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The transcriptional coactivator WW domain– binding pro-
tein 2 (WBP2) is an emerging oncogene and serves as a node
between the signaling protein Wnt and other signaling mole-
cules and pathways, including epidermal growth factor recep-
tor, estrogen receptor/progesterone receptor, and the Hippo
pathway. The upstream regulation of WBP2 is well-studied, but
its downstream activity remains unclear. Here, we elucidated
WBP2’s role in triple-negative breast cancer (TNBC), in which
Wnt signaling is predominantly activated. Using RNAi coupled
with RNA-Seq and MS analyses to identify Wnt/WBP2- and
WBP2-dependent targets in MDA-MB-231 TNBC cells, we
found that WBP2 is required for the expression of a core set of
genes in Wnt signaling. These included AXIN2, which was
essential for Wnt/WBP2-mediated breast cancer growth and
migration. WBP2 also regulated a much larger set of genes and
proteins independently of Wnt, revealing that WBP2 primes
cells to Wnt activity by up-regulating G protein pathway sup-
pressor 1 (GPS1) and TRAF2- and NCK-interacting kinase
(TNIK). GPS1 activated the c-Jun N-terminal kinase (JNK)/Jun
pathway, resulting in a positive feedback loop with TNIK that
mediated Wnt-induced AXIN2 expression. WBP2 promoted
TNBC growth by integrating JNK with Wnt signaling, and its
expression profoundly influenced the sensitivity of TNBC to
JNK/TNIK inhibitors. In conclusion, WBP2 links JNK to Wnt
signaling in TNBC. GPS1 and TNIK are constituents of a WBP2-
initiated cascade that primes responses to Wnt ligands and are
also important for TNBC biology. We propose that WBP2 is a
potential drug target for JNK/TNIK-based precision medicine
for managing TNBC.

Breast cancer is the most common cancer in women and a
leading cause of cancer mortality worldwide taking half a mil-
lion lives annually (1). Despite the advancements in targeted
therapies, many challenges remain (2). There is no specific
treatment guideline for patients with triple-negative breast
cancer (TNBC).5 Patients with TNBC are treated with standard
chemotherapy that results in poor response and high relapse
rate. A better understanding of the molecular etiology of this
disease could improve management of TNBC.

The canonical Wnt signaling pathway plays an important
role in embryonic development and tissue homeostasis (3).
Aberrant Wnt signaling has been implicated in the etiology of
multiple human malignancies (4). Transcription coactivator
�-catenin is a key effector in this pathway (5). In the absence of
Wnt, �-catenin is phosphorylated by GSK3 and targeted for
�-TrCP-dependent ubiquitination and destruction in the cyto-
plasm. Upon Wnt stimulation, the GSK3 destruction complex
is inhibited, leading to �-catenin stabilization and translocation
into nucleus, where it potentiates transcription of target genes
via TCF/LEF transcription factors (6, 7). Breast cancer subtypes
exhibit heterogeneity in Wnt signaling. For example, high levels
of nuclear �-catenin and Wnt target genes were strongly asso-
ciated with TNBC, making the Wnt pathway a rational thera-
peutic target for this disease (8, 9).
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New insights on the Wnt-signaling pathway are emerging.
Genes associated with the Hippo pathway have been increas-
ingly reported to regulate Wnt signaling. For example, activa-
tion of the Hippo/serine/threonine kinase pathway results in
phosphorylation of TAZ at Ser-89 and YAP at Ser-127 by large
tumor suppressor kinase, leading to the binding of TAZ/YAP to
14-3-3 proteins and sequestration of TAZ/YAP/�-catenin in
the cytosol thereby preventing Wnt activation (10, 11). YAP
and TAZ has also been shown to be stabilized by Wnt signaling
and mediate gene transcription (12, 13). More recently,
YAP and TAZ are found to be essential for the formation of the
�-catenin destruction complex in the absence of Wnt ligand
(14). WW domain– binding protein 2 (WBP2) transcription co-
activator, which binds to YAP and TAZ, was recently impli-
cated in the Hippo and Wnt signaling pathways.

WBP2 was initially cloned as a cognate ligand of the WW
domain of YAP (15). It has been reported to bind to PAX8
transcription factor with unknown function (16). WBP2 was
progressively revealed to be a transcription coactivator in estro-
gen receptor/progesterone receptor hormonal signaling (17–
19), a novel tyrosine kinase substrate in epidermal growth fac-
tor receptor signaling (18, 20) and an oncogenic coactivator of
Wnt signaling in breast cancer cells (18, 21). The ability of
Yorkie (Drosophila ortholog of YAP) and TAZ (YAP paralog) to
drive tissue growth and tumorigenesis (22, 23) was dependent
on WBP2. Clinically, WBP2 is up-regulated in breast cancer
compared with normal tissues. Elevated WBP2 expression is
significantly associated with poor prognosis, overall, and dis-
ease-free survival (21). The expression of the WBP2 oncopro-
tein is reversibly controlled by tumor suppressors. WBP2 is
degraded by itchy E3 ubiquitin protein ligase (ITCH E3 ligase)
to prevent aberrant growth but is protected from ITCH and
activated by Wnt oncogenic signaling to drive TCF/�-catenin–
mediated transcription to promote breast cancer (21). Recent
studies identified WBP2 as a key cofactor of YAP driving the
clonal expansion of normal and neoplastic human epidermal
stem cells via TEA domain transcription factor (TEAD) tran-
scription factors (24), in modulating G1/S cell cycle transition in
estrogen receptor� breast cancer cells via a micro RNA-based
mechanism (25) and crucial for normal glutamatergic synapses
in the cochlea and hearing (26).

Although current evidences portray WBP2 to have pleotro-
pic roles, knowledge on the mode of action of WBP2 remains
confined to a limited set of genes and pathways. To better
understand the molecular effects of WBP2, RNA-Seq and MS
were performed to elucidate the Wnt/WBP2- and WBP2-de-
pendent targets in MDA-MB-231 TNBC cells. Besides con-
firming the role of WBP2 as a mediator of Wnt signaling regu-
lating known and novel gene targets including AXIN2, a new
function for WBP2 as a primer of cellular response to Wnt
ligand was discovered and validated through the elucidation of
a signaling axis involving GPS1, JNK/Jun, and TNIK.

Results

WBP2 is frequently amplified in breast cancer

WBP2 protein was demonstrated to be overexpressed in
breast cancer in a recent study of �400 clinical samples (21). To

gain further insights into the deregulation of WBP2 in breast
cancer, we analyzed the gene copy number alterations (CNA)
and mRNA expression of the WBP2 gene in multiple large-scale
breast cancer datasets such as TCGA and METABRIC. The
results indicated that WBP2 is frequently amplified (4.1–25%)
or gained (0 –31.7%) in breast cancer patients, whereas deletion
was barely present (Fig. 1A, Table 1). The TCGA dataset also
reveals a positive association between WBP2 gene copy number
and mRNA level (Fig. 1, B and C). On the other hand, the “gen-
otype to outcome” Kaplan-Meier analysis was used to study the
correlation of the WBP2 transcriptomic signature on patients’
survival. This approach was applied because WBP2 has been
known to act as a transcriptional coactivator and as such a net-
work of genes could be affected upon its gain/amplification.
Considering that the effect of WBP2 gain/amplification could
be eventually leveraged by a set of genes, this genotype to out-
come survival analysis is believed to be superior to the use of
WBP2 expression alone. The data showed that the transcrip-
tomic signature (defined either by the up or down-regulated
genes) derived from patients with WBP2 amplification corre-
lates with worse survival (Fig. 1D, i and ii) (27). These results
indicate that WBP2 is a prognostic factor and its elevated levels in
breast cancer may be caused by genomic amplification/gain in
addition to the previously described epigenetic mechanism involv-
ing protein turnover (21).

WBP2 regulates a core set of WNT3A-induced genes in
triple-negative MDA-MB-231 breast cancer cells

WBP2 plays a role in Wnt signaling by promoting TCF/�-
catenin-mediated transcription (21). However, it is not clear to
what extent the Wnt pathway is regulated by WBP2. To address
this question, RNA-Seq was carried out on MDA-MB-231
TNBC cells because Wnt/�-catenin signaling is highly relevant
to TNBC and MDA-MB-231 is one of the most responsive cell
lines to WNT3A ligand (Fig. S1). As shown in Fig. 2A, MDA-
MB-231 cells were infected with lentivirus expressing three
shRNAs: scrambled (scr) shRNA, WBP2 shRNA1 targeting the
3�-UTR region, and WBP2 shRNA2 targeting the coding
region, respectively. The cells were further treated with control
serum-free medium (O) or serum-free medium containing 200
ng/ml of recombinant WNT3A for 12 h. Silencing of WBP2 and
activation of the Wnt/�-catenin signaling were effectively
achieved (Fig. 2B). Total RNA was extracted from the cells and
used for RNA-Seq analysis. In total, 19,301 genes were mapped
across the 18 replicates. About 16,000 genes were detected with
an expression value. Comparison of the gene expression pro-
files between the O and WNT3A-treated samples within the
control group produced a complete list of Wnt target genes in
MDA-MB-231 cells. Next, lists of Wnt target genes indepen-
dent on WBP2 were obtained by identifying those genes that
displayed expression changes following WNT3A treatment
despite WBP2 knockdown. The role of WBP2 in the WNT3A-
induced transcriptional program was defined by subtracting
the WNT3A-responsive, WBP2-independent targets from the
complete list.

The following criteria were used to identify the Wnt-induced
differentially expressed genes: expression should be induced by
at least 2-fold upon WNT3A stimulation; p value has to be less
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than 0.001, and false discovery rate (FDR) less than 0.01. Under
this set of criteria, 34 genes were identified as Wnt/�-catenin
target genes. The relatively small number of Wnt target genes is
not surprising as various gene expression studies of the Wnt
pathway in different cell lines identified target genes that range
from 4 to about 200 in number (Table S1). It appears that Wnt/
�-catenin activates distinct target genes in different cell types.

To determine which of the 34 Wnt/�-catenin target genes
were dependent on WBP2, we defined a criterion that the fold-

induction by WNT3A stimulation must be reduced by at least
30% upon WBP2 depletion. A fold-change cutoff from 1.3 to
2 has been widely adopted in transcriptomic studies (28 –33).
We found that 28 of the 34 (82%) Wnt target genes were
significantly affected by WBP2 depletion (Fig. 2C), including
the well-known AXIN2, BMP4, LGR5, and LEF1 (Student’s t
test, p � 0.05). Among the novel Wnt targets identified,
some are highly related to cancer progression. For example,
ADAMTS14 plays an important role in extracellular matrix
assembly and degradation; SOX4 has been suggested as an
oncogene in several cancers by previous studies; and HAS2,
which regulated cell adhesion, migration, and proliferation, has
been shown to be overexpressed in breast cancer (21, 34 –37).
When the fold-change criterion of Wnt target genes was set to
1.5- and 1.3-fold, 86 and 155 genes were identified as Wnt tar-
get genes, respectively. However, the numbers of WBP2-depen-
dent Wnt target genes only increased to 41 for both cases (Fig.
2D). This suggests a specific role of WBP2 in regulating a core
set of genes within the Wnt/�-catenin transcriptional program.

Figure 1. A, analysis of WBP2 amplification (multiplication of intra-chromosomal region of 0.5 to 10 Mb), gain (increase in larger chromosomal region or intact
chromosome) and deletion in 6 studies of breast cancer. About 20 – 40% of breast cancer patients harbor WBP2 amplification/gain. B, a heat map showing the
correlation of WBP2 mRNA expression and copy number alteration. y axis refers to individual clinical samples in the TCGA breast cancer database, whereas the
x axis indicates the intensity of WBP2 gene expression (left panel) or copy number levels (right panel). C, dot plot of WBP2 mRNA expression in individual clinical
breast cancer samples in the TCGA database categorized according to copy number alterations. D, Kaplan-Meier plot of breast cancer patient survival (n � 273)
according to transcriptomic fingerprint of WBP2 amplification: (i) up- and (ii) down-regulated.

Table 1
WBP2 CNAs in multiple breast cancer datasets
Exact numbers of total sample, WBP2 amplification, gain and deletion were shown
(79 –84).

Study Total Amp Amp Gain Gain Del Del

% % %
TCGA (79) 816 52 6.4 259 31.7 1 0.1
TCGA, Provisional 1080 73 6.8 334 30.9 1 0.1
TCGA (80) 778 32 4.1 199 25.6 0 0.0
MSKCC (81) 12 3 25.0 0 0.0 0 0.0
METABRIC (82, 83) 2173 135 6.2 337 15.5 0 0.0
British Columbia (84) 116 7 6.0 3 2.6 0 0.0
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AXIN2 is a novel Wnt-induced WBP2 target gene essential for
TNBC cancer biology

To shortlist candidates in the Wnt/WBP2 signaling axis that
are critical to breast cancer for validation, we selected from the
28 Wnt/WBP2-dependent genes identified from RNA-seq
study based on: (i) reported involvement in cancer to focus on
oncogenes and (ii) whose transcripts displayed the highest fold-
changes to identify the top ranking candidates. Eight candidates
AXIN2, LGR5, HAS2, ADAMTS14, SPRY1, DCLK1, JDP2, and
SLC1A3 satisfied these criteria. The effects of WBP2 depletion
on the expression of these genes in MDA-MB-231 cells were
examined via RT-qPCR. Although all 8 genes were validated to
be induced by Wnt and dependent on WBP2, AXIN2, LGR5,
and HAS2 were the most highly activated by WNT3A (�5-fold)
and substantially inhibited upon WBP2 depletion by at least
60% (Fig. 3A).

Next, to study the pervasiveness of the Wnt/WBP2 regula-
tion, we asked whether these genes could be regulated by Wnt/
WBP2 in other WNT3A-responsive TNBC cell lines. We thus
examined the expression of these genes under WNT3A stimu-
lation and WBP2 manipulation in MDA-MB-468 and BT549
cells by RT-qPCR. Unexpectedly, the results indicated that
AXIN2 is the only gene that could be consistently regulated by
Wnt/WBP2 signaling in MDA-MB-468 (Fig. 3B, i) and BT549
cells (Fig. 3B, ii), suggesting heterogeneity of Wnt signaling
even within the same subtype of breast cancer cells (Table S2).
As shown in Fig. 3B, WBP2 depletion inhibited WNT3A-in-

duced AXIN2 transcription and the inhibition could be rescued
by WBP2 re-expression in both cell lines. Collectively, these
findings indicated that AXIN2 is a novel downstream target
gene of Wnt/WBP2 signaling in TNBC.

Identification of AXIN2 as Wnt/WBP2 target gene suggests
that AXIN2 may be required for Wnt/WBP2-mediated cancer
phenotypes. To test this hypothesis, cell migration and colony-
formation assays were performed. MDA-MB-231 cells were
transfected with WBP2 shRNAs and AXIN2 plasmid to inves-
tigate whether AXIN2 expression could rescue the inhibition
effect caused by WBP2 depletion. As shown in Fig. 3C, i–iv,
WNT3A-induced cell migration and colony growth were dras-
tically inhibited by WBP2 depletion, and the phenotype can be
significantly rescued by AXIN2 expression. Fig. 3D, i and ii,
show that the AXIN2 mRNA, AXIN2 protein, and WBP2 pro-
tein levels were accordingly effected by the indicated exogenous
expression and silencing.

Interestingly, expression of AXIN2 restored the level of
active �-catenin (Fig. 3D, ii) and Wnt reporter activity (Fig. 3D,
iii) in the WBP2 knockdown cells. This might account for
rescue of the WBP2 knockdown phenotype by AXIN2. The
antibody used detects the stabilized species of endogenous
�-catenin that are not phosphorylated by GSK-3 at residues
Ser-33, Ser-37, and Thr-41 and therefore represents the func-
tionally active in the canonical Wnt signaling pathway (38 –41).
As the effect of WBP2 knockdown on the active �-catenin level
was more prominent than on the total �-catenin level, active

Figure 2. A, schematic design of the RNA-Seq analysis, showing the strategy used for exploring the role of WBP2 in the WNT3A-induced transcriptional
program. B, sample QC before RNA-Seq analysis. WBP2 was depleted by lentivirus-expressed shRNAs. MDA-MB-231 cells were treated with 200 ng/ml of
rWNT3A for 12 h. C, heat map of the expression pattern of the 28 Wnt/WBP2 target genes. Color intensity refers to the fold-change in mRNA level between
WNT3A treatment versus control. Each column represents the mean value generated from biological triplicates. D, percentages of the Wnt/WBP2 target genes
under different fold change cut-offs.
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�-catenin will be used as the surrogate indicator for Wnt path-
way activation in subsequent studies. Taken together, we con-
clude that AXIN2 is regulated at the mRNA level by Wnt/WBP2
and acts as an essential mediator in Wnt/WBP2-driven signal-
ing and TNBC biology. This positions AXIN2 as a robust
molecular and functional readouts for subsequent studies on
the mode of action of WBP2 in Wnt signaling.

WBP2 regulates a diverse network of genes and proteins
independently of Wnt ligand

The RNA-Seq in this study was performed under the context
of chronic Wnt signaling (WNT3A stimulation for 12 h). In our
previous gain-of-function study, WBP2 was demonstrated to
be a transcriptional coactivator induced by WNT3A via epider-
mal growth factor receptor cross-talk to undergo nuclear trans-
location and interaction with �-catenin at the late-phase (4 – 8
h) of Wnt signaling, thus enhancing �-catenin/TCF transcrip-
tion (21). To investigate whether WBP2 is required for the early
events, the mRNA of AXIN2 was examined over a time course
of WNT3A treatment. The results showed that AXIN2 mRNA
expression could be induced by WNT3A as early as 3 h post-

treatment (Fig. 4A, i) and that prior knockdown of WBP2 abol-
ished this occurrence (Fig. 4A, ii). How WBP2 contributes to
the early effect of WNT3A on AXIN2 mRNA is unclear. The
reported Wnt-induced WBP2 nuclear translocation may not
play a role in these early WNT3A events because the former
peaked at 8 h (21). The above observations, coupled to the func-
tion of WBP2 as a transcription co-activator, supported the
hypothesis that at the basal state, WBP2 functions to prepare
the “molecular soil” and prime the cells for acute response to
Wnt through transcriptional regulation of a set of target genes
that are independent of Wnt.

To examine the constitution of the molecular soil provided
by WBP2, we re-analyzed the RNA-Seq data to identify genes
that are regulated solely by WBP2. The re-analysis strategy is
shown in Fig. 4B, i. The criteria for classification as WBP2-
regulated genes were: (i) the gene must be regulated in a same
trend (either up-regulation or down-regulation) in both the
WBP2 shRNA1 and shRNA2 samples; (ii) p value and FDR must
be less than 0.001; and (iii) at least a 2-fold change must be
observed between control and shRNA1, whereas at least a 1.3-

Figure 3. A, RT-qPCR validation of the Wnt/WBP2 target genes in MDA-MB-231 cells. B, RT-qPCR showing the expression of AXIN2 regulated by Wnt/WBP2 in
MDA-MB-468 (i) and BT549 (ii). WBP2 manipulation was examined by Western blotting. C, transwell cell migration (i and ii) and clonogenic assay (iii and iv) in
MDA-MB-231 cells were infected by lentiviruses expressing WBP2 shRNAs and AXIN2 plasmids as indicated and stimulated with 200 ng/ml of rWNT3A.
Representative images (i and iii) and corresponding quantitative analysis (ii and iv) were shown. D, (i) RT-qPCR showed the effect of WBP2 depletion on AXIN2
expression and AXIN2 rescue by WBP2 expression in MDA-MB-231 cells. WBP2 knockdown-mediated down-regulation of active �-catenin (ii) and TCF reporter
activity (iii) was rescued by AXIN2 overexpression in MDA-MB-231 cells.
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fold change must be observed between control and shRNA2.
The different fold-change implemented was due to the lower
effectiveness of shRNA2 to deplete WBP2 expression com-
pared with shRNA1. Under these criteria, a total of 86 genes
were identified to be differentially expressed upon WBP2
depletion (Fig. 4B, ii). Forty genes were down-regulated upon
WBP2 depletion and 46 genes were up-regulated upon WBP2
depletion. The WBP2-regulated gene list was much larger than
the Wnt/WBP2 genes identified earlier, reiterating the notion
that WBP2 function is not restricted to Wnt signaling.

Bioinformatics analysis of the WBP2-regulated genes were
performed to understand the molecular effects of WBP2
in breast cancer cells. First, gene ontology analysis using the
PANTHER program indicated that WBP2-regulated genes
were of diverse molecular functions and implicated in multiple
biological processes (Fig. S2, A–C). Specifically, Table 2 shows

that WBP2– up-regulated (positive) target genes are involved in
antiviral responses, lipoprotein metabolism, and anoikis,
whereas WBP2– down-regulated (negative) targets genes are
involved in leukocyte biology, fever, inflammatory responses,
and other critical processes. Additional analyses using multiple
software revealed that the 4 major pathways that WBP2-regu-
lated genes were involved are those related to (i) infection, (ii)
inflammation, (iii) cancer, and (iv) metabolism (Fig. 4B, iii, Fig.
S2, D and E).

The above results proved that WBP2 alone regulates a
sophisticated network of genes. This prompted us to examine
the molecular soil at another level, the proteome, to unearth
further evidence of WBP2 being a primer of Wnt signaling.
To this end, a multiplex quantitative proteomics approach,
iTRAQ-LC-MS, was used to analyze the control and WBP2-
knocked down MDA-MB-231 cells. From the proteomics data-

Figure 4. A, (i) RT-qPCR analysis of AXIN2 mRNA levels upon WNT3A stimulation at the indicated durations in MDA-MB-231 cells. (ii) RT-qPCR analysis of AXIN2
mRNA levels. MDA-MB-231 cells were transfected with WBP2 shRNAs for 48 h and treated with control serum-free medium (O) or 200 ng/ml of rWNT3A for 3 h
to examine the early-phase transcription of AXIN2 (top). IB analysis of the depletion of WBP2 is shown in the bottom. B, (i) analysis strategy to identify
WBP2-regulated genes. (ii) Heat map of the expression pattern of the 86 WBP2-regulated genes. (iii) Top enriched pathways of WBP2 target genes. The number
in each bar represents number of WBP2 targets involved in this pathway. C, (i) heat map of the expression pattern of the 23 WBP2-regulated proteins. (ii)
Protein-mRNA expression association analysis of the WBP2-regulated proteins, 7 proteins with significant mRNA change were indicated in black. GPS1 was
highlighted in red.
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set, we compared WBP2 shRNA1 and shRNA2 to the control
shRNA group to identify differentially expressed proteins upon
WBP2 depletion. After selection, 23 differentially expressed
proteins were identified, of which 16 and 7 proteins were down-
and up-regulated by WBP2 depletion, respectively (Fig. 4C, i).
These WBP2-target proteins were searched against the
RNA-Seq data to understand how they are regulated. The
mRNA-protein association analysis showed that 7 WBP2-reg-
ulated proteins displayed mRNA changes (�1.3-fold) in the
same trend as the protein level, whereas the other 16 proteins
showed no significant changes at the mRNA level (Fig. 4C, ii).
This indicates that 30% of the WBP2-target proteins were reg-
ulated at the mRNA level, whereas the majority were regulated
at post-transcriptional or post-translational levels. Collectively,
proteomics and RNA-seq revealed that WBP2 regulates a con-
siderable number of genes and proteins that might prime the
cellular response to Wnt stimulation.

WBP2 primes Wnt signaling putatively via TNIK

From the Wnt-independent, WBP2-regulated RNA-seq
gene list, TNIK (TRAF2 and NCK interacting kinase) was of
particular interest and selected for further validation due to its
previous implicated role in Wnt pathway regulation. TNIK is an
essential activator of the Wnt-induced �-catenin/TCF tran-
scriptional program that acts by binding directly to both TCF4
and �-catenin and phosphorylating TCF4 (42).

RNA-seq data shows that it is positively regulated by WBP2
(Table 3). To confirm this, RT-qPCR and Western blotting
analyses were performed. WBP2 depletion in MDA-MB-231
cells resulted in a significant decrease of TNIK mRNA (Fig. 5A,
i) and protein expression (Fig. 5A, ii), which could be rescued by
WBP2 re-expression. To investigate whether there is correla-
tion between WBP2 and TNIK expression in breast cancer
specimens, we examined two published datasets as described
under “Experimental procedures.” A significant co-occurrence
of WBP2 and TNIK transcripts in breast cancer was observed
(Fig. 5A, iii). These results raised a testable hypothesis that
WBP2 primes cells, in part via up-regulation of TNIK expres-

sion to regulate the Wnt signaling induced transcriptional pro-
gram, such as the increased AXIN2 expression, leading to
potentiation of Wnt pathway activation.

As expected and shown in Fig. 5B, expression of WBP2 in
MDA-MB-231 cells led to the increased WNT3A-induced Wnt
reporter activity (Fig. 5B, i) with the accompanying up-regula-
tion of TNIK and WNT3A-induced AXIN2 expression (Fig. 5B,
ii). However, when TNIK was down-regulated by the TNIK
inhibitor, NCB-0846 (43), both the basal and WBP2-induced
Wnt reporter activity in MDA-MB-231 cells were significantly
abolished (Fig. 5B, i). Concomitantly, WBP2-mediated up-reg-
ulation of AXIN2 protein expression and active �-catenin upon
WNT3A stimulation were impaired in the presence of TNIK
inhibitor (Fig. 5B, ii). Interestingly, immunoblotting shows
TNIK protein expression to be induced upon WNT3A stimu-
lation although it was not initially identified as a WNT3A-in-
ducible gene from the RNA-Seq data. As expected, exogenous
WBP2 expression positively regulated basal TNIK expression
and overrode the WNT3A-induced expression. In other words,
TNIK is a novel downstream mediator/effector of WBP2 in the
positive regulation of Wnt-induced AXIN2 expression and
pathway activation.

Table 2
Top molecular functions (MF) and biological processes (BP) enriched
in WBP2 target genes (non-Wnt– dependent)

Table 3
WBP2 regulated genes identified from RNA-Seq dataset
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WBP2 may trigger a positive feedback loop involving TNIK and
JNK/c-Jun pathway

Because TNIK is a target gene of WBP2, it would be pertinent
to explore how WBP2 might contribute to the regulation of
TNIK expression. A closer examination of the promoter region
of TNIK revealed its enrichment with multiple c-Jun/AP-1
transcription factor-binding sites (Fig. 6A, i), suggesting that
TNIK is likely to be a direct target gene of the c-Jun/AP-1 tran-
scription factors and thus its expression may be functionally
regulated by the JNK/c-Jun signaling pathway activity. How-
ever, the role of WBP2 in the JNK/c-Jun signaling pathway is
unknown to date.

First, we investigated whether WBP2 regulates the JNK/c-
Jun pathway activity. IB analysis showed that the levels of phos-
pho-JNK and phospho-c-Jun were decreased upon WBP2
depletion, whereas the total level of JNK protein was not
affected (Fig. 6A, ii). Conversely, increased phosphorylation of
JNK/c-Jun and c-Jun expression but not total JNK were
observed upon WBP2 overexpression (Fig. 6A, iii). This is con-
sistent with the RNA-Seq results, which showed that JNK
mRNA levels did not change upon WBP2 depletion. Putatively,
activation of JNK phosphorylation/activity by WBP2 in turn
regulates c-Jun expression, a well-established observation
(44 –47).

Next, we asked if the WBP2-induced JNK activity contrib-
utes to Wnt pathway activation. Fig. 6A, iv and v, showed that
WBP2-driven TCF reporter activity and TNIK expression were
significantly abolished in the presence of combined siRNA
knockdown and inhibition of JNK via JNK-IN-8 (48). WBP2/

WNT3A-induced AXIN2 expression and the active �-catenin
level was concomitantly diminished upon double blocking of
JNK (Fig. 6A, v). Altogether, the data infers the existence of the
signaling axis: WBP23 JNK/c-Jun3 TNIK3 AXIN2. Inter-
estingly, expression of WBP2 was significantly down-regulated
by JNK knockdown/inhibition. The mechanism is unclear,
although JNK had been implicated in translation (49) and pro-
tein stability (50) control.

Conversely, several studies have demonstrated the reciprocal
regulation between TNIK and the JNK/c-Jun signaling pathway
(51–53), where TNIK is essential for activation of the JNK path-
way via JNK1 and JNK2. We therefore hypothesized the exist-
ence of a positive feedback loop where the WBP2-induced
TNIK expression leads to the reciprocal activation of JNK and
c-Jun, which in turn further up-regulate its own expression.
Indeed, TNIK inhibition by NCB-0846 abolished the WBP2-
induced JNK/c-Jun activation/phosphorylation (Fig. 6A, vi).
Interestingly, TNIK inhibition also down-regulated the c-Jun
but not the JNK expression. The data supports the notion that
TNIK and JNK/c-Jun reciprocally regulate each other in a pos-
itive feedback manner. To further rule out the possibility that
WBP2 may regulate TNIK expression and/or JNK/c-Jun
activity through the basal Wnt activity, we down-regulated
the endogenous �-catenin or inhibited the �-catenin activity
at the basal state. Our data showed that WBP2 overexpres-
sion could still up-regulate the basal TNIK expression and
JNK/c-Jun phosphorylation even in the presence of
�-catenin knockdown (Fig. S3A) or Wnt inhibitor-FH535
(Fig. S3B). This reconfirms the “priming” role of WBP2 by

Figure 5. A, qPCR (i) and IB (ii) analysis of TNIK expression upon WBP2 manipulation. MDA-MB-231 cells were infected with lentiviruses expressing WBP2
shRNAs and transfected with vector or WBP2 plasmid for 72 h before harvest. (iii) Analysis of WBP2 and TNIK up-regulation in breast cancer patients were
performed on cBioPortal (www.cbioportal.org/) (77, 78). The odd ratios are originally generated as log odd ratios that were subsequently transformed by the
natural exponential function. B, WBP2/WNT3A-induced up-regulation of TCF reporter activity (i) as well as AXIN2 expression and active �-catenin level (ii) were
abolished by the TNIK inhibitor, NCB-0846 treatment in MDA-MB-231 cells. DMSO was used as the vehicle control.

WBP2 primes Wnt response in TNBC

J. Biol. Chem. (2018) 293(52) 20014 –20028 20021

http://www.jbc.org/cgi/content/full/RA118.005796/DC1
http://www.jbc.org/cgi/content/full/RA118.005796/DC1
http://www.cbioportal.org/


up-regulating the JNK/c-Jun activity and TNIK expression
in an WNT3A-independent manner.

GPS1, a WBP2-induced protein, acts upstream of JNK/c-Jun
and TNIK

GPS1, an essential component of the COP9 signalosome
complex (CSN) involved in various cellular and developmental
processes, was the top hit on the list of Wnt-independent,
WBP2-regulated proteins from the proteomics dataset. One
study demonstrated that GPS1 could enhance JNK activity (54)
and this could be abolished by Asb-4, which reduces the cyto-
solic protein levels of GPS1. Thus GPS may mediate activation
of the JNK/c-Jun pathway by WBP2. The mRNA–protein asso-
ciation analysis showed that GPS1 mRNA did not change upon
WBP2 depletion, suggesting that WBP2 regulates GPS expres-

sion in a transcription-independent manner. Validation studies
in Fig. 6B, i, showed that WBP2 knockdown down-regulates
GPS1 protein expression. The converse is true when WBP2 was
overexpressed (Fig. 6B, ii).

The above data led us to test the hypothesis that the WBP2-
mediated increase in GPS1 contributes to activation of JNK/
Jun. Prior to that, the potential role of GPS1 in WBP2-mediated
Wnt pathway activation was investigated. The results showed
that GPS1 knockdown significantly abolished the WBP2-
driven TCF reporter activity in MDA-MB-231 cells, concomi-
tant with the molecular down-regulation of WBP2/WNT3A-
induced active �-catenin level and AXIN2 expression (Fig. 6B,
iii and iv). Next, we explored if GPS1 acts along or in parallel
with JNK/c-Jun and/or TNIK in WBP2-mediated Wnt pathway

Figure 6. A, (i) enriched c-Jun/AP-1– binding sites in the promoter region of TNIK. The image displays the most relevant transcription factor– binding
sites in this gene promoter as predicted by SABiosciences Text Mining Application and the UCSC Genome Browser. IB analysis of JNK/c-Jun expression/
phosphorylation upon WBP2 exogenous expression (ii) or depletion (iii) in MDA-MB-231 cells. (iv) WBP2/WNT3A-induced up-regulation of TCF reporter
activity were abolished by the JNK inhibitor JNK-IN-8 treatment in MDA-MB-231 cells. DMSO was used as the vehicle control. (v) JNK1 � 2 siRNAs
knockdown combined with JNK inhibitor JNK-IN-8 abolished the WBP2/WNT3A-induced TNIK and AXIN2 expression and active �-catenin level in
MDA-MB-231 cells. (vi) TNIK inhibition via NCB-0846 treatment abolished the WBP2/WNT3A-induced phosphorylation of JNK/c-Jun in MDA-MB-231
cells. B, IB analysis of GPS1 protein expression upon WBP2 depletion (i) or overexpression (ii) in MDA-MB-231 cells. WBP2-induced up-regulation of TCF
reporter activity (iii) and AXIN2/active �-catenin level (iv) were abolished by GPS1 siRNA knockdown in MDA-MB-231 cells. C, (i) IB analysis of JNK/c-Jun
and TNIK expression/activity upon GPS1 siRNA knockdown in MDA-MB-231 cells. (ii) WBP2-induced up-regulation of TNIK and JNK/c-Jun expression/
phosphorylation were abolished by GPS1 siRNA knockdown.
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regulation. As shown in Fig. 6C, i, GPS1 depletion resulted in
decreased phosphorylation of JNK and c-Jun as well as
down-regulation of TNIK expression. Moreover, WBP2-in-
ducedup-regulationofTNIKexpressionandJNK/c-Junphos-
phorylation could be significantly abolished by GPS1 knock-
down (Fig. 6C, ii). Thus, GPS1, TNIK, and JNK/c-Jun may
act together in the same regulatory axis in WBP2-mediated
Wnt pathway activation.

WBP2 promotes breast cancer growth through JNK/TNIK and
sensitizes TNBC to JNK/TNIK pharmacological inhibitors

It is conceivable that the function of WBP2 in breast cancer
depends on TNIK. As shown in Fig. 7A, i, the increase in cell
proliferation as a result of exogenous expression of WBP2 in
MDA-MB-231 could be significantly abolished by TNIK
knockdown. Similarly, the decrease in anchorage-dependent

2D (Fig. 7A, ii) and -independent 3D (Fig. 7A, iii) cell growth
caused by WBP2 knockdown could be rescued by exogenous
expression of TNIK.

Next, we surmise that pharmacological disruptions of JNK
and TNIK would suppress growth of WBP2-positive TNBC. To
this end, we investigated if WBP2/Wnt-mediated anchorage-
dependent cell proliferation could be impaired by JNK or TNIK
inhibitors. As shown in Fig. 7B, the increase in WNT3A-in-
duced cell proliferation as a result of exogenous WBP2 expres-
sion was drastically abolished by the JNK inhibitor JNK-IN-8
(Fig. 7B, i) and TNIK inhibitor NCB-0846 (Fig. 7B, ii).

Activation of the JNK/TNIK pathway by WBP2 may lead to
pathway addiction. We hypothesized that higher WBP2 expres-
sion sensitizes cells to the inhibition of JNK and/or TNIK. To
this end, the dose-response curves for the JNK inhibitor JNK-

Figure 7. A, (i) WBP2-induced 2D proliferation of MDA-MB-231 could be partially abolished by TNIK siRNA knockdown. The anchorage-dependent 2D (ii) and
-independent 3D (iii) cell proliferation of MDA-MB-231 were decreased by WBP2 siRNA knockdown and this could be partially rescued by exogenous TNIK
expression. B, WBP2/WNT3A-induced 2D proliferation of MDA-MB-231 could be significantly abolished by JNK inhibition via (i) JNK-IN-8 and (ii) TNIK inhibition
via NCB-0846. C, (i) dose-response 2D and 3D growth curve for TNIK inhibition via NCB-0846 in MDA-MB-231 upon WBP2 exogenous expression or
siRNA/shRNA knockdown. (ii) Tabulated IC50 in summary for TNIK inhibitor, NCB-0846 for MDA-MB-231 with WBP2 OE or KD in 2D or 3D growth. The p value is
calculated by the extra sum-of-squares F test.
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IN-8 and TNIK inhibitor NCB-0846 were obtained by measur-
ing the 2D and 3D cell growth/viability of MDA-MB-231 TNBC
cells with (a) WBP2 stable expression, (b) WBP2 transient
siRNA knockdown, and (c) WBP2 stable shRNA knockdown.
The data for TNIK and JNK inhibitors are shown in Fig. 7C, i,
and Fig. S3C, respectively. In general, the TNIK inhibitor dis-
played stronger inhibition than JNK inhibitor. In particular, the
3D rather than 2D viability of the TNBC cells was more prom-
inently affected by the TNIK inhibitor than JNK inhibitor. A
recent study (55) comparing the cancer cells in 2D versus 3D
culture also revealed differences in their drug responses, where
the 3D models displayed stronger anti-tumor responses to AKT
or the mitogen-activated protein kinase pathway inhibitors
compared with those in 2D models. This is attributed to the
distinct rewiring of signaling in the 3D culture and during treat-
ment. The better drug response in 3D culture compared with
2D was similarly observed in other studies also (56, 57). The
IC50 calculated from their dose-response curves were summa-
rized and tabulated in Fig. 7C, ii, and Fig. S3D. Overall, cells
with higher WBP2 expression were more sensitive to the JNK/
TNIK inhibition than their vector control by up to 15.65-fold,
whereas cells with WBP2 knocked down were more resistant
to JNK/TNIK inhibition compared with control by up to
6.91-fold.

Discussion

This study is an attempt to elucidate the molecular action of
WBP2 signaling in Wnt signaling and TNBC by unraveling the
intricate network of signaling pathways and genes that underlie
the function of the WBP2 oncogene alone or in the presence of
Wnt ligand. WBP2 is demonstrated to be involved in the Wnt-
induced transcriptional program associated with a core set of
genes in MDA-MB-231 TNBC cells, with up to 82% of the Wnt
target genes being dependent on WBP2.

As the most pervasive Wnt target gene whose expression
depends on WBP2, the biological function of AXIN2 has not
been unambiguously recognized and it has been assumed to act
as a negative regulator of Wnt signaling through a negative
feedback loop targeting �-catenin, because its paralog AXIN1 is
the core component of the �-catenin destruction complex (58 –
60). However, we identified AXIN2 as a robust target gene of
Wnt/WBP2 signaling in TNBC cells, and it was essential for
Wnt-induced cell migration and colony formation. Our find-
ings are supported by several studies, which also showed that
AXIN2 plays important roles in Wnt-induced cancer progres-
sion. Yook et al. (61) demonstrated that Wnt-induced AXIN2
functions as a nucleocytoplasmic chaperone for GSK3. It regu-
lates the cytoplasmic translocation of GSK3, and leading to the
stabilization of nuclear SNAIL1 protein, which plays a key role
in Wnt-induced breast cancer cell migration and invasion. A
similar phenomenon was observed by Wu et al. (62) in colorec-
tal cancer, in which up-regulation of AXIN2 led to a marked
increase in Snail1 activity and induction of EMT. These results
suggest a pro-cancer function of AXIN2 other than a negative
feedback regulator.

We postulated that WBP2 promotes Wnt signaling by prim-
ingcancercellsbyconferringsuitablemolecularconditionsinde-
pendent of Wnt. TNIK and GPS1 were two targets from the

transcriptomic and proteomic datasets, respectively, which
were identified to be up-regulated by WBP2 in the basal condi-
tion. The lack of overlapping genes/proteins that are differen-
tially expressed in both the RNA-Seq and proteomics studies is
probably due to: 1) the relatively lower coverage of the pro-
teomics data (2,035 proteins) compared with RNA-Seq data
(19,301 genes) and 2) the proteins identified by proteomics
could be regulated mainly at the post-transcriptional and/or
translational levels as mRNA levels of the majority of proteins
detected were not changed (refer to Fig. 4C, ii). These genes
were not in the list of RNA-seq data because their fold-change,
p value, or FDR did not meet the criteria during data processing.
Nevertheless, our data suggest that WBP2 primes cellular
response to Wnt by up-regulating GPS1 expression, which acti-
vates the JNK/Jun pathway, thus promoting transcription/ex-
pression of TNIK and activation of AXIN2 expression. Further-
more, JNK/c-Jun phosphorylation/activation generates a
positive feedback loop through TNIK. This may explain how
WBP2 contributes to the early-phase expression of Wnt target
genes such as AXIN2. On the other hand, further investigations
are required to confirm if c-Jun plays a direct role in transcrip-
tional regulation of TNIK expression through its binding to the
TNIK promoter and this regulation is modulated by the WBP2–
GPS1–JNK signaling axis and Wnt stimulation.

The study identified the JNK/c-Jun pathway as a novel node
through which WBP2 activates Wnt signaling. On the other
hand, Wnt signaling activates and cross-talks to the noncanoni-
cal, �-catenin-independent pathways, including the JNK path-
way (63–67). Interestingly, like GPS1 and TNIK, the WBP2
target gene AXIN2, being the essential component in both
canonical and noncanonical Wnt pathways, was capable of
inducing JNK activity through its MEKK1 binding and self-
association domains (68). Although the latter was not tested in
our study, these observations supports the notion that WBP2 is
a key activator of the JNK pathway. Wnt and JNK pathways are
intricately linked as they operate both in parallel and synergis-
tically. Together, they cooperate to activate a subset of genes
that are common targets for both pathways, such as c-myc and
cyclin D1 (69, 70). The c-Jun gene itself is a well-characterized
Wnt target gene (71, 72). JNK2, and to a much lesser extent
JNK1 regulates canonical Wnt signaling via phosphorylating
and inducing nuclear translocation of �-catenin (73). TCF4 is
transcriptionally regulated through activated JNK signaling as
the TCF4 promoter region is a target for phosphorylated c-Jun
(74). It has also been observed that c-Jun interacts with both
�-catenin (69) as well as TCF4 (75) in the canonical Wnt sig-
naling. This study positions WBP2 as a part of a sophisticated
signaling network that drives the Wnt/JNK function.

Wnt-independent WBP2 target genes that might contribute
to the molecular etiology of TNBC through other pathophysi-
ological processes may be discovered from the omics datasets.
For example, inflammation-associated genes, such as IL11,
TLR3, IL23A, IL8, IL1B, CSF3, CXCL1, CXCL3, and cell adhe-
sion molecules including ADRM1, PVRL1, COL4A6, COL4A1,
COL4A3, CSPG4, and ITGB3 are putative WBP2 targets. These
multiple pathways and molecules regulated by WBP2 are likely
to cooperate and contribute to the oncogenic function of
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WBP2. This creates opportunities for further investigation into
the function and mechanism of WBP2 in cancer biology.

In conclusion, besides the Wnt-induced transcription co-ac-
tivation function of WBP2 reported previously (21), WBP2 reg-
ulates Wnt signaling in TNBC cells via Wnt-independent prim-
ing effects. The study has successfully mapped a few key players
in a WBP2-associated signaling axis that contribute to the
molecular soil that primes the response of TNBC cells to Wnt
signaling. The GPS1/JNK/Jun/TNIK pathway may be just one
of the several signaling axes that WBP2 employs to facilitate a
Wnt signaling pathway. The study has implications on preci-
sion medicine of TNBC, for which there is no clinically
approved therapeutic target. The molecular soil provided by
WBP2 is a potential source of new primers as drug targets and
companion diagnostics.

Experimental procedures

Antibodies and reagents

WBP2 mAb (MABS441 clone 4C8H10) was purchased from
EMD Millipore (Billerica, MA); anti-�-catenin and anti-TNIK
mouse monoclonal antibodies were from BD Biosciences (San
Diego, CA); anti-c-Jun (clone 60A8), anti-phospho-c-Jun (Ser-
73, clone D47G9), anti-JNK, anti-phospho-JNK (Thr-183/Tyr-
185), anti-nonphospho (active)-�-catenin (Ser-33/37/Thr-41,
clone D13A1), and anti-AXIN2 (clone 76G6) rabbit antibodies
were obtained from Cell Signaling Technology Inc. (Danvers,
MA); anti-GPS1/CSN1 was obtained from Abcam (Cambridge,
UK). Other antibodies, plasmids, reporters, siRNA, and shRNA
sequences used are detailed in the supporting data.

TNIK inhibitor NCB-0846, and JNK inhibitor JNK-IN-8
were obtained from Selleck Chemicals (Houston, TX). Wnt/�-
catenin inhibitor FH535 was obtained from Sigma.

Cell culture, treatments, and lysis

MCF10A, MCF7, MDA-MB-231, SKBR3, MDA-MB-468,
BT549, HeLa, and HEK293 cells were obtained from American
Type Culture Collection (Manassas, VA). The culture condi-
tions for the cell lines, procedures for treatment of cells with
inhibitors/ligands, transient/stable transfection/transduction,
and cell lysis/immunoblotting are described in the supporting
data.

Dual luciferase reporter assay and qPCR

The dual luciferase reporter assay (Promega) was performed
according to the manufacturer’s instructions and quantified
using Luminoskan Ascent Microplate Luminometer (Thermo
Scientific). Firefly signals were normalized to Renilla signals.
RNA extraction and qPCR of mRNA are described in the sup-
porting data.

In vitro cell-based assays

The colony-formation ability was assayed by clonogenic
assay where 1000 cells were seeded in 6-well plates and incu-
bated for 2–3 weeks until the colonies could be clearly observed
by eye-sight. The plates were then fixed with methanol and
stained with crystal violet to visualize the colonies (25% meth-
anol, 0.5% crystal violet). The analysis was done using the

ImageJ-plugin “ColonyArea,” which is optimized for rapid and
quantitative analysis of focus-formation assays conducted in 6-
to 24-well dishes (76).

For transwell-migration assays, 2 � 105 cells were seeded in
serum-free medium with or without rWNT3A in the top cham-
bers of a 96-transwell plate with polycarbonate membrane
chambers (8-�m pore size, Cell Biolabs), and medium contain-
ing 10% fetal bovine serum was added to the bottom chambers
as chemoattractant. After 12–16 h incubation, the top nonmi-
grated cells were removed; migrated cells on the bottom were
subjected to H&E staining for analysis.

For cell-viability assay, 2500 cells were seeded in triplicate in
96-well plates and incubated overnight before being treated
with various concentrations of JNK or TNIK inhibitor for 3
days. For assay involving WNT3A stimulation, the cells were
seeded in culture medium with 0.5% fetal bovine serum. The
cell viability was measured via CellTiter-GLO 2.0 assay (Pro-
mega, Madison, WI). For the 3D cell-viability assay, the cells
were seeded in ultra-low-attachment plates and measured via
CellTiter-Glo 3D Cell Viability Assay (Promega). All assays
were performed according to the manufacturers’ instructions.
Results from the viability assays are expressed as percentage of
the vehicle-treated control and error bars indicate standard
deviation.

RNA-Seq analysis

Total RNA were extracted from cells and sent for next-gen-
eration RNA-Seq by BGI (Shenzhen, China). The gene expres-
sion level is calculated by the reads per kilobase/million
mapped reads method. Each sample was prepared as biological
triplicates to ensure the reliability of RNA-Seq data.

ITRAQ-LC-MS analysis

Proteins from each sample were subjected to iTRAQ labeling
according to the manufacturer’s protocol (Applied Biosystems,
Framingham, MA). Sample preparation for iTRAQ labeling,
MS and data analysis are described in the supporting data.

Analysis of WBP2 mRNA expression and CNA in clinical
datasets

Two large volume clinical breast cancer tissue datasets:
TCGA and METABRIC, were used to examine the expression
and CNA of WBP2 and its association with patient survival and
other phenotypes. These datasets were analyzed and visualized
through cBioPortal (http://www.cbioportal.org/) (77, 78),
UCSC Xena (http://xena.ucsc.edu/), and Kaplan-Meier Plot-
ter (http://kmplot.com/analysis/).6 Analysis of the associa-
tion between WBP2 and TNIK in breast cancer was detailed in
the supporting data.

Statistical analysis

Data are presented as the mean � S.E. from at least three
independent experiments. Student’s t test was conducted to
analyze the data unless otherwise stated, and a difference was
considered significant if p � 0.05.

6 Please note that the JBC is not responsible for the long-term archiving and
maintenance of this site or any other third party hosted site.
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