.
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History of vaccine development

Early advances in vaccinology led to ground-breaking discoveries, from the role of 

antibodies in the adaptive immune system, to the development of allergen specific 

immunotherapy (ASIT) for the treatment of allergies. In the 18th century Edward Jenner 

observed that milkmaids previously infected by cowpox, a zoonotic disease transmitted from 

cows to humans, were protected from smallpox. This observation led to the first known 

clinical vaccine trial conducted with cowpox in 1796.2 This same idea, that inoculation with 

an offending substance may provide future protection against disease, was applied by Noon 
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and Freeman in 1911 to hay fever,3, 4 giving rise to ASIT, which is still widely employed 

today in the treatment of a variety of allergic diseases.

Attenuated vaccination, discovered by Louis Pasteur when he vaccinated farm animals with 

attenuated B.antracis in 1881,5 used a slightly modified and less virulent form of the 

microbe for vaccination. This discovery was followed by a human trial of attenuated rabies 

virus vaccine in a young boy in 1885.6 The discovery that ‘antitoxins’ in the sera of 

vaccinated individuals were responsible for protection led to the discovery of antibodies and 

their role in clinical protection.7 Clinical trials demonstrated that the protective power of 

immunoglobulins extended from bacterial to viral agents.8

The next generation of vaccines aimed to elicit protection from multiple strains of the 

infectious agents. Albert Sabin demonstrated protection using 3 attenuated strains of 

poliovirus,9 while Jonas Salk found that fully inactivated poliovirus from 3 strains could also 

induce protection.10 Both types of polio vaccines, the oral polio vaccine using 3 attenuated 

strains approved in 1961 and the trivalent inactivated polio vaccine approved in 1955, are 

still used today.

The explosion of molecular genetics and recombinant DNA technology led to another 

revolutionary step in vaccines – that of using specific antigens from infectious agents to 

administer protective benefit more safely. The previous efforts in vaccinology had required 

the culturing of infectious agents to produce vaccine candidates, but by using recombinant 

DNA, subunit vaccines could be manufactured for infectious agents, which were otherwise 

challenging to culture or highly pathogenic.

Most clinical immunotherapy in use today for treating allergies is technologically where 

vaccines for infectious agents were decades ago: using whole allergen extracts. The first 

innovations in allergen immunotherapy have been to apply the concept of subunit vaccines 

by using the individual dominant allergens that are the known targets of the allergic (IgE) 

response. Several component vaccines have now been studied in clinical trials for 

environmental11 as well as peanut12 allergies, and these have been thoroughly reviewed by 

others.13, 14

Reverse vaccinology

Reverse vaccinology is a new approach to designing vaccines, which combines our rapidly 

increasing feasibility to sequence whole genomes of microorganisms and apply 

bioinformatic analyses to those data. Predictive modeling identifies new pathogen targets 

that are ideally conserved and targets of protective responses. The subsequent expression of 

candidate targets for screening using human serum from those with effective immunity and 

for evaluation in murine models can lead to the design of optimal vaccines, particularly to 

bacterial pathogens.

For example, Neissera meningococcus serotype B causes quickly progressive meningitis 

with high mortality. Unlike the other strains of meningococcus, its capsular polysaccharide 

is sialylated like human glycoproteins, interfering with the ability to create a typical 

conjugate vaccine. Genomic sequencing of meningococcus serotype B led to the 
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identification of 90 new surface antigens, of which about 30% bound to serum antibodies 

from immune patients.15, 16 Subsequent murine models using selected antigens 

demonstrated effective protection, and ultimately these antigens contributed to the 

development of the currently available meningococcus B subunit vaccine.17 This antigenome 

analysis – the interrogation of the antigenic repertoire of a pathogen using libraries of 

recombinantly expressed antigens screened with serum antibodies of infected patients and 

then subsequently evaluated by model organism vaccination experiments – has also been 

used to identify novel antigens from S. pneumonia.18 Clinical vaccine trials using 3 of these 

proteins, PhtD, PcpA and Ply, are currently underway.19 A variation on this approach using 

computational analysis of the binding site of neutralizing antibodies to RSV led to the 

formulation of a recombinant immunogen, which when combined with an adjuvant, 

demonstrates protection in animal models.20

As a parallel in allergic diseases, genomic characterization of many major allergens is also 

underway. The use of reverse vaccinology in the context of allergic disease has already led 

to novel allergen identification. Der f 24, an ubiquinol-cytochrome c reductase homologue 

from house dust mite, was found after the Dermatophagoides farine genome was sequenced 

by high throughput sequencing, followed by identification of predicted genes, expression of 

selected genes, and validation using immunoblotting, ELISA, and skin testing in allergic 

donors.21 Further engineered immunotherapy approaches based on novel allergen 

discoveries may provide a more effective method of inducing more complete protective 

responses in allergic individuals.

Lessons from HIV vaccinology approaches

Many of the most recent innovations in vaccine immunology have been developed for the 

treatment and prevention of human immunodeficiency virus type 1 (HIV-1) infection. We 

therefore focus on this particular pathogen to illustrate new vaccine approaches that target 

adaptive immunity.

Targeting humoral immunity

As alluded to earlier, antibody-based immunity has been the backbone of most vaccine- 

mediated protection, and the induction of protective humoral responses has been 

characterized as the “holy grail” of HIV vaccine research.22 Protective antibodies against 

HIV have been classified into 2 major types: neutralizing (NAbs) and non-neutralizing 

antibodies (non-NAbs). Neutralizing antibodies can prevent the infection of target cells by 

binding to HIV-1 virion envelope glycoproteins (Env). Env-specific non-NAbs can recognize 

Env expressed on HIV-1- infected cells and contribute antiviral activity through Fc effector 

functions by inducing antibody-dependent cellular cytotoxicity (ADCC) through Fc-gamma 

receptor expressing cells such as NK cells.

By comparison, one goal of allergen immunotherapy has been to develop a long-lasting non-

IgE antibody response capable of suppressing effective engagement and cross-linking of 

allergen-specific IgE on effector cells and there may be distinct functional activities of 

clones within the poly-clonal allergen-specific response.23 By analogy to HIV-specific 
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antibodies, neutralizing antibodies that bind specific epitopes through their Fab, are similar 

to allergen-specific blocking antibodies,23 while non-neutralizing antibodies are similar to 

the allergen-specific antibodies that can activate inhibitory receptors such as CD3224 

through their Fc region. The relative contributions of these functional antibody attributes to 

tolerance despite sensitization in the context of allergic diseases are still unknown and may 

vary between people or specific allergies.

Though administration of allergens as vaccines does not pose an infectious risk, it does pose 

the risk of triggering an allergic reaction. To mitigate that risk, hypoallergenic vaccines, or 

those that do not have IgE binding epitopes, have been devised. Many clinical trials using 

hypoallergenic recombinant protein vaccines are currently underway (Table 1), including for 

birch pollen allergy (Bet v 1)25 and grass pollen allergy (Phl p 1, Phl p 2, Phl p 5a and b, and 

Phl p 6).26 It is worth noting that even when IgE-dependent activation is bypassed, clinical 

studies with these hypoallergenic vaccines have shown that while they do not trigger 

immediate hypersensitivity reactions, late phase reactions do still occur, possibly related to 

T-cell mediated effects.27, 28

Another strategy to avoid triggering allergic reactions while still preserving T-cell mediated 

immune protection is immunotherapy using selected peptides derived from allergens. A 

variety of techniques have been used to define peptides having specific characteristics, such 

as the induction of blocking antibodies29 or stimulation of T cells30, without the 

consequence of IgE crosslinking. Several products for treatment of environmental allergies, 

including cat, dust mite, grass, and ragweed allergy have been studied in clinical trials (Table 

1).

The underlying mechanism of efficacy and relative importance of T cells versus antibodies 

in these engineered recombinant protein and peptide vaccines is still unclear.31 Induction of 

T cell anergy or deletion of pathogenic Th2 cells may play a dominant role in the clinical 

efficacy of T cell peptide vaccines. Another mechanism of vaccines lacking IgE epitopes – 

whether protein or peptide based – may be to increase the pool of allergen-specific T cells 

that can provide B cell help upon subsequent complete antigenic re-stimulation, to then 

produce IgE-blocking antibodies. Alternatively in some cases, hypoallergenic vaccines may 

be able to directly stimulate the induction of allergen-specific blocking antibodies 

recognizing novel epitopes with the capacity to suppress allergen effector cells through 

inhibitory receptors such as CD32.24 Elucidation of the underlying immunological 

mechanisms in engineered vaccine approaches may provide additional insights for 

improving clinical outcomes after therapy.

Innovative techniques for the study of antigen-specific antibodies

Technological advancements for the study of humoral immunity now allow us to directly 

study these mechanisms of allergen immunotherapy, both in conventional and engineered 

allergen immunotherapies. One example of those advances has been the affinity-based 

labeling of antigen-specific B cells for analysis at the single-cell level, which was pioneered 

in the context of infectious diseases such as influenza,32,33 HIV,34,35, and dengue,36, and 

applied more recently in food allergy37. The ability to detect and isolate allergen-specific B 

cells with high specificity in peanut allergy has provided new insights into the development 
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of allergen-specific repertoires by the use of single-cell sequencing technologies37, 38 and 

these advances may hold significant promise for the future.

As an example, the isolation of HIV-specific single B cells provided the foundation that has 

led to the development of a diverse set of new vaccine approaches in that field. Single cell 

immunoglobulin sequencing of paired heavy and light chains from HIV-specific B cells 

followed by recombinant antibody production has allowed for further characterization of 

antigen-specific antibody responses, including antigen binding sites, structural and 

functional characterization. These tools have also led to the development of therapeutic 

approaches, including the infusion of neutralizing antibodies for the prevention and 

treatment of infection, as well as the development of bi-specific antibody therapeutics (see 

below). Finally, these advances, including characterization of individual antibodies, are 

significantly complemented by next generation sequencing of the immunoglobulin heavy 

chain repertoire from circulating or tissue resident B cells. The resulting deep lineage 

analysis of antibodies over time (e.g., pre/post immunization or infection) has provided a 

richer understanding of antibody development in disease. Therefore, the development of 

techniques to study antigen-specific antibodies has led to the discovery of broadly 

neutralizing antibodies and the subsequent invention of newer treatment modalities in HIV.

Neutralizing antibodies as therapeutics

Identified, isolated, and cloned from single B-cells from HIV-infected individuals, 

neutralizing antibodies that recognize a broad set of antigens (bNAbs) bind to sites on the 

viral envelope (Env) that mediate viral binding (Table 2). Passive administration of bNAbs 

can prevent simian-human immunodeficiency virus infection in non-human primates.39-47 

The first human clinical trial HVTN 703 to evaluate the effectiveness of a bNAb VRC01, 

which was discovered in an elite viral controller and binds CD4bs, to prevent HIV-1 

transmission is currently ongoing after demonstrating acceptable human safety.48

Early antigen-specific B cell work found that these bNAbs have unusual structural 

characteristics, including long and hydrophobic heavy chain complementarity determining 

region 3 (CDR3) loops, a high degree of somatic hypermutation, and autoreactivity – 

suggesting a strong role for affinity maturation and involvement of immune tolerance 

mechanisms.49-52 In as many as 50% of infected individuals53, these antibodies arise after 

2-4 years of HIV-1 infection54, as the HIV-1 virus mutates within infected individuals, 

encouraging the development of bNAbs by the immune system.55-57 This continual 

evolution of host antibodies and HIV proteins, can lead to finely-tuned bNAbs, with long, 

anionic CDR3 regions that target conserved regions under the mutable Env glycan shield.58 

Hence, the unusual structural characteristics of bNAbs can contribute to their functional 

neutralization ability, given the heavy glycosylation and mutability of Env, which can allow 

it to escape from immune pressures.

Clinical trials examining the efficacy of passive infusion of monoclonal bNAbs as 

therapeutic treatment over the past few years has repeatedly demonstrated transient viral 

suppression at the highest administered bNAb doses, with subsequent resistant HIV-1 viral 

rebound. Trials have utilized VRC0148, 59, 60 and 3BNC117 targeting CD4bs,61-63 and 

10-1037 mAb targeting the high-mannose patch.64 Pre-selection of subjects with susceptible 
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HIV-1 infections did demonstrate a longer period of viral suppression of up to 9.9 weeks 

with 4 infusions of the monoclonal.62 Despite the observation of bNAb induced viral 

suppression, the rebound of resistant virus highlights the co-evolution of the host-microbe 

responses and has prompted the consideration of combination bNAb therapy. Further work 

on using combination antibody therapy in passive immunization may hold promise.

The correlate of HIV neutralizing antibodies in allergy are allergen-specific blocking 

antibodies, which also emerge after chronic antigenic stimulation of the adaptive immune 

system. In allergen immunotherapy, the correlation of blocking antibodies to clinical 

efficacy of immunotherapy highlights the central importance of these blocking antibodies.65 

In vitro, immunotherapy-induced blocking antibodies have been shown to effectively 

suppress allergen effector cells in allergic rhinitis, asthma, and food allergy. Infusion of 

allergen-specific IgG antibodies have been protective in animal models of food allergy66 and 

humanized mice models of asthma.67 Recently, a proof-of-mechanism phase I clinical trial 

with 2 Fel d 1-specific blocking monoclonal IgG antibodies infused in cat allergic patients 

successfully decreased nasal provocation scores,68 validating passive immunization with 

allergen blocking antibodies as a treatment approach for allergic diseases.

Induction of bNAbs: sequential immunization

The very structural characteristics discussed above, such as long hydrophobic heavy chain 

CDR3 regions and high rates of somatic mutations, thought to enhance the neutralization 

abilities of bNAbs, also tend to be selected against during clonal evolution and B cell 

maturation, posing a significant barrier to trying to intentionally induce them as a therapeutic 

approach. Using systems biology-based ‘antibody-omics’ approaches described further 

below, the presence of unique B cell lineages that foster the development of bNAbs have 

been identified and targeted.57

There are also additional limitations due to differences in human and model organism 

germline V-gene segments, and researchers have developed new murine models that are 

proving to be critical tools for next generation vaccine design. As an example, the human 

VH1-02 heavy chain variable segment, which is part of the VRC01 CD4bs bNAb, does not 

occur in mice, and even the closest primate ortholog does not include all of the amino acids 

that define a crucial motif for VRC01-like antibodies.68 The use of humanized murine 

models, such as BLT (human bone marrow-liver-thymus) transplanted model on a 

Rag2−/−gamma-chain−/−/CD47−/− background, has been limited by their poor germinal 

center reactions, which are central to antibody development. In addition, wild type mice 

have short D segments, incapable of producing long H-CDR2 regions, as well as poorly 

diversified and expressed lambda regions. However, all of these differences can be overcome 

by the knock-in of specific immunoglobulin heavy and/or light chain arrangements, known 

as KI models. These models have provided an opportunity to better delineate the mechanism 

of bNAb development and present a tool for rational vaccine design by sequential 

immunization.

Using this approach, B cells expressing bNAb precursors are primed by an antigen resulting 

in memory B cells. Sequential immunization with antigens progressively more similar to the 

native Env trimer is then used to reactivate antigen-specific memory B cells to undergo 
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further affinity maturation until bNAbs are expressed. Immunization studies with the 

VRC01gH KI model have been used to develop and test the ability of a specific priming 

immunogen, eOD-GT8 to elicit memory B cells with VRC01-like antibodies.69, 70 The 

elicitation of CD4bs-specific antibodies after subsequent immunization with a more native-

like gp120 protein, BG505coreGT371 demonstrates the ability of engineered sequential 

immunogens to shape a human-like B cell repertoire to favor protective antibody production. 

The ability to optimize the shape of the BCR repertoire represents a new, powerful approach 

to harnessing the adaptive immune response and has broader implications for interventional 

treatments for allergic diseases. Sequential immunization with hypoallergenic recombinant 

allergens to stimulate the development of blocking antibody clones may be a fruitful 

approach provide an idea for the next generation of recombinant allergen strategies.

The main critique of this strategy is that BCR repertoires in general have been found to be 

highly individual.72 However, more recently, stereotyped antigen-specific antibodies in the 

repertoires of unrelated individuals infected by dengue have been identified.73 We have also 

reported allergen-specific stereotyped antibodies from patients undergoing peanut oral 

immunotherapy37. Antigen-specific antibodies that are similar in their amino acid sequences 

imply convergent evolution, or shared pathways, to the development of antigen-specific 

BCRs in unrelated individuals may be important. Interventions, using either epitopes or 

unrelated proteins, aimed at fostering the development of protective convergent antibodies 

that provide long term efficacy after immunotherapy may provide a new therapeutic 

approach.

Systems approach to antibody-omics

Another new approach to systematically identify the most clinically relevant aspects of the 

dynamic and polyclonal adaptive immune responses–recognizing the diversity of epitope 

recognition, somatic antibody variants, Fc domain subclass and glycosylation differences, T 

cell receptors and HLA alleles–relies on integration of many measures of the humoral 

response. While our advances in single-cell techniques for BCR analysis and antibody 

characterization have substantially advanced the field, in vivo, antibodies do not work in 

isolation but rather as a dynamic swarm of molecules, with Fc and Fab regions that have 

multiple variations.

Using systems immunology, novel clinically relevant mechanisms of vaccine efficacy in 

HIV have been identified. The RV144 clinical trial, using a priming step with a canarypox 

vector ALVAC-HIV (vCP1521) expressing Env, gag and pro followed by protein boosts with 

AIDSVAX® gp120 and alum adjuvant, resulted in 60.5% vaccine efficacy at 1 year and 

31.2% efficacy at 3.5 years.74 Prior work suggested that vaccine induction of neutralizing 

antibodies may best correlate with vaccine efficacy. Surprisingly, the sera from individuals 

vaccinated in the RV144 trials did not have neutralizing activity, though higher anti-gp120 

antibody levels were correlated with vaccine efficacy. Subsequent work using a systems 

immunology approach suggested that vaccine protection correlated to FcR mediated ADCC 

activity, likely due to non-neutralizing antibodies.75 The unexpected but central importance 

of FcR activity as a marker of clinical efficacy was discovered after an exhaustive humoral 

characterization, demonstrating the power of a systematic approach to finding novel 

Patil and Shreffler Page 7

J Allergy Clin Immunol. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mechanisms contributing to vaccine efficacy. In the future, a similar systems immunology 

approach in allergen immunotherapy, measuring the various aspects of antibody responses 

such as quantity, diversity, affinity, Fc variants, and glycosylation, may ultimately identify 

unexpected and new mechanisms of clinical efficacy in allergen immunotherapy.

Targeting cellular immunity: DC LAMP vaccines

HIV-specific T cells play an important role in both the acute and chronic phases of HIV 

infection. In the acute phase, activated CD8+ T cells are necessary for control of viremia, 

and HIV-specific CD4 T cells play a crucial role in sustaining an effective cytotoxic T cell 

response.76, 77 The central role of CD4+ T cells in the control of HIV infection has become 

clear in the last few years. The low viral load in HIV-infected long-term non-progressors was 

correlated to a higher Gag-specific polyfunctional CD4+ T cell response.78 In non-treated 

HIV infected individuals, the lower viral load correlated to an expanded HIV-specific CD4+ 

T cell population that has enhanced cytolytic activity and IFN-gamma production.79

Dendritic cells (DCs) provide a unique bridge between innate and adaptive immunity in their 

ability to effectively acquire antigens for processing and presentation to T cells. Dendritic 

cells, in their capacity as professional antigen-presenting cells, can therefore promote a 

beneficial CD4+ T cell response, if candidate vaccines contain conserved HIV-1 desirable 

epitopes recognized by CD4+ T cells and target them to DCs using DC-specific endocytic 

receptors to boost immunogenicity.

Recombinant DNA vaccines, such as those involving injection of plasmids with DNA 

encoding sequences, are relatively inexpensive and easy to produce. However, these efforts 

have been hampered by their limited immunogenicity due to low levels of expression.80 One 

effort to overcome this hurdle is by more effectively targeting the DNA vaccines to the most 

immunogenic cellular compartment, by targeting vaccine delivery to the endocytic 

compartment of DCs.

Several strategies to produce DC-targeted vaccines have been considered in the HIV field. 

Taking advantage of the highly expressed DEC205 endocytic receptor on CD11c+CD8alpha

+ DCs in lymph nodes, antigens linked to a DEC205 monoclonal antibody are efficiently 

internalized and processed by DCs, presented to both CD4 and CD8 T cells, and result in 

strong cellular and humoral responses.81 This technique has been tried in a murine model of 

ovalbumin-induced asthma.82 Nanoparticles encapsulating antigens targeted to DCs by 

DEC205 also elicit strong antigen-specific T cell responses.83

Another method uses lysosomal-associated membrane protein 1 (LAMP-1) to target antigen 

expression again to the endocytic vesicles of dendritic cells to enhance antigen presentation 

and immunogenicity.84 This approach has been used in vaccines to promote protective 

immune responses against viruses,85, 86 but also in allergy.87, 88

In the context of allergic diseases, a LAMP1-based recombinant DNA vaccine has been 

studied in Phase 1 trials for the treatment of Japanese cedar pollen allergy and peanut 

allergy. A phase I trial of CryJ2-LAMP plasmid vaccine for Japanese cedar pollen allergy 

found that the vaccine was well-tolerated with a high rate of conversion of skin testing from 
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positive to negative in allergic subjects.89 The Phase I interventional clinical trial in peanut 

allergic subjects with ASP0892, which is a LAMP-based recombinant DNA vaccine with 

Ara h 1, Ara h 2, and Ara h 3, is currently ongoing (NCT02851277).

Arming with cellular and antibody immunity: Using bispecific molecules

In the prevention and treatment of HIV infection, our ability to devise bispecific molecules, 

engineered to have 2 antigen-binding sites, as another novel therapeutic vaccine approach 

has been dependent on the technological innovations to isolate, clone, and characterize 

antigen-specific B cells. For prevention of HIV binding to host cells, bispecific antibodies, 

such as iMabm3690 and 10E8v2.0/iMab,91 have one arm specific for human CD4 (iMab) 

blocking the gp120 binding site and the other specific HIV-1 gp 120 (m36 or 10E8v2.0). 

Viral load reduction and protection from viral challenge after 10E8v2.0/iMab treatment 

occurred in humanized mouse models.91

To target latently infected cells on viral reactivation, bispecific molecules with a CD3- 

specific single-chain variable fragment (scFv) linked by a polypeptide to the scFv of an 

HIV-1 specific antibody such as VRC01 (VRC01-antiCD3), could recruit cytotoxic CD3 T 

cells. Treatment with VRC01-antiCD3 of in vitro peripheral blood cells from HIV-1 infected 

subjects reduced the frequency of proviral DNA positive CD4+ T cells.92 Another molecule, 

a dual-affinity retargeting (DART) molecule with both a CD3-specific arm and HIV-specific 

arm (CD4-inducible constant regions 1 and 2 and gp41 cluster 1 non-NAbs A32 and 7B2), 

similarly demonstrated killing of patient-derived HIV-1 infected cells cultured with a 

latency-reversing drug.93 These results have also been seen with several other DARTs where 

the HIV-1 specific arm targeted different bNAbs.94 Combinatory treatment with DARTs of 

different HIV-1 specificities may be possible and especially powerful given their ability to 

redirect normal resting cytotoxic T cells.

There have been several novel bi-specific molecules under investigation for treatment of 

allergic diseases, though the development of allergen-specific bi-specific molecules is just 

emerging. The combination of a recombinant allergen, Phl p 1, and intracellular adhesion 

molecule-1 (ICAM-1), termed P2/ICAM, has been shown to inhibit in vitro allergen 

migration through the respiratory layer.95 More recently, a Siglec-engaging tolerance-

induced antigenic lipsome (STAL) that target CD22 on the surface of B cells was combined 

with the major peanut allergen Ara h 2 to target Ara h 2 specific B cells and prevent 

sensitization in mice.96 The presumed deletion of Ara h 2 specific B cells diminished the 

allergic response not only to Ara h 2 but also to peanut. This targeting of allergen-specific B 

cells for the modulation of allergic responses provides a promising new target.

Conclusions and future perspectives

Historically, translation of clinical observations, the scientific tools at our disposal, and our 

understanding of immunology has guided vaccine development. Our ability to engineer 

molecules to target immune subsets, use rational design to develop immunogens to shape 

protective antibody responses, and combine these two strategies to redirect allergic 

responses illustrate the next generation of vaccine design. Future clinical implementation of 

these approaches will rely on our nuanced appreciation of the dynamic evolution of immune 
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tolerance in allergic disease. Innovations in vaccine design for infectious disease may 

continue to hold important implications for the future of therapeutics for allergic diseases as 

well.
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Figure 1: Translational mechanisms for future innovations in immunotherapy for allergies
Novel approaches for allergen specific immunotherapy include bispecific molecules 

targeting antigen-specific B cells or allergen-specific Th2 cells, DC-targeting vaccines, 

sequential immunization strategies to elicit enhanced blocking antibodies, and passive 

immunization with inhibitory IgG antibodies
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Table 1:

Clinical trials with novel allergy vaccine products using recombinant and modified allergens.

Year Molecule Description Clinical
trial

phase

1996 Allervax CAT Two Fel d 1 peptides DBPC

2000 Bet v 1 trimer, fragments Hypoallergenic Bet v 1 proteins 2

2002 Recombinant grass pollen Recombinant Phl p 1, Phl p 2, Phl p 5a+b, Phl p 6 3

2002 Folding variant of Bet v 1 Hypoallergenic Bet v 1 3

2002 Recombinant Bet v 1 Recombinant Bet v 1 2

2006 Recombinant Bet v 1 (tablets) Recombinant Bet v 1 (sublingual) 2

2009 E.coli encapsulated recombinant modified Ara h 
1, Ara h 2, Ara h 3

Rectal delivery of vaccine 1

2011 Fcγ1-Fel d 1 fusion protein Intradermal delivery of fusion protein Safety

2012 BM32 Four hypoallergenic grass allergens 2

2012 ToleroMune Cat Fel d 1 synthetic peptides 3

2012 AllerT Bet v 1 peptides 2

2013 FAST-Fish Mutated parvalbumin 1/2

2014 ToleroMune Grass Peptides from grass pollen 2

2014 ToleroMune HDM Peptides from house dust mite 2

2014 ToleroMune Ragweed Peptides from Amb a 1 2

2015 ASP4070 Japanese cedar pollen (Cry j 1, j 2) LAMP based DNA plasmid 
vaccine

1

2016 ASP0892 Peanut (Ara h 1, h 2, h 3) LAMP based DNA plasmid vaccine 1

J Allergy Clin Immunol. Author manuscript; available in PMC 2020 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Patil and Shreffler Page 19

Table 2:

HIV-specific antibodies, including both broadly neutralizing (bNAbs) and non-neutralizing antibodies (non-

NAbs), in clinical trials.

HIV antibody Target Function

VRC01,
3BNC117

CD4-binding site (CD4bs)97-99 bNAbs

10-1037,
PGT135

variable region 3 (V3) glycan or high-mannose patch100,101 bNAbs

A32 CD4-inducible constant regions 1 and 2 Non-NAbs

7B2 gp41 cluster 1 Non-NAbs

J Allergy Clin Immunol. Author manuscript; available in PMC 2020 March 01.


	Abstract
	History of vaccine development
	Reverse vaccinology
	Lessons from HIV vaccinology approaches
	Targeting humoral immunity
	Innovative techniques for the study of antigen-specific antibodies
	Neutralizing antibodies as therapeutics
	Induction of bNAbs: sequential immunization
	Systems approach to antibody-omics
	Targeting cellular immunity: DC LAMP vaccines
	Arming with cellular and antibody immunity: Using bispecific molecules

	Conclusions and future perspectives
	References
	Figure 1:
	Table 1:
	Table 2:

