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Summary

High throughput single-cell gene expression profiling has enabled the definition of new cell types 

and developmental trajectories. Visualizing these datasets is crucial to biological interpretation, 

and a popular method is t-Stochastic Neighbor embedding (t-SNE), which visualizes local patterns 

well, but distorts global structure, such as distances between clusters. We developed Similarity 

Weighted Nonnegative Embedding (SWNE), which enhances interpretation of datasets by 

embedding the genes and factors that separate cell states on the visualization alongside the cells, 

and maintains fidelity when visualizing local and global structure for both developmental 

trajectories and discrete cell types. SWNE uses nonnegative matrix factorization to decompose the 

gene expression matrix into biologically relevant factors, embeds the cells, genes and factors in a 

2D visualization, and uses a similarity matrix to smooth the embeddings. We demonstrate SWNE 

on single cell RNA-seq data from hematopoietic progenitors and human brain cells. SWNE is 

available as an R package at github.com/yanwu2014/swne.

eTOC Blurb

Visualizing high dimensional single cell datasets is critical to interpretation. Existing methods, 

such as t-SNE and UMAP, can distort the datasets, especially for developmental trajectories. Here, 

we developed SWNE, which uses NMF to decompose the data into latent biological factors, 

embeds the factors, cells, and genes in a 2D visualization, and uses a similarity network to smooth 

the cell embeddings. SWNE faithfully visualizes both trajectories and discrete cell types, while 

adding biological context via embedded genes and factors.
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Graphical Abstract

Introduction

Single cell gene expression profiling has enabled the quantitative analysis of many different 

cell types and states, including human brain cell types (Lake et al. 2016; Lake et al. 2017) 

and cancer cell states (Puram et al., 2017; Tirosh et al., 2016), while also enabling the 

reconstruction of cell state trajectories during reprogramming and development (Qiu et al., 

2017; Setty et al., 2016; Trapnell et al., 2014). Recent advances in droplet based single cell 

RNA-seq technology (Macosko et al. 2015; Lake et al. 2017) as well as combinatorial 

indexing techniques (Cao et al., 2017; Rosenberg et al., 2017) have improved throughput to 

the point where tens of thousands or even millions of single cells can be sequenced in a 

single experiment, creating an influx of single cell gene expression datasets. In response to 

this influx of data, computational methods have been developed for latent factor 

identification (Buettner et al., 2017), clustering (Wang et al., 2017), cell trajectory 

reconstruction (Qiu et al., 2017; Setty et al., 2016), and differential expression (Kharchenko 

et al., 2014). However, visualization of these high dimensional datasets is critical to their 

interpretation, and existing visualization methods often distort properties of the data, while 

lacking in biological context.

A common visualization method is t-Stochastic Neighbor Embedding (t-SNE), a nonlinear 

visualization method that tries to minimize the Kullback-Leibler (KL) divergence between 

the probability distribution defined in the high dimensional space and the distribution in the 

low dimensional space (Maaten and Hinton, 2008; van der Maaten, 2014). This property 

enables t- SNE to find local patterns in the data that other methods, such as Principal 

Component Analysis (PCA) (Abdi and Williams, 2010) and Multidimensional Scaling 

(MDS) (Kruskal, 1964), cannot (Maaten and Hinton, 2008). However, t-SNE often fails to 

accurately capture global structure in the data, such as distances between clusters, making 

interpreting higher order features of t- SNE plots difficult. While a recent method, UMAP, 
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addresses the issue of capturing global structure in discrete datasets, it seems to still distort 

single cell gene expression trajectories (McInnes and Healy, 2018).

Additionally, visualizations such as t-SNE and UMAP lack biological context, such as which 

genes are expressed in which cell types, requiring additional plots or tables for 

interpretation. Dual-tSNE creatively addressed this issue by plotting genes and samples in 

parallel tSNE plots, which enabled users to link gene expression in one plot to specific 

samples in the partner plot, and vice versa (Huisman et al., 2017). Genetically Weighted 

Connectivity Analysis linked gene sets to the physical connectome using spatial 

transcriptomics (Ganglberger et al., 2018), and Onco-GPS enabled users to embed 

biologically interpretable factors alongside samples (Kim et al., 2017). However, to our 

knowledge, there are still no methods that allow for features and samples to be embedded 

onto the same plot.

Here, we developed a method for visualizing high dimensional single cell gene expression 

datasets, Similarity Weighted Nonnegative Embedding (SWNE), which captures both local 

and global structure in the data, while enabling the genes and biological factors that separate 

the cell types and trajectories to be embedded directly onto the visualization. SWNE adapts 

the Onco-GPS NMF embedding framework (Kim et al., 2017) to decompose the gene 

expression matrix into latent factors, embeds both factors and cells in two dimensions, and 

smooths both the cell and factor embeddings by using a similarity matrix to ensure that cells 

which are close in the high dimensional space are also close in the visualization. In this way, 

SWNE maintains fidelity when visualizing the global and local structure of the data for both 

developmental trajectories and discrete cell types.

Results

SWNE overview and methodology

SWNE combines Nonnegative Matrix Factorization (NMF) and Shared Nearest Neighbors 

(SNN) networks to generate a two dimensional visualization of both genes and cells. First, 

SWNE uses NMF (Franc et al., 2005; Lee and Seung, 1999) to create a parts based factor 

decomposition of the data (Figure 1a). The number of factors (k) is chosen by selecting the 

highest k that results in a decrease in reconstruction error above the decrease in 

reconstruction error for a randomized matrix (Frigyesi and Höglund, 2008) (Methods). With 

NMF, the gene expression matrix (A) is decomposed into: (1) a genes by factors matrix (W), 

and (2) a factors by cells matrix (H) (Figure 1a). SWNE then uses the similarity matrix, 

specifically an SNN network (Houle et al., 2010), to smooth the H matrix, resulting in a new 

matrix Hsmooth. SWNE calculates the pairwise distances between the rows of the Hsmooth 

matrix, and uses Sammon mapping (Sammon, 1969) to project the distance matrix onto two 

dimensions (Figure 1a). Next, SWNE embeds cells relative to the factors using the cell 

scores in the unsmoothed H matrix, and embeds genes relative to the factors using the gene 

loadings W matrix. Finally, SWNE uses the SNN network to smooth the cell coordinates so 

that cells which are close in the high dimensional space are close in the visualization (Figure 

1a).
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SWNE faithfully captures local and global structure in simulated datasets

To benchmark SWNE against t-SNE, UMAP, and other visualization methods, we used the 

Splatter single-cell RNA-seq simulation method (Zappia et al., 2017) to generate two 

synthetic datasets. We generated a 2700 cell dataset with five discrete groups, where Groups 

2–4 were relatively close and Groups 1 & 5 were further apart (Figure 1b). We also 

generated a simulated branching trajectory dataset with 2730 cells and four different paths, 

where Path 1 branches into Paths 2 & 3, and Path 4 continues from Path 3 (Figure 1b).

For the discrete simulation, the t-SNE plot qualitatively distorts the cluster distances, making 

Groups 1 & 5 closer than they should be to Groups 2–4 (Figure 1c). The SWNE and UMAP 

plots both accurately show that Groups 1 & 5 are far from each other and Groups 2–4, while 

still separating Groups 2–4 (Figure 1c). PCA, LLE, and MDS do a better job of accurately 

visualizing cluster distances, but have trouble visually separating Groups 2–4 (Figure S1a). 

For the branching trajectory simulation, the t-SNE and UMAP plots incorrectly expand the 

background variance of the paths, while the SWNE plot does a better job of capturing the 

important axes of variance, resulting in more clearly defined paths (Figure 1d). PCA, LLE, 

and MDS again do a better job of capturing the trajectory-like structure of the data, but still 

expand the background variance more than SWNE (Figure S1b).

To quantitatively benchmark the visualizations, we developed metrics to quantify how well 

each embedding captures both the global and local structure of the original dataset. For the 

discrete simulation, we calculated the pairwise distances between the group centroids in the 

original gene expression space, and then correlated those distances with the pairwise 

distances in the 2D embedding space to evaluate the embeddings’ ability to capture global 

structure (Methods). To evaluate local structure, we calculated the average Silhouette score 

(Rousseeuw, 1987), a measure of how well the groups are separated, for each embedding 

(Methods). For maintaining global structure, SWNE outperforms t-SNE, performs similarly 

to UMAP, and performs about as well as PCA, MDS, and Diffusion Maps (Figure 1e). 

SWNE also outperforms every other method, including t-SNE and UMAP, in cluster 

separation (Figure 1e).

For the trajectory simulation, since we know the simulated pseudotime for each cell, we 

divide each path into groups of cells that are temporally close (Methods). We then evaluate 

global structure by calculating pairwise distances between each path-time-group in the 

original gene expression space and the 2D embedding space, and then correlating those 

distances (Methods). We can evaluate local structure by constructing a ground truth neighbor 

network by connecting cells from adjacent pseudotimes, and then computing the Jaccard 

similarity between each cell’s ground truth neighborhood matches and its 2D embedding 

neighborhood (Methods). SWNE outperforms t-SNE and UMAP in capturing global 

structure, and performs about as well as PCA, MDS, and LLE (Figure 1f). For capturing 

neighborhood structure, SWNE again outperforms every other embedding, including t-SNE 

and UMAP (Figure 1f). Finally, both the qualitative and quantitative benchmarks show that 

SNN smoothing of the cell and factor embeddings is critical to SWNE’s performance, 

especially for capturing local structure in the data (Figure 1e,2b, 1f, Figure S1a, S1b).
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We assessed how changing the number of factors affects both the quantitative of qualitative 

performance of SWNE on the trajectory and discrete simulated datasets. Visually, using too 

few factors results in sub-optimal cluster separation, while using too many factors results in 

only a minor decrease in visualization quality (Figure S1c, S1d). The quantitative 

performance of SWNE is fairly robust across the number of factors used, although again 

there is more of a penalty for using too few factors than too many (Figure S1e, S1f).

Additionally, we assessed SWNE’s runtime alongside UMAP and t-SNE on simulated 

datasets. It seems like SWNE scales linearly with the number of samples, and visualizes 

50,000 cells using the top 3,000 over-dispersed genes in about 8 minutes (Table S2). In 

comparison, t- SNE and UMAP visualize the same dataset, using the top 40 principal 

components as input, in about 8 minutes and 2 minutes respectively (Table S2).

Illuminating the branching structure of hematopoiesis

We then applied SWNE to analyze the single cell gene expression profiles of hematopoietic 

cells at various stages of differentiation (Paul et al., 2015). Briefly, single cells were sorted 

from bone marrow and their mRNA was sequenced with single cell RNA-seq (Paul et al., 

2015) (Figure 2a). The differentiation trajectories of these cells were reconstructed using 

Monocle2 (Qiu et al., 2017), a method built to identify branching trajectories and order cells 

according to their differentiation status, or “pseudotime” (Figure 2a). The branched 

differentiation trajectories are shown in the tree in Figure 2a, starting from the monocyte and 

erythrocyte progenitors (MP/EP) and either moving to the erythrocyte (Ery) branch on the 

right, or the various monocyte cell types on the left (Qiu et al., 2017). We selected the 

number of factors for SWNE using our error reduction above noise selection method (Figure 

S2a, S2b, Methods).

We benchmarked SWNE performance on the hematopoiesis dataset using the same metrics 

we applied to the simulated trajectory dataset. To evaluate global structure, we divided the 

cell type clusters into groups that are temporally close according to their Monocle2 

pseudotime, and then correlated pairwise distances between each cluster-pseudotime-group 

in the original gene expression space with distances in the 2D embedding space (Methods). 

We evaluated local structure by computing the Jaccard similarity between each cell’s 

neighborhood in the gene expression space and its neighborhood in the embedding space 

(Methods). SWNE outperforms t-SNE and UMAP, as well as other embedding methods, 

when it comes to maintaining global structure in the dataset (Figure 2b). SWNE performs 

about as well as UMAP in capturing neighborhood structure, and is slightly out-performed 

by t-SNE (Figure 2b).

Qualitatively, the SWNE plot does a better job of capturing the two dominant branches: 

erythrocyte and the monocyte, and shows that those two branches are the primary axes of 

variation in this dataset (Figure 2c). While the t-SNE plot captures the correct orientation of 

the cell types, it disproportionately expands the more differentiated cell types, obfuscating 

the branch-like structure of the data (Figure 2c). The UMAP plot also disproportionately 

expands the mature cell types, while placing the monocyte and erythrocyte branches too far 

apart. Qualitatively, SWNE, t-SNE and UMAP seem to all visually separate the cell types 

well. However, none of the methods accurately orient the different monocyte cell types in 

Wu et al. Page 5

Cell Syst. Author manuscript; available in PMC 2019 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the monocyte branch, most likely because the variance is dominated by the erythrocyte - 

monocyte split, and the extent of differentiation.

We also used Monocle2 to calculate differentiation pseudotime for the dataset, which is a 

metric that orders cells by how far along the differentiation trajectory they are (Qiu et al., 

2017). We then overlaid the pseudotime score on the SWNE, t-SNE, and UMAP plots 

(Figure 2d, 2e). In the SWNE plot, there is a clear gradient of cells at different stages of 

differentiation along the two main branches (Figure 2d). The gradient in the t-SNE and 

UMAP plots is not as visible, most likely because t-SNE and UMAP obscure the branching 

structure by expanding the more differentiated cell types (Figure 2e).

Additionally, we compared the SWNE visualization with the two types of trajectory plots 

generated by Monocle2, which uses reversed graph embedding (RGE) to learn the 

underlying graph that best represents the data (Qiu et al., 2017). The Monocle2 plot of two 

RGE components is able to resolve the main erythrocyte and monocyte branches, but cannot 

visually separate the monocyte cell types (Figure S2c). With ten RGE components, 

Monocle2’s tree- based visualization can resolve the different monocyte branches (Figure 

S2d). Nevertheless, SWNE is able to both capture the two main branches of the data while 

still visually separating the monocyte cell types (Figure 3c). Additionally, the Monocle2 

visualizations assume the data is continuous, and are specific to the Monocle2 analysis 

framework, while SWNE makes no such assumptions and is meant to be used for both 

discrete cell types/states and continuous cellular trajectories (Qiu et al., 2017).

Furthermore, SWNE provides an intuitive framework to show how specific genes and 

biological factors contribute to the visual separation of cell types or trajectories by 

embedding factors and genes onto the visualization. We used the gene loadings matrix (W) 

to identify the top genes associated with each factor, as well as the top marker genes for each 

cell type, defined using Seurat (Butler et al., 2018; Satija et al., 2018) (Methods, Table S1). 

We chose five factors and five genes that we found biologically relevant (Figure 4a, 4c, 

Table S1). The genes are: Apoe, Flt3, Mt2, Sun2, and Gpr56. The factors are: Inflammation, 

Epigenetic regulation, Metal binding, HSC maintenance, and Early erythrocyte 

differentiation, and factor names were determined from the top genes associated with each 

factor (Table S1). These factors and genes enable the association of biological processes and 

genes with the cell types and trajectories shown in the data visualization. For example, 

erythrocytes (Ery) are associated with metal binding and express Mt2, a key metal binding 

protein, while neutrophils (Neu) are associated with inflammation (Figure 2c). Additionally, 

the embedded factors and genes allow for interpretation of the overall differentiation process 

(Figure 2d). Undifferentiated progenitors (MP/EP) express Apoe, granulocyte-monocyte 

progenitors (GMP) express Flt3, while more differentiated neutrophils (Neu) express Sun2 
(Figure 2d).

Creating an interpretable map of the human visual cortex and cerebellum

We also applied SWNE to a single nucleus RNA-seq (snDrop-Seq) human brain dataset 

(Lake et al. 2017) from the visual cortex (13,232 cells) and the cerebellum (9,921 cells) 

(Figure 3a). Briefly, single nuclei were dissociated from the visual cortex and cerebellum of 

a single donor and sequenced using snDrop-Seq (Figure 3a) (Lake et al. 2017). Again, the 
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number of factors for SWNE was selected using the error reduction above noise method 

(Figure S2e, S2f).

As with the hematopoiesis dataset, SWNE is able to visually separate cell types while 

providing an intuitive framework to visualize the contributions of specific genes and factors 

to that visual separation (Figure 3b). We selected four factors (Myelin formation, Cell 

Junctions, Glutamate transport and Axon projection) and ten genes (PLP1, GRIK1, 
SLC1A2, LHFPL3, CBLN2, NRGN, FSTL5, POSTN, DCC, DAB1, NTNG1) to embed 

onto the SWNE plot using cell type markers and gene loadings (Figure 4b, 4d, Table S1), 

adding biological context to the spatial placement of the cell types (Figure 3b). CBLN2, a 

gene known to be expressed in excitatory neuron types (Seigneur and Sudhof, 2017), is 

visually close to Layer 2/3 excitatory neurons (Ex_L2/3) and GRIK1, a key glutamate 

receptor (Sander, 1997), is close to inhibitory neurons (Figure 3b, Figure 4d). Additionally, 

the Myelin formation biological factor is near Oligodendrocytes (Oli), consistent with their 

function in creating the myelin sheath (Bunge, 1968) (Figure 3b). The Cell junction 

biological factor is very close to Pericytes (Per) and Endothelial cells (End), reinforcing their 

functions as the linings of blood vessels, while the Axon projection factor is close to the 

excitatory neuron clusters, reflecting their role in transmitting action potentials (Figure 3b).

We also demonstrate that SWNE is able to project data across technologies by projecting a 

3000-cell cortical neuron dataset, generated from a different individual, using Smart-seq+ on 

a Fluidigm C1 microfluidic system onto the snDrop-Seq SWNE embedding (Figure 3a) 

(Lake et al., 2016). The Smart-seq+ protocol generates full length, total RNA without UMIs 

while the snDrop-Seq system generates 3’ mRNA tags with UMIs (Figure 3a) (Lake et al. 

2016; Lake et al. 2017). Despite the major differences in technologies, the cortical neuron 

cell types in the C1 data project onto the same locations where the corresponding cell types 

in the snDrop-Seq data were embedded (Figure 3c). Plotting the C1 and snDrop-Seq data 

together shows that the technology specific batch effects are minimal (Figure S2g). Thus, 

SWNE’s ability to project new data onto existing embeddings can be used to integrate 

datasets across technologies and individuals.

t-SNE (Figure 3d) and UMAP (Figure 3e) are also able to visually separate the various brain 

cell types. Again, t-SNE seems to distort distances between cell types. For example, the 

Inhibitory neuron 7/8 (In7/8) cluster is equidistant from both the In6 cluster and 

Oligodendrocyte Progenitors (OPCs) (Figure 3d). Based off of their biological functions, 

In7/8 and In6 should be close and both clusters should be far from OPCs. Both SWNE and 

UMAP are able to more accurately visualize cluster distances (Figure 3b, 3e). UMAP in 

particular seems to generate the qualitatively cleanest visual separation between cell type 

clusters, while also maintaining the global structure of the data (Figure 3e).

Validating and assessing gene embeddings

To check if the embedded genes in the hematopoiesis and human brain datasets are indeed 

informative, we plotted the top cluster log fold-change vs top factor loading log fold-change 

for each gene (Figure 4a-b). Genes with high cluster specific expression are more likely to 

be biologically relevant, and genes that have high factor loading specificity are more likely 

to be visually informative. The genes we chose to embed for both datasets fell above the 
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cluster and factor log fold-change cutoffs (Figure 4a-b). Additionally, we generated cell type 

expression heatmaps for the embedded genes to show in which cell type(s) each embedded 

gene is expressed (Figure 4c-d).

We also evaluated where differentially expressed (DE) genes and non-differentially 

expressed (non-DE) genes would be embedded. To start we looked at examples of where DE 

and non-DE genes would embed. We picked the DE genes and non-DE genes by ranking 

genes in each dataset by the average of the cluster log fold-change and the factor log fold- 

change, and picking genes from the top and bottom of the list. For the hematopoiesis dataset, 

we chose Apoe as the DE gene, specific to monocotyte and erythrocyte progenitors (MP/

EP), and Snap29 as the non-DE gene, overlaying their respective expression levels onto the 

SWNE plot (Figure 4e). Apoe is visually close to MP/EP cell type, while Snap29 seems to 

be equidistant from all cells (Figure 4e). For the human brain dataset, we chose PLP1, an 

oligodendrocyte (Oli) marker, as the DE gene, and CADM2 as the non-DE gene. Again, 

PLP1 embeds close to the cluster that expresses it, while CADM2 embeds near the middle 

of the plot (Figure 4f). For a more systematic evaluation of gene embedding locations, we 

generated heatmaps of gene embedding locations. For the hematopoiesis dataset, DE genes 

tend to embed near the edges of the plot, while non-DE genes mostly embed towards the 

center (Figure 4g). For the human brain dataset, the DE genes are slightly more spread out 

but the non-DE genes still mostly embed near the center (Figure 4h).

Discussion

SWNE improves visualization fidelity for both continuous and discrete datasets

Interpretation and analysis of high dimensional single cell gene expression datasets often 

involves summarizing the expression patterns of tens of thousands of genes in two 

dimensions, creating a map that shows viewers properties of the data such as the number of 

cell states or trajectories, and how distinct cell states are from each other. However, while t-

SNE, the most popular visualization method, can visualize subtle local patterns of 

expression that other methods cannot, it often distorts global properties of the dataset such as 

cluster distances and sizes (Figure 1e, 1f). This is especially apparent in t-SNE visualizations 

of developmental datasets, as t-SNE tends to exaggerate the size of cell types instead of 

visualizing the axes of differentiation (Figure 2c, 2d). While UMAP, a more recent 

visualization method, addresses these issues for discrete datasets (Figure 3e), it also has 

limitations when visualizing continuous time-series data with developmental trajectories, 

and actually performs worse than t- SNE in capturing the trajectories in some cases (Figure 

2b, 2c, 2d).

Here, we integrated NMF with a Nearest Neighbors smoothing method to create SWNE, a 

visualization method that preserves global and local properties of the data for both 

continuous and discrete datasets. A key factor in SWNE’s performance is the Shared Nearest 

Neighbors (SNN) network weighting. Without SNN weighting, the quantitative and 

qualitative performance of SWNE drops off (Figure 1e, 1f, S1a, S1b). We believe SNN 

weighting reduces the effect of biological or technical noise, collapsing the data onto the 

biologically relevant components of heterogeneity. Surprisingly, this ability to minimize 

noise enables SWNE to capture local structure in the data better than t-SNE, and in some 
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cases, UMAP (Figure 1e, 1f). This ability to capture local structure enables SWNE to be 

effective at illuminating the branch-like structure in developmental trajectory datasets 

(Figure 1f, 2c, 2d).

SWNE adds biological context to visualizations and projects data across technologies

Additionally, t-SNE, UMAP, and other existing methods only display cells, forcing 

important biological context, such as cell type marker genes, to be shown in separate plots. 

One of SWNE’s key advantages is that the nonnegative factor embedding framework allows 

for embedding of genes and cells on the same visualization. The factors act as a skeleton for 

the data, as both cells and genes are embedded relative to these factors. The closer a group of 

cells is to a gene or a factor on the visualization, the more of that gene or factor the cells 

express (Figure 4e, 4g). If one thinks of visualizations as maps, these embedded genes and 

factors act as landmarks, adding key biological waypoints to features of the visualization. 

Embedding genes and factors also streamlines the presentation of the data, eliminating the 

need for separate plots of marker genes or gene sets.

Batch effects in single cell RNA-seq are a well-known issue, and multiple methods have 

recently been developed for dataset integration (Butler et al., 2018; Haghverdi et al., 2018). 

SWNE’s framework enables new data to be projected onto an existing SWNE embedding, 

which we demonstrated by projecting data generated using the Fluidigm C1 microfluidic 

system onto an embedding generated from snDrop-Seq (Figure 3c). Despite the differences 

between the Fluidigm C1 and snDrop-Seq technologies, the C1 cortical neuron cell clusters 

map closely to the corresponding snDrop-Seq cell clusters in the embedding. Thus, SWNE’s 

ability to project data onto existing embeddings can be used to analyze datasets across 

technologies or individual patient samples.

SWNE limitations and future work

SWNE’s runtime is currently dominated by the NMF decomposition, so future work could 

focus on improving NMF speed, or substituting NMF with a faster matrix decomposition 

method such as f-scLVM or Pagoda/Pagoda2 (Buettner et al., 2017; Fan et al., 2016). 

Additionally, SNN weighting occurs sequentially after embedding the cells, factors, and 

genes. This causes the genes and factors to sometimes be further from cell clusters than they 

should be, although they are still generally closest to the most relevant cell cluster. Future 

work could involve developing a more elegant method that allows factor embeddings to shift 

relative to the cell embeddings.

Overall, we developed a projection and visualization method, SWNE, which captures both 

the local and global structure of the data for continuous and discrete datasets, and enables 

relevant biological factors and genes to be embedded directly onto the visualization. 

Capturing global structure enables SWNE to address issues of distortion that occurs with t-

SNE and in some cases, UMAP, creating a more accurate map of the data. Capturing local 

structure with the SNN network smoothing enables SWNE to accurately visualize the key 

axes of variation. This enables SWNE to illuminate differentiation trajectories that are not 

apparent in other visualizations, such as t-SNE or UMAP. Finally, embedding key marker 

genes and relevant biological factors adds important biological context to the SWNE 
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visualization. As single cell gene expression datasets increase in size and scope, we believe 

that SWNE’s ability to create an accurate, context-rich map of the datasets will enable more 

complete and meaningful biological interpretation.

STAR Methods

Contact for Reagent and Resource Sharing

Further information and requests for resources should be directed to and will be fulfilled by 

the lead contact, Kun Zhang (kzhang@bioeng.ucsd.edu).

Method Details

Normalization, variance adjustment, and scaling—We normalize the gene 

expression matrix by dividing each column (sample) by the column sum and multiplying by 

a scaling factor. Batch effects were normalized by a simple model, adapted from Pagoda2 

(Barkas et al., 2018; Fan et al., 2016), that subtracts any batch specific expression from each 

gene. We used the variance adjustment method from Pagoda (Fan et al., 2016) to adjust the 

variance of features, an important step when dealing with RNA-seq data. Briefly, a mean-

variance relationship for each feature is fit using a generalized additive model (GAM) and 

each feature is multiplied by a variance scaling factor calculated from the GAM fit. Feature 

scaling is also performed using either a log-transform, or the Freeman-Tukey transform.

Feature Selection—We recommend using feature selection to identify biologically 

relevant features/genes before running SWNE, as the NMF algorithm scales poorly with the 

number of features. Both Pagoda2 and Seurat offer feature selection methods that select 

overdispersed, and we have included an SWNE function for feature selection based off of 

the Pagoda2 method.

Nonnegative Matrix Factorization—We use the NNLM package (Lin and Paul C 

Boutros, 2016) to run the Nonnegative Matrix Factorization (NMF). Equation 1 shows the 

NMF decomposition:

A = WH (1)

Where A is the (features × samples) data matrix, W is the (features × factors) feature loading 

matrix, and H is the (factors × samples) low dimensional representation of the data. The 

NMF initialization method can affect the embedding, and we offer an Independent 

Component Analysis (ICA) initialization, a Nonnegative-SVD (NNSVD) initialization, and 

a purely random initialization. We have found that ICA initialization works well with most 

datasets, and is set as the default option. For datasets with a large number of features, ICA 

can be fairly slow so we use SVD as a pre-processing step for the ICA initialization.

Model Selection

To select the number of factors for NMF, we use the method developed by Frigyesi et al 

where we compare the decrease in reconstruction error for the input matrix with the decrease 
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in reconstruction error for a randomized matrix. We take the highest number of factors such 

that the decrease in reconstruction error for the input matrix is still higher than the decrease 

in error for the randomized matrix (Frigyesi and Höglund, 2008). Specifically, we calculate 

the reconstruction error for both the input matrix and the randomized input matrix for a 

range of factors. We then compute decrease in reconstruction error with an increasing 

number of factors (k) for both matrices, and subtract the decrease in error for the 

randomized matrix from the decrease in error for the input matrix to create an error 

reduction above noise metric. We select the maximum number of factors before this error 

reduction above noise falls below zero (Figure S2a-b, S2e-f).

Generating the SNN matrix—In order to ensure that samples which are close to each 

other in the high dimensional space are close in the 2d embedding, we smooth the NMF 

embeddings with a Shared Nearest-Neighbors (SNN) matrix, calculated using code adapted 

from the Seurat package (Butler et al., 2018; Satija et al., 2018). Briefly, we calculate the 

approximate k-nearest neighbors for each sample using the Euclidean distance metric (in the 

Principal Component space. We then calculate the fraction of shared nearest neighbors 

between that sample and its neighbors. We can then raise the SNN matrix, denoted here as S, 

to the exponent β:S′ = Sβ . If β > 1 , then the effects of neighbors on the cell embedding 

coordinates will be decreased, and if β < 1, then the effects will be increased. Finally we 

normalize the SNN matrix so that each row sums up to one.

Weighted Factor Projection—We adapt the Onco-GPS (Kim et al., 2017) methodology 

to embed the NMF factors onto a two dimensional visualization. First, we smooth the H 
matrix with the SNN matrix using Equation 2:

Hsmooth = H * S (2)

We then calculate the pairwise similarities between the factors (rows of the Hsmooth matrix) 

using either cosine similarity, or mutual information (Kim et al., 2016). The similarity is 

convertec into a distance with equation 3:

D = 2(1 − R) (3)

Here, R is the pairwise similarity. We use Sammon mapping(Sammon, 1969) to project the 

distance matrix into two dimensions, which represent the x and y coordinates for each factor. 

The factor coordinates are rescaled to be within the range zero to one.

Weighted Sample Embedding

Let Fix , Fiy represent the x and y coordinates for factor i.To embed the samples, we use the 

sample loadings from the unsmoothed H matrix via equations 4 & 5:
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L jx =
∑i Hi jFix

α

∑i Hi j
α (4)

L jy =
∑i Hi jFiy

α

∑i Hi j
α (5)

Here, j is the sample index and i is iterating over the number of factors in the decomposition 

(number of rows in the H matrix). The exponent α can be used to increase the “pull” of the 

NMF components to improve separation between sample clusters, at the cost of distorting 

the data. Additionally, we can choose to sum over a subset of the top factors by magnitude 

for a given sample, which can sometimes help reduce noise. We end up with a 2 x N matrix 

of sample coordinates, L.

To weight the effects of the SNN matrix on the samples, the sample coordinates L are 

smoothed using equation 6:

Lsmooth = S * L (6)

The smoothed sample coordinates (Lsmooth) are then visualized. While we have found that 

an SNN matrix works well in improving the local accuracy of the embedding, other 

similarity matrices, such as those generated by scRNA-seq specific methods like SIMLR, 

could also work. In general, you should use whichever similarity or distance matrix you used 

for clustering.

Embedding features—In addition to embedding factors directly on the SWNE 

visualization, we can also use the gene loadings matrix (W) to embed genes onto the 

visualization. We simply use the W matrix to embed a gene relative to each factor, using the 

same method we used to embed the cells in the H matrix. If a gene has a high loading for a 

factor, then it will be very close to that factor in the plot, and far from factors for which the 

gene has zero loadings. To ensure that embedded features have both cluster specificity and 

contain relevant spatial information in the SWNE embedding, we plot the top cluster log 

fold-change against the top factor loading log fold- change for each feature, highlighting the 

embedded features (Figure 4a-b). Any features that fall below the cluster log fold-change 

cutoff or the factor loading log fold-change cutoff may not be good candidates for 

embedding, and SWNE will warn users if they attempt to embed those features.

Constructing the SNN matrix from different dimensional reductions—The SNN 

matrix can be constructed from either the original gene expression matrix (A), or on some 

type of dimensional reduction. We have found that constructing the SNN matrix from a PCA 

reduction tends to work well, especially in datasets where that follow a trajectory or 
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trajectories. We believe this is due to PCA’s ability to capture the axes of maximum 

variance, while NMF looks for a parts-based representation (Abdi and Williams, 2010; Lee 

and Seung, 1999). For datasets where there are discrete cell types, constructing the SNN 

matrix from the NMF factors is often similar to constructing the SNN matrix from PCA 

components. Thus, we default to building the SNN matrix from principal components.

Interpreting NMF components—In order to interpret the low dimensional factors, we 

look at the gene loadings matrix (W). We can find the top genes associated with each factor, 

in a manner similar to finding marker genes for cell clusters. Since we oftentimes only run 

the NMF decomposition on a subset of the overdispersed features, we can use a nonnegative 

linear model to project the all the genes onto the low dimensional factor matrix. One can 

also run Geneset Enrichment Analysis (Subramanian et al., 2005) on the gene loadings for 

each factor to find the top genesets associated with that factor.

Projecting New Data—To project new data onto an existing SWNE embedding, we first 

have to project the new gene expression matrix onto an existing NMF decomposition, which 

we can do using a simple nonnegative linear model. The new decomposition looks like 

equation 7:

A′ = WH′ (7)

Here, A’ is the new gene expression matrix, and W is the original gene loadings matrix, 

which are both known. Thus, we can simply solve for H’. The next step is to project the new 

samples onto the existing SNN matrix. We project the new samples onto the existing 

principal components, and then for each test sample, we calculate the k closest training 

samples. Since we already have the kNN graph for the training samples, we can calculate, 

for each test sample, the fraction of Shared Nearest Neighbors between the test sample and 

every training sample. With the test factor matrix H’, and the test SNN matrix, we can run 

the SWNE embedding as previously described to project the new samples onto the existing 

SWNE visualization.

Generating Simulated Datasets—We used the Splatter (Zappia et al., 2017) R package 

to generate a discrete dataset with five different clusters, estimating parameters from the 3k 

PBMC dataset published by 10X genomics. We generated five distinct clusters (groups), 

where Groups 1 and 5 had a differential expressed gene (DEG) probability of 0.3, while 

Groups 2–4 had a DEG probability of 0.15. Group 5 contains 1215 cells, Groups 2–4 

contain 405 cells each, and Group 1 contains 270 cells. Thus, Groups 1 & 5 should be 

relatively distant and Groups 2–4 should be relatively close. To simulate a branching 

trajectory dataset, we estimated parameters from the hematopoiesis dataset from Paul et al. 

We generated four paths, where each path is parameterized by the number of cells in that 

path and the number of “time-steps”, which essentially controls how long the path is. Path 1 

branches into Paths 2 and Paths 3, and Path 3 continues onto Path 4. Paths 1 & 2 contained 

819 cells each, and Paths 3 & 4 contained 546 cells each. Path 1 had 100 steps, Path 2 was 

the “longest” path with 200 steps, and Paths 3 & 4 had 50 steps each. Each cell is assigned 

to a path, and a time-step. For example, Cell2522 might belong to Pathl and time-step 68.
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Evaluating Embedding Performance—To evaluate how well each embedding 

maintained the global structure of the discrete simulation, we correlated the pairwise cluster 

distances in the 2D embedding with the pairwise cluster distances in the original gene 

expression space. We then calculated the average Silhouette score for each embedding, 

evaluating how well the visualization separates the clusters. For the trajectory simulation, we 

divided each path into “chunks” of five time-steps. We correlated the pairwise distances of 

each “path-time-chunk” in the embedding space with the pairwise distances in the gene 

expression space to evaluate how well the embeddings maintained the global structure. To 

evaluate the local structure, we constructed a “ground-truth” neighborhood graph by adding 

an edge between every cell in each path-time-step, and every cell in each neighboring path-

time-step. For example, we would connect all the cells in Pathl at time-step 23, with all the 

cells in Pathl and time-step 24. We then created a nearest neighbor graph for each 

embedding, and took the Jaccard similarity between each cell’s neighborhood in the 

embedding and the true neighborhood. We used the average Jaccard similarity as our 

“neighborhood score”.

We adopted a similar approach to evaluate the hematopoiesis dataset. To quantitatively 

evaluate how well each embedding captured the global structure, we divided each annotated 

cluster into “chunks” of 50 cells by pseudotime calculated using Monocle2. We then 

correlated the pairwise distances of each cluster-time-chunk in the embedding space with the 

pairwise distances in the gene expression space. To evaluate the local structure, we compute 

the overlap in the 30 nearest neighbors for each cell in the embedding space with the nearest 

neighbors in the gene expression space using the Jaccard similarity. We average the Jaccard 

similarities across all cells as our “neighborhood fidelity score”.

Running UMAP, t-SNE and other dimensional reduction methods—UMAP and t-

SNE were run through the Seurat R package (Butler et al., 2018). We first reduced the 

dimensionality of the gene expression matrix with PCA, and used a variance explained 

elbow plot to select the number of principal components to keep. The principal components 

were used as inputs to UMAP and t-SNE.

Diffusion maps, Isomap, Locally Linear Embedding (LLE), and Multidimensional Scaling 

(MDS) were run directly on the normalized gene expression matrix. Diffusion maps was run 

using the Destiny R package (Angerer et al., 2015), Isomap and LLE were run with the 

RDRToolbox R package, while MDS was run using the cmdscale function in R. Default 

parameters were used in all cases unless otherwise specified.

Quantification and Statistical Analysis

To ensure that the single cell RNA-seq data was approximately Gaussian with zero inflation, 

we used histogram plots to assess the distributions of each dataset with and without zeros.

Data and Software Availability

The SWNE package is available at https://github.com/yanwu2014/swne. The scripts used for 

this manuscript are under the Scripts directory. The data needed to recreate the figures can 

be found here:
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• http://genome-tech.ucsd.edu/public/SWNE/hemato_data.tar.gz (Hematopoiesis 

data)

• http://genome-tech.ucsd.edu/public/SWNE/neuronal_data.tar.gz (Neuronal data)

The raw data for the hematopoietic and neuronal cells can be found at the GEO accessions 

GSE72857 and GSE97930, respectively. The PBMC dataset can be found at the 10X 

genomics website: https://support.10xgenomics.com/single-cell-gene-expression/datasets/

1.1.0/pbmc3k. The simulated datasets can be found at: http://genome-tech.ucsd.edu/public/

SWNE/splatter_simulated_data.tar.gz

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• SWNE visualizes high dimensional single cell genomics datasets

• SWNE creates 2D cell and gene embedding with NMF and similarity 

weighting

• Visualization captures local/global structure in continuous/discrete datasets

• Embedded genes and factors add key biological context to visualization
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Figure 1: SWNE overview and ability to capture local and global structure in simulated datasets.
(a) The gene expression matrix (A) is decomposed into a gene loadings matrix (W) and a 

factor matrix (H) using NMF, selecting the number of factors by taking the highest number 

of factors that still results in a reduction in reconstruction error above noise (Frigyesi and 

Höglund, 2008) (Methods). The factor matrix (H) is smoothed using the SNN network, and 

factors (rows of H) are embedded in 2 dimensions via Sammon mapping of their pairwise 

distances. Cells are embedded relative to the factors using the cell scores matrix (H), and 

selected genes are embedded relative to the factors using the gene loadings matrix (W). 
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Finally, the cell embeddings are refined using the SNN network, (b) Simulating a discrete 

dataset with five clusters, and a branching trajectory dataset with four paths, (c) SWNE, t-

SNE, and UMAP plots of the simulated discrete dataset (see Figure S1e for additional plots), 

(d) SWNE, t-SNE, and UMAP plots of the simulated trajectory dataset (see Figure S1f for 

additional plots), (e) Quantitative evaluation of SWNE and existing visualization methods on 

the discrete simulation. Global structure is evaluated by correlating pairwise cluster 

distances in the embedding with distances in the gene expression space. Cluster separation is 

evaluated with the Silhouette score, (f) Quantitative evaluation of SWNE and existing 

visualization methods on the trajectory simulation. Global structure is evaluated by dividing 

each path up into time steps, and correlating pairwise path-time-step distances in the 

embedding with distances in the gene expression space. Local structure is evaluated by 

taking the Jaccard similarity of the nearest neighbors in the embeddings with the true nearest 

neighbors.
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Figure 2: Illuminating the branching structure of hematopoiesis.
(a) Paul et al sorted single hematopoietic cells from bone marrow, sequenced them with 

single cell RNA-seq (Mars-Seq), and identified the relevant cell types. The hematopoiesis 

trajectories were reconstructed using Monocle2, and the cells were ordered according to 

their Monocle2 differentiation pseudotime. (b) Quantitative evaluation of SWNE and other 

embeddings on the hematopoiesis dataset. Global structure is evaluated by dividing cell type 

clusters into groups of cells with similar pseudotime, and correlating pairwise cluster-

pseudotime-group distances in the embedding with distances in the gene expression space. 
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Local structure is evaluated by taking the Jaccard similarity of the nearest neighbors in the 

embeddings with the nearest neighbors in the gene expression space. (c) SWNE plot of the 

hematopoiesis dataset, with selected genes and biological factors displayed (see Figure 4a, 

4c, Table S1 for gene and factor annotations), alongside the t-SNE and UMAP plots. (d) 
SWNE, t-SNE, and UMAP plots of the hematopoiesis dataset, with developmental 

pseudotime calculated using Monocle2 overlaid onto the plot.
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Figure 3: Creating an interpretable map of the human visual cortex and cerebellum.
(a) Single nuclei were dissociated from the human cortex and cerebellum, and sequenced 

using both single nucleus Drop-Seq (snDrop-Seq) and the Fluidigm C1 platform (Lake et al. 

2016; Lake et al. 2017). snDrop-Seq uses unique molecular indexes (UMIs), and only 

captures the 3’ end of mRNA transcripts. The C1 method does not use UMIs and captures 

full length total RNA. (b) SWNE plot of cells from the visual cortex and cerebellum 

generated using snDrop-Seq, with selected genes and factors displayed (see Figure 4b, 4d, 

Table S1 for gene and factor annotations). (c) C1 data projected onto the snDrop-Seq SWNE 
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embedding. The grey inset outlines the region where cortical neurons are embedded. (d) t-
SNE plot of cells from the visual cortex and cerebellum generated using snDrop-Seq. (e) 
UMAP plot of cells from the visual cortex and cerebellum generated using snDrop-Seq.
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Figure 4: Identifying and validating gene embeddings.
(a - b) Top cluster expression log fold-changes vs top factor loading log-fold changes for 

genes in the hematopoiesis (a) (Figure 2) and human brain (b) (Figure 3) datasets, with 

genes chosen for embedding labeled. Genes with both high cell type and factor log fold-

changes are high quality candidates for embedding (top right quandrant). (c - d) Cell type 

specific gene expression for embedded genes in the hematopoiesis (c) (Figure 2) and human 

brain (d) (Figure 3) datasets. (e) An example of a differentially expressed gene (Apoe) and a 

non-differentially expressed gene (Snap29) embedded onto the hematopoiesis SWNE plot 
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with corresponding expression overlaid (Figure 2). (f) An example of a differentially 

expressed gene (PLP1) and a non-differentially expressed gene (CADM2) embedded onto 

the human brain SWNE plot with corresponding expression overlaid (Figure 3). (g) Heatmap 

showing the locations of embedded differentially expressed and non-differentially expressed 

genes on the hematopoiesis SWNE embedding. (h) Heatmap showing the locations of 

embedded differentially expressed and non-differentially expressed genes on the human 

brain SWNE embedding.
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