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The pleiotropic interleukin-6 (IL-6)–type cytokine oncosta-
tin M (OSM) signals in multiple cell types, affecting processes
such as cell differentiation, hematopoiesis, and inflammation.
In humans, OSM exerts its effects through activation of either of
two different heterodimeric receptor complexes, formed by gly-
coprotein 130 (gp130) and either OSM receptor (OSMR) or leu-
kemia inhibitory factor receptor (LIFR). In contrast, the mouse
OSM orthologue acts mainly through dimers containing OSMR
and gp130 and shows limited activity through mouse LIFR.
Despite their structural similarity, neither human nor mouse
OSM signal through the other species’ OSMR. The molecular
basis for such species-specific signaling, however, remains
poorly understood. To identify key molecular features of OSM
that determine receptor activation in humans and mice, we gen-
erated chimeric mouse-human cytokines. Replacing regions
within binding site III of murine OSM with the human equiva-
lents showed that the cytokine’s AB loop was critical for recep-
tor selection. Substitutions of individual amino acids within this
region demonstrated that residues Asn-37, Thr-40, and Asp-42
of the murine cytokine were responsible for limited LIFR acti-
vation and absence of human OSMR/LIFR signaling. In human
OSM, Lys-44 appeared to be the main residue preventing mouse
OSMR activation. Our data reveal that individual amino acids
within the AB loop of OSM determine species-specific activities.
These mutations might reflect a key step in the evolutionary
process of this cytokine, in which receptor promiscuity gives
way to ligand-receptor specialization.

The interleukin-6 (IL-6)3 family encompasses 10 different
members; in addition to IL-6, these include ciliary neu-

rotrophic factor, cardiotrophin-1, leukemia inhibitory factor
(LIF), and OSM, among others (1–9). All of them adopt a
characteristic secondary structure, comprising a four-helical
bundle joined by loops (10 –13). Biological actions are medi-
ated by binding to receptor complexes in the cell membrane,
formed by gp130 and additional co-receptors such as LIFR
and OSMR (14). Upon activation, these complexes initiate
intracellular signaling events through phosphorylation of
components of different pathways, such as the mitogen-ac-
tivated protein kinases (MAPKs), the phosphoinositide 3-ki-
nase/protein kinase B (PI3K/Akt), and the Janus kinase/sig-
nal transducer and activator of transcription (STAT) (15).

Cytokines and receptors of the IL-6 family originate from a
small set of genes that underwent gene duplication (16, 17). As
a result, IL-6 class cytokines employ analogous receptor recog-
nition epitopes to interact with receptors. Binding site II,
required for gp130 recruitment, is located in helices A and C;
binding site III, necessary for recognition of co-receptors such
as OSMR or LIFR, is formed by residues in the N-terminal
region of helix D as well as the loops between helices A and B
and helices B and C (13).

Within the IL-6 family, OSM is regarded as unique due to its
ability to bind with high affinity to two different receptor com-
plexes, the shared LIFR/gp130 and the specific OSMR/gp130
(3, 18). This dual-receptor activation, first described for human
OSM (hOSM), has also been confirmed for the rat orthologue
(19). In contrast, mouse OSM (mOSM) was initially reported to
lack LIFR/gp130 signaling ability in mice (20, 21). More recent
work has revealed the existence of a low-affinity interaction
between mOSM and the murine LIFR resulting in STAT3- but
not STAT1-mediated signaling (22, 23). Nonetheless, all stud-
ies agree on fundamental differences in cytokine-receptor
interactions of human and mouse OSM. This fact is further
emphasized by the lack of cross-species activity; hOSM signals
through murine LIFR but not mouse OSMR, whereas mOSM
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cannot activate any of the human receptors (Fig. 1, A and B) (19,
21). However, the underlying molecular features differentiating
mOSM and hOSM remain enigmatic.

Here we investigated the molecular determinants of mouse
and human OSM for controlling receptor recognition and acti-
vation. Chimeric cytokines were created to assess the relevance
of binding site III region of mouse OSM for receptor interac-
tions, as components of this region are crucial for initiation of
hOSMR signaling (24). Replacement of the AB loop in mOSM
by the corresponding hOSM amino acid sequence resulted in a
chimera that initiates mLIFR as well as hOSMR and hLIFR sig-
naling. Ensuing site-directed mutagenesis experiments identi-
fied residues Asn-37, Thr-40, and Asp-42 in the AB loop of
mOSM to determine limited activation of mLIFR and human
receptor activity by mOSM. Furthermore, substitutions of
these residues in hOSM resulted in variants capable of mOSMR
activation, highlighting the importance of the Asp to Lys
exchange for evading mOSMR signaling.

We reason that the generation of mouse OSM variants essen-
tially owning the same functional features as human OSM will

facilitate future preclinical studies in mice. Our results also
offer an explanation for the potential evolutionary path of this
cytokine, in which the spatial rearrangements that resulted in
promiscuous OSMR and LIFR activation (24) are followed by
amino acid mutations promoting receptor specialization.

Results

Design and production of mouse-human OSM chimeric
cytokines

The crystal structure of mOSM has not been described so
far, but the high degree of sequence identity between the
murine and human OSM orthologues allows generation of a
homology model (Fig. 1C) based on data from the published
hOSM structure (Protein Data Bank code 1EVS) (13). We
recently reported the existence of two specific regions within
binding site III of hOSM, the AB loop and N-terminal helix
D, determining hOSMR interaction (24). Reasoning that the
same regions might also influence species-specific receptor
recognition, we aligned the amino acid sequences of mouse

Figure 1. Design of murine/human OSM chimeras. A and B, mouse and human OSM possess different signaling properties. C, three-dimensional model of
murine OSM, with the AB loop and D-helix regions that modulate OSMR activation in the human cytokine highlighted. D, alignment of the AB loop and D-helix
regions in binding site III of mouse and human OSM. Murine sequences were replaced by human equivalents to create murine-based OSM chimeras.
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and human OSM using ClustalW (25) and compared the AB
loop and helix D, selecting two different replacement lengths
for each region.

The first nonconserved amino acid in the AB loop (Leu in
mOSM) was chosen as the starting point of both substitutions.
In the shorter chimera (AB1) the replacement was 12 amino
acids long, stopping just before the conserved Cys required to
maintain the secondary structure of OSM (26). This region was
extended by six additional amino acids in the AB2 chimera.
In both D-helix chimeras, the substitution included the res-
idue immediately before the second conserved Cys (Ser in
mOSM). The D1 chimera included 11 amino acids, whereas
the longer D2 replaced 15 residues of mOSM by 18 residues
of hOSM (Fig. 1D).

Because we knew from previous experience that bacterial
expression of hOSM-based chimeras is not efficient (24), we
employed a mammalian expression system (FreeStyle 293-F
cells) for all experiments.

Murine and human receptor activation readout systems

OSM is unable to interact with OSMR without the contri-
bution of gp130, complicating the direct measurement of
OSM-OSMR binding affinity (18, 27). Furthermore, ligand–
receptor binding might not always be equivalent to receptor
signaling. Therefore, we monitored short-term phosphory-
lation changes in downstream signaling molecules, such as
STAT3, or the expression of genes regulated by OSMR acti-
vation, such as TIMP1 (28, 29). To determine murine recep-
tor activation, we identified a cell line (MH-S, murine alve-
olar macrophage cells) that exclusively expresses mLIFR but
not mOSMR. We also created a lentiviral-mediated mLIFR
knockdown cell line (NIH3T3, mouse embryo fibroblast
cells) to specifically monitor mOSMR signaling (Fig. S1). In
both cases, STAT3 Tyr-705 phosphorylation levels were
assessed 10 min post-stimulation as a reflection of receptor
activation. In addition, TIMP1 protein levels in NIH3T3
cells were measured 24 h post-stimulation as a specific read-
out for mOSMR activation (Fig. S2). Human receptor activa-
tion was measured using a similar approach, employing dif-
ferent cell lines (A375 cells for hOSMR, JAR cells for hLIFR)
and previously established short- and long-term readout sys-
tems, such as the assessment of STAT3 phosphorylation,
TIMP1 expression, and inhibition of A375 cell proliferation
after hOSMR activation (24).

The AB loop in binding site III of mouse OSM modulates
species-specific receptor activation

To assess the role of the OSM binding site III in species-
specific receptor signaling, we first generated mOSM-based
chimeric cytokines with different replacements in either the AB
loop or N-terminal D-helix and analyzed them in the murine
readout systems (Fig. 2A). Both AB loop chimeras became capa-
ble of phosphorylating STAT3 in mLIFR-specific MH-S cells,
whereas N-terminal helix D replacements had a much smaller
impact on mLIFR signaling (Fig. 2B), clearly suggesting that the
murine AB loop residue composition is the main cause for the
weak interaction with mLIFR. Intriguingly, all chimeras still
maintained the ability to activate mOSMR, as indicated by up-

regulation of TIMP1 expression in NIH3T3 cells (Fig. 2C) and
high levels of STAT3 Tyr-705 phosphorylation in stable mLIFR
knockdown cells (Fig. 2, E–G).

Next we tested whether the different mouse-human
replacements showed human receptor activation. In line
with the mLIFR results, the mouse AB loop variants induced
clear receptor activation of both hOSMR and hLIFR. We
observed that AB chimeras increased STAT3 phosphoryla-
tion in hOSMR-specific A375 cells and hLIFR-specific JAR
cells (Fig. 3, A–C). Longer-term stimulations confirmed
these findings, with higher expression of TIMP1 in A375
cells and total STAT3 in JAR cells 24 h after stimulation (Fig.
3, D–F). Finally, the mouse-human AB loop chimeras dis-
played hOSMR-mediated inhibition of A375 cell prolifera-
tion after 5 days of treatment (Fig. 3G).

Individual residues in the AB loop of mouse OSM are
responsible for species-specific receptor activation

Our results suggested that a limited number of amino acids
within the mOSM AB loop is responsible for the species-
specific signaling of OSM. To identify these residues more
precisely, we focused on differences between the human and
mouse forms present in the shorter AB1 chimera (Fig. 4A).
Two of the seven interspecies replacements (A45E and
A46H) appeared unlikely to impact receptor activation,
because hOSM alanine point mutants for these positions still
retain full signaling ability through the human receptors
(24).

The remaining five replacements (L35I, N37G, N39D, T40V,
and D42K) were introduced into a mOSM mutant, which
mirrored the behavior of the AB loop chimeras in terms of
mouse receptor activation (Fig. 4, B–G). Quadruple mutants
were also created to investigate the importance of each indi-
vidual substitution (Fig. 4, B–G). Mutants in which Asn-37,
Thr-40, or Asp-42 was still present showed impaired mLIFR
signaling compared with the quintuple mutant (Fig. 4B),
whereas mOSMR activity remained unaffected by any
replacements (Fig. 4, C and F).

As in the case of the chimeras, the mOSM variants recapitu-
lated human receptor signaling, as indicated by activation of
both the hOSMR and hLIFR (Fig. 5, A–G). After a 10-min stim-
ulation, only the quintuple mutants and those quadruple
mutants containing N37G, T40V, and D42K replacements dis-
played more than 50% of the P-STAT3 signal intensity of hOSM
through either hOSMR or hLIFR (Fig. 5, A–C). hOSMR-depen-
dent TIMP1 expression and hLIFR-dependent STAT3 expres-
sion were similarly affected 24 h after stimulation (Fig. 5, D–F),
as was hOSMR-mediated inhibition of A375 cell proliferation
(Fig. 5G), again indicating closer similarities between the human
receptors and mLIFR than to mOSMR.

We subsequently generated single, double, and triple
mOSM mutants to examine in more detail effects of N37G,
T40V, and D42K replacements for OSMR and LIFR activa-
tion (Fig. 6A). Single substitutions led to a modest increase in
mLIFR signaling, whereas the addition of more than one
substitution resulted in a significant increase in activation,
which was further enhanced when all three substitutions
were included (Fig. 6B). Such alterations had no detectable
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impact on mOSMR signaling (Fig. 6, C–G), which is in line
with results obtained from other mOSM mutants generated
in this study. The new mOSM variants were able to initiate
human receptor signaling, with the triple mutant again
showing the best response in short- and long-term receptor
activation readout systems (Fig. 7, A–G).

Equivalent residues in the AB loop of human OSM are
responsible for the absence of mouse OSMR activity

So far, our data indicated a specific role of residues Asn-37,
Thr-40, and Asp-42 of the mOSM AB loop in preventing
mLIFR and hOSMR/hLIFR activity. To examine whether the
effect of these modifications is restricted to the murine cyto-
kine, we replaced the equivalent amino acids (Gly-39, Val-42,
and Lys-44, respectively) in the AB loop of hOSM, in addition to

exchanging the whole loop (Fig. 8A). As expected, the presence
of two or three substitutions abrogated the ability of hOSM to
activate mLIFR (Fig. 8B). This effect was accompanied by acqui-
sition of mOSMR signaling for all mutants containing the K44D
exchange (Fig. 8, C–G), suggesting a possible participation of
these amino acids in mOSMR recognition as well as in the pre-
vention of mLIFR signaling.

Next, we tested the ability of hOSM variants to activate the
human receptors. In agreement with previous reports (24),
hOSMR activity was critically dependent on the presence of
Gly-39 (Fig. 9, A–D). On the other hand, hLIFR activity was
retained to some extent by all mutants, probably reflecting
the more relaxed requirements of hLIFR for ligand interaction,
although receptor activity declined 2–3-fold lower when several
substitutions were combined (Fig. 9, B–F).

Figure 2. The AB loop of mouse OSM prevents mouse LIFR activation. A, representation of different domain exchanges in mouse OSM-based chimeras by
corresponding hOSM counterparts. B, STAT3 phosphorylation levels in MH-S cells (mLIFR activity) 10 min after cytokine stimulation. C, TIMP1 levels in NIH3T3
cells (mOSMR activity) 24 h after stimulation. D, relative quantification of receptor activation by each chimeric cytokine; P-STAT3 band intensities were first
normalized against total STAT3 levels, and TIMP1 band intensities were normalized against pan-actin levels. Data were then transformed relative to the basal
(Ctrl) signal, which was set to 0. Values are presented as mean � S.E. (error bars), n � 5 independent cultures; not significant (n.s.), p � 0.05; **, p � 0.01. E and
F, STAT3 phosphorylation levels in NIH3T3 cells transduced with a control vector (mOSMR and mLIFR activity) or shRNA directed against mLIFR (mOSMR
activity) 10 min after cytokine stimulation. G, relative quantification of receptor activation by each chimeric cytokine: P-STAT3 band intensities were first
normalized against total STAT3 levels and then transformed relative to the basal (Ctrl) signal, which was set to 0. Values are presented as mean � S.E., n � 5
independent cultures; not significant (n.s.), p � 0.05; **, p � 0.01.
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Modulation of receptor activation by the AB loop is not
restricted to STAT3 signaling

Taken together, our results suggest that the amino acid com-
position of OSM’s AB loop decisively influences species-spe-
cific receptor activation profiles of the murine and human cyto-
kine orthologues. However, all readout systems employed
throughout this work are dependent on STAT3 activation,
which leaves the possibility that the observed changes in signal-
ing were restricted to STAT3.

To make sure that the observed effects are not restricted to
STAT3 signaling, we examined short-term signaling effects
induced by some of the most relevant mutants through two of
the other main OSMR-dependent pathways, STAT1 and
STAT5 (27, 30). We found that mOSM, the mOSM and hOSM
triple mutants, and the mOSM and hOSM AB chimeras
showed increased phosphorylation of STAT3, STAT1, and

STAT5 in mLIFR-knockdown murine cells after 10 min of cyto-
kine treatment (Fig. 10, A and B). In contrast, only hOSM, hLIF,
the mOSM triple mutant, and mOSM AB1 chimera were able
to phosphorylate STAT1 as well as STAT3 in the mLIFR-spe-
cific MH-S cells (Fig. 10, C and D). STAT3 and STAT1 phos-
phorylation changes driven by mOSMR activation were still
detectable 24 h after stimulation, which was not the case for
STAT5 (Fig. 11, A and B). For mLIFR-initiated signaling,
changes in STAT3 but not STAT1 were easily identified after
24 h (Fig. 11, C and D).

We also analyzed short-term activation of the upstream reg-
ulator SHP2 and other OSMR-related pathways, such as PI3K/
AKT and MAPKs (14, 15). In line with activation of STAT3, we
observed increased phosphorylation of SHP2, AKT, and differ-
ent MAPKs (ERK1/2, JNK, and p38) upon administration of the
OSM triple mutants and AB loop chimeras (Fig. 12, A–D). We

Figure 3. The AB loop of mouse OSM prevents human receptor activation. A and B, STAT3 phosphorylation levels in A375 cells (hOSMR activity) and JAR
cells (hLIFR activity) 10 min after stimulation. C, relative quantification of receptor activation by each mutant cytokine: P-STAT3 band intensities were first
normalized against total STAT3 levels. Data were then transformed relative to the basal (Ctrl) signal, which was set to 0. Values are presented as mean � S.E.
(error bars), n � 5 independent cultures. **, p � 0.01. D and E, TIMP1 levels in HepG2 cells (hOSMR activity) and STAT3 levels in JAR cells (hLIFR activity) 24 h after
mutant cytokine stimulation. F, relative quantification of receptor activation by each mutant cytokine: TIMP1 and STAT3 band intensities were first normalized
against pan-actin levels. Data were then transformed relative to the basal (Ctrl) signal, which was set to 0. Values are presented as mean � S.E., n � 5
independent cultures; not significant (n.s.), p � 0.05; **, p � 0.01. G, A375 cell proliferation after 5-day cytokine stimulation, normalized to the proliferation of
untreated cells. Values are presented as mean � S.E., n � 3 independent cultures; not significant (n.s.), p � 0.05; **, p � 0.01.
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further found increased levels of other well-known OSMR tar-
get genes, such as HIF1�, SOD2, or VEGF, after 24 h (31–33),
similar to the TIMP1 expression pattern (Fig. 13, A and B).

Overall, the observed differences were consistent among the vari-
ous signaling pathways and target genes, validating the general influ-
ence of the AB loop of OSM for determining receptor activation.

OSM AB loop in species-dependent signaling
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Discussion

Promiscuous activation of two different receptor complexes
with high affinity is a unique characteristic of OSM within the
IL-6 family (18, 34). Interaction of the human cytokine with
OSMR and LIFR is mediated by OSM’s BC loop and N-terminal
AB loop and D-helix regions, collectively known as binding site
III (13). A conserved FXXK motif in helix D of OSM is crucial
for recognition of both receptors, whereas a small number of
amino acids in the AB loop of hOSM were recently found to be
key for hOSMR activation (13, 24).

A second defining feature of OSM is the species-specific
signaling. hOSM interacts with hOSMR/gp130 and hLIFR/
gp130 with high affinity, whereas mOSM combines full
mOSMR/gp130 activation with only a limited ability to
interact with mLIFR/gp130 (20 –23). In addition, mOSM
shows no cross-species reactivity with either human recep-
tor, a characteristic also found with other murine IL-6 family
members, such as mLIF and mIL-31 (19, 35, 36). In turn,
hOSM is unable to signal through mOSMR but activates
mLIFR/gp130, meaning that these two OSM orthologues
share no high-affinity receptor complexes despite the high
similarity (�50%) (34). In contrast, hOSM and hLIF activate
the LIFR with high efficiency despite more limited similarity
(�30%) at the amino acid level (37).

Here, we generated several mouse-human OSM chimeras
to demonstrate a pivotal role of the cytokine’s AB loop in
species-dependent signaling. Our results show that intro-
duction of the human AB loop in mOSM led to hOSMR and
LIFR activation, whereas the presence of the murine loop in
hOSM enabled mOSMR signaling. These findings reinforce
the existence of evolutionarily selected receptor binding
modules in the IL-6 family that are responsible for specific
ligand–receptor interactions of this cytokine class. This
model was first proposed for the LIFR-binding site III of
ciliary neurotrophic factor and was later extended to the
OSMR-binding site III of hOSM and the LIFR-binding site
III of hLIF (24, 38).

Detailed examination of different substitutions in the
mouse-human AB loop chimera identified residues Asn-37,
Thr-40, and Asp-42 in mOSM as responsible for the lack of
affinity toward mLIFR and the human receptors. Of these,
the presence of Asn-37 might lead to significant alterations
in the AB loop’s secondary structure, because it replaces a
Gly residue conserved in both hOSM and hLIF and critical
for hOSMR activity (24). Thr is a slightly polar amino acid in
place of the nonpolar residue (Val) in hOSM, whereas the
positively charged Lys in the human cytokine is substituted
by a negative Asp in the murine orthologue (39). hOSM
acquired mOSMR signaling along with reduced hOSMR

activity due to the replacement of Lys by Asp (K44D). The
human Lys to murine Asp variation is also present in the IL-6
AB loop, where the Lys is assumed to contact with a nega-
tively charged residue the human receptor interface to medi-
ate receptor activation (40). Although we cannot offer direct
experimental evidence, it appears likely that the Lys-44 res-
idue in hOSM plays a similar role for the hOSMR. In any
case, the identity of this charged residue in the OSM AB loop
constitutes a clear point of divergence between the human
and murine receptors.

Whereas the AB loop plays a central role in determining
receptor signaling, our data suggest that additional domains
influence OSM–receptor interaction. This would explain
the lower levels of receptor activation in all mouse-human
chimeras compared with native cytokines, in particular
when assessing signaling through the human receptors.
Especially intriguing is the fact that modifications in the
mOSM AB loop did not lead to a large impact on mOSMR
signaling, which constitutes a clear difference from hOSM.
This observation suggests the existence of mOSM–mOSMR
interacting regions outside the AB loop, allowing a higher
degree of variability in the loop’s composition before recep-
tor activation becomes compromised.

Our results offer some new insight into the evolution of
OSM. Soon after the discovery of LIF and OSM, it was pro-
posed that both cytokines originate from the same ancestral
gene through a duplication event (41–43). Given the low rate
of evolutionary changes in the LIF gene compared with OSM
(44), this common ancestral precursor might be much closer
to LIF than to OSM. Phylogenetic inference indicates that
mOSM is evolutionarily most distant from the ancestral pre-
cursor cytokine and therefore from LIF itself (Fig. 14A).

In contrast to prior hypotheses, which assume that new
protein–protein interactions are preceded by interface-dis-
rupting mutations in one of the proteins, which eventually
cause adaptations of its partner (45), we propose that acqui-
sition of new protein–protein interactions occurred via a
mutation causing promiscuity. Evolution through functional
promiscuity is a well-established process in the field of
enzyme evolution and has been recently extended to
protein–protein interactions, such as toxin–antitoxin pairs
(45, 46). In fact, it might be argued that evolution will not
select for nonfunctional intermediate states caused by inter-
face-disrupting mutations. In contrast, promiscuous mutant
proteins maintaining functionality at the expense of relaxed
specificity might not have detrimental effects on organism
fitness (45). Specificity for the new functions might eventu-
ally be attained due to the evolutionary pressures to mini-
mize cross-talk in biological interaction networks (47, 48).

Figure 4. A limited number of amino acids in the AB loop of mouse OSM prevent mouse LIFR activation. A, depiction of the region exchanged in
the shorter mouse OSM-based AB loop chimeras, with the differing amino acids between the mouse and human sequences highlighted. B, STAT3
phosphorylation levels in MH-S cells (mLIFR activity) 10 min after cytokine stimulation. C, TIMP1 levels in NIH3T3 cells (mOSMR activity) 24 h after
stimulation. D, relative quantification of receptor activation by each mutant cytokine; P-STAT3 band intensities were first normalized against total STAT3
levels, and TIMP1 band intensities were normalized against pan-actin levels. Data were then transformed relative to the basal (Ctrl) signal, which was set
to 0. Values are presented as mean � S.E. (error bars), n � 5 independent cultures; **, p � 0.01. E and F, STAT3 phosphorylation levels in NIH3T3 cells
transduced with a control vector (mOSMR and mLIFR activity) or shRNA directed against mLIFR (mOSMR activity) 10 min after cytokine stimulation. G,
relative quantification of receptor activation by each mutant cytokine; P-STAT3 band intensities were first normalized against total STAT3 levels and
then transformed relative to the basal (Ctrl) signal, which was set to 0. Values are presented as mean � S.E., n � 5 independent cultures; not significant
(n.s.), p � 0.05; **, p � 0.01.
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Figure 5. A limited number of amino acids in the AB loop of mouse OSM prevent human receptor activation. A and B, STAT3 phosphorylation levels in
A375 cells (hOSMR activity) and JAR cells (hLIFR activity) 10 min after stimulation. C, relative quantification of receptor activation by each mutant cytokine;
P-STAT3 band intensities were first normalized against total STAT3 levels. Data were then transformed relative to the basal (Ctrl) signal, which was set to 0.
Values are presented as mean � S.E. (error bars), n � 5 independent cultures; **, p � 0.01. D and E, TIMP1 levels in HepG2 cells (hOSMR activity) and STAT3 levels
in JAR cells (hLIFR activity) 24 h after mutant cytokine stimulation. F, relative quantification of receptor activation by each mutant cytokine: TIMP1 and STAT3
band intensities were first normalized against pan-actin levels. Data were then transformed relative to the basal (Ctrl) signal, which was set to 0. Values are
presented as mean � S.E., n � 5 independent cultures; **, p � 0.01. G, A375 cell proliferation after 5-day cytokine stimulation, normalized to the proliferation
of untreated cells. Values are presented as mean � S.E., n � 3 independent cultures; *, p � 0.05; **, p � 0.01.
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The species-dependent receptor activation profile of OSM
supports this sort of evolutionary process, completing a
novel model for OSM evolution (Fig. 14B). According to this
concept, the first step involved acquisition of a new function

(OSMR activation) by the ancestral precursor without loss of
its original signaling abilities. The resulting cytokine pos-
sessed a promiscuous signaling profile similar to human or
rat OSM, which strongly activates LIFR together with the

Figure 6. Asn-37, Thr-40, and Asp-42 in the AB loop of mouse OSM hinder mouse LIFR activation. A, location of the three amino acids indicated by
quadruple mOSM mutants to affect mLIFR signaling. B, STAT3 phosphorylation levels in MH-S cells (mLIFR activity) 10 min after cytokine stimulation. C, TIMP1
levels in NIH3T3 cells (mOSMR activity) 24 h after stimulation. D, relative quantification of receptor activation by each mutant cytokine; P-STAT3 band intensities
were first normalized against total STAT3 levels, and TIMP1 band intensities were normalized against pan-actin levels. Data were then transformed relative to
the basal (Ctrl) signal, which was set to 0. Values are presented as mean � S.E. (error bars), n � 5 independent cultures; **, p � 0.01. E and F, STAT3
phosphorylation levels in NIH3T3 cells transduced with a control vector (mOSMR and mLIFR activity) or shRNA directed against mLIFR (mOSMR activity) 10 min
after cytokine stimulation. G, relative quantification of receptor activation by each mutant cytokine: P-STAT3 band intensities were first normalized against
total STAT3 levels and then transformed relative to the basal (Ctrl) signal, which was set to 0. Values are presented as mean � S.E., n � 5 independent cultures;
not significant (n.s.), p � 0.05; **, p � 0.01.
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OSMR (19). As previously shown by our group, this adapta-
tion was achieved through changes in the ancestral cyto-
kine’s binding site III, exemplified by the acquisition of
OSMR activity in LIF-based chimeras with modified AB
loops and N-terminal D-helix regions (24). Such promiscu-
ous proteins then tend to evolve in concert with its receptor
to enhance specific signaling. In the case of OSM, only the
mouse orthologue displays such specialization, attained

through mutations in the AB loop that resulted in the loss of
high-affinity LIFR binding, perhaps facilitated by the higher
mutation rate in mice compared with humans (21, 23, 34,
49).

The presence of a second mOSM–mOSMR interaction
domain outside of binding site III might have also been key in
this evolutionary process, enabling the AB loop of mOSM to
change to minimize LIFR signaling. Identification and compar-

Figure 7. Asn-37, Thr-40, and Asp-42 in the AB loop of mouse OSM prevent human receptor activation. A and B, STAT3 phosphorylation levels in A375
cells (hOSMR activity) and JAR cells (hLIFR activity) 10 min after stimulation. C, relative quantification of receptor activation by each mutant cytokine; P-STAT3
band intensities were first normalized against total STAT3 levels. Data were then transformed relative to the basal (Ctrl) signal, which was set to 0. Values are
presented as mean � S.E. (error bars), n � 5 independent cultures; **, p � 0.01. D and E, TIMP1 levels in HepG2 cells (hOSMR activity) and STAT3 levels in JAR
cells (hLIFR activity) 24 h after mutant cytokine stimulation. F, relative quantification of receptor activation by each mutant cytokine; TIMP1 and STAT3 band
intensities were first normalized against pan-actin levels. Data were then transformed relative to the basal (Ctrl) signal, which was set to 0. Values are presented
as mean � S.E., n � 5 independent cultures; **, p � 0.01. G, A375 cell proliferation after 5-day cytokine stimulation, normalized to the proliferation of untreated
cells. Values are presented as mean � S.E., n � 3 independent cultures; *, p � 0.05; **, p � 0.01.
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ison of additional regions of OSMR mediating ligand interac-
tion in both species will be of great interest to further support
this hypothesis. Currently, the lack of high-resolution struc-
tures for OSMR complicates matters. Co-crystallization of
OSM with its receptors, or the application of cross-linking
techniques coupled with mass spectrometry, might help in this
regard (34, 50).

Finally, our work suggests potential practical applications,
because OSMR/gp130 signaling is involved a wide array of
physiological and pathological processes (34, 51). The more
restricted effects of mOSM compared with other OSM
orthologues have resulted in the extensive use of murine
models in this field. However, the higher complexity of the
human conditions (52), in which there is no specific OSMR/

Figure 8. Corresponding residues in the AB loop of human OSM impede mouse OSMR activation. A, depiction of the point mutations and the AB loop
domain exchange in hOSM-based cytokines. B, STAT3 phosphorylation levels in MH-S cells (mLIFR activity) 10 min after cytokine stimulation. C, TIMP1 levels in
NIH3T3 cells (mOSMR activity) 24 h after stimulation. D, relative quantification of receptor activation by each mutant cytokine; P-STAT3 band intensities were
first normalized against total STAT3 levels, and TIMP1 band intensities were normalized against pan-actin levels. Data were then transformed relative to the
basal (Ctrl) signal, which was set to 0. Values are presented as mean � S.E. (error bars), n � 5 independent cultures; **, p � 0.01. E and F, STAT3 phosphorylation
levels in NIH3T3 cells transduced with a control vector (mOSMR and mLIFR activity) or shRNA directed against mLIFR (mOSMR activity) 10 min after cytokine
stimulation. G, relative quantification of receptor activation by each mutant cytokine; P-STAT3 band intensities were first normalized against total STAT3 levels
and then transformed relative to the basal (Ctrl) signal, which was set to 0. Values are presented as mean � S.E., n � 5 independent cultures; not significant (n.s.),
p � 0.05; **, p � 0.01.
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gp130 activator, might raise doubts about the applicability of
these findings in humans. Because hOSM does not display
dual-receptor activation in mice, it has not been possible to
faithfully reflect human conditions in mice (21, 53). The new
tools that we have generated change this scenario. We are

now able to induce the same effects of OSM in mice as in
humans. We assume that future studies in mice based on the
use of “humanized” OSM variants will yield a much more
accurate picture of the therapeutic potential of this potent
cytokine.

Figure 9. Acquisition of mouse OSMR signaling by human OSM is accompanied by loss of human receptor activation. A and B, STAT3
phosphorylation levels in A375 cells (hOSMR activity) and JAR cells (hLIFR activity) 10 min after stimulation. C, relative quantification of receptor
activation by each mutant cytokine: P-STAT3 band intensities were first normalized against total STAT3 levels. Data were then transformed relative to
the basal (Ctrl) signal, which was set to 0. Values are presented as mean � S.E. (error bars), n � 5 independent cultures; **, p � 0.01. D and E, TIMP1 levels
in HepG2 cells (hOSMR activity) and STAT3 levels in JAR cells (hLIFR activity) 24 h after mutant cytokine stimulation. F, relative quantification of receptor
activation by each mutant cytokine; TIMP1 and STAT3 band intensities were first normalized against pan-actin levels. Data were then transformed
relative to the basal (Ctrl) signal, which was set to 0. Values are presented as mean � S.E., n � 5 independent cultures; **, p � 0.01. G, A375 cell
proliferation after 5-day cytokine stimulation, normalized to the proliferation of untreated cells. Values are presented as mean � S.E. (n � 3 independent
cultures); **, p � 0.01.
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Experimental procedures

Chimera construction and site-directed mutagenesis

Human OSM cDNA was a kind gift of Dr. Heike Hermanns
(University of Würzburg), whereas human LIF cDNA
(MHS6278-202857165) was purchased from Thermo Fisher
Scientific. The respective gene sequences including a C-termi-
nal His6 tag were amplified together with PacI and AscI restric-
tion sites and cloned into a pCAG-GS vector for mammalian
gene expression.

The nucleotide sequences of mouse OSM as well as the different
mouse OSM-based chimeras and point mutants were codon-op-
timized for expression in human cells using DNAWorks (54). The
resulting overlapping oligonucleotides were assembled using a
nested PCR protocol (55) and cloned in a pCAG-GS vector
through PacI and AscI restriction sites.

Chimeras and point mutants of human OSM were con-
structed by overlapping PCR, first generating the different frag-
ments forming each chimera by the use of primers incorporat-

Figure 10. Short-term changes in receptor activation are not restricted to STAT3 signaling. A, STAT3, STAT1, and STAT5 phosphorylation levels in NIH3T3
cells transduced with shRNA directed against mLIFR (mOSMR signaling) 10 min after cytokine stimulation. B, relative quantification of receptor activation by
each cytokine; P-STAT band intensities were normalized against total STAT levels, followed by data transformation relative to the basal (Ctrl) level, which was
set to 0. Values are presented as mean � S.E. (error bars), n � 5 independent cultures. C, STAT3, STAT1, and STAT5 phosphorylation levels in MH-S cells (mLIFR
signaling) 10 min after cytokine stimulation. D, relative quantification of receptor activation by each cytokine; P-STAT band intensities were normalized and
transformed as described above. Values are presented as mean � S.E., n � 3 independent cultures; not significant (n.s.), p � 0.05; *, p � 0.05; **, p � 0.01.
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ing the desired mutations with overlapping regions of 30
nucleotides. These fragments were then used as templates for a
second PCR to obtain the desired gene sequence flanked by
PacI and AscI restriction sites and inserted into a pCAG-GS
vector. All constructs were verified by DNA sequencing. For a
complete list of primers used, see Table S1.

Protein expression and purification

Eukaryotic expression was performed in suspension cultures
of FreeStyle 293-F cells (catalog no. R79007, Thermo Fisher
Scientific) following the manufacturer’s instructions. Superna-
tants were harvested 3 days after transfection for human OSM-
based cytokines, 4 days after transfection for mouse OSM-
based cytokines and 7 days after transfection for LIF-derived
cytokines, and were then subjected to nickel-nitrilotriacetic
acid affinity purification using standard procedures.

Cell lines

A375 cells (catalog no. 88113005) and MH-S cells (catalog
no. 95090612) were purchased from the European Collection of
Authenticated Cell Cultures. JAR cells (catalog no. ATCC
HTB-144) were purchased from the American Type Culture
Collection. HepG2 cells were a kind gift of Dr. Sarah Tonack
(Max Planck Institute for Heart and Lung Research). NIH3T3
cells were a kind gift of Daniela Popescu (Max Planck Institute
for Heart and Lung Research).

Lentivirus-mediated knockdown in NIH3T3 cells was
achieved by using specific shRNAs against mouse LIFR
included in the mouse genome-wide shRNA library generated
by the RNAi consortium (56), kindly provided by Dr. Johnny
Kim (Max Planck Institute for Heart and Lung Research).
shRNAs were packaged into lentiviral vectors using standard

Figure 11. Increased STAT3 phosphorylation is maintained 24 h post-stimulation. A, STAT3, STAT1, and STAT5 phosphorylation levels in NIH3T3 cells
transduced with shRNA directed against mLIFR (mOSMR signaling) 24 h after cytokine stimulation. B, relative quantification of receptor activation by each
cytokine; P-STAT band intensities were normalized against total STAT levels, followed by data transformation relative to the basal (Ctrl) level, which was set to
0; in the case of STAT5, the stronger basal signal was set to 1. Values are presented as mean � S.E. (error bars), n � 3 independent cultures. C, STAT3, STAT1, and
STAT5 phosphorylation levels in MH-S cells (mLIFR signaling) 24 h after cytokine stimulation. D, relative quantification of receptor activation by each cytokine;
P-STAT band intensities were normalized and transformed as described above. Values are presented as mean � S.E., n � 3 independent cultures; not significant
(n.s.), p � 0.05; *, p � 0.05; **, p � 0.01.
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methods (described in detail previously (57)). 72 h after viral
transduction, NIH3T3 cells were selected by using cell culture
medium supplemented with puromycin (4 �g/ml). After 1 week
of selection, the surviving cells were subjected to sorting and
clonal purification. Knockdown efficiency was tested for indi-
vidual shRNAs by Western blot analysis, monitoring the loss of
LIFR-dependent STAT3 activation in cell stimulation experi-
ments (not shown). The clonal line with the lowest remaining
LIFR activity was verified by quantitative RT-PCR using vali-
dated mLIFR primers (PrimerBank ID: 4379217a1) (58) and
employed in all experiments included in this work.

Cell culture conditions and cytokine stimulations

NIH3T3, MH-S, and A375 cells were grown in DMEM,
JAR cells in RPMI 1640 medium, and HepG2 cells in DMEM/
F-12 medium (Gibco) with 10% fetal bovine serum, penicil-
lin, and streptomycin (Sigma-Aldrich). The readout systems
used in stimulations experiments did not require serum
depletion. Cytokines were added at a final concentration of
25 ng/ml to subconfluent cells (�80% confluent in 10-min
stimulations, 60% in 24-h experiments), after which cells
were returned to the 37 °C incubator (humidified atmo-
sphere, 5% CO2) for the duration of stimulation. Proteins

Figure 12. Short-term OSMR activation stimulates PI3K and MAPK signaling pathways. A, SHP2 and AKT phosphorylation levels in serum-starved NIH3T3
cells transduced with shRNA directed against mLIFR (mOSMR signaling) 10 min after cytokine stimulation. B, relative quantification of receptor activation by
each cytokine; band intensities were normalized against total protein levels, followed by data transformation relative to the basal (Ctrl) level, which was set to
0. Values are presented as mean � S.E. (error bars), n � 3 independent cultures. C, ERK1/2, JNK, and p38 phosphorylation levels in serum-starved NIH3T3 cells
transduced with shRNA directed against mLIFR (mOSMR signaling) 10 min after cytokine stimulation. D, relative quantification of receptor activation by each
cytokine; band intensities were normalized and transformed as described above. Values are presented as mean � S.E., n � 3 independent cultures; not
significant (n.s.), p � 0.05; *, p � 0.05; **, p � 0.01.
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were harvested and processed for SDS-PAGE following stan-
dard protocols.

Immunoblots

10 �g of protein/sample were separated in NuPAGE 4 –12%
BisTris protein gels (Novex) and transferred into nitrocellulose
membranes (Amersham Biosciences). These were probed with
antibodies against phospho-STAT3 (Tyr-705) (catalog no.
9131, Cell Signaling Technology), phospho-STAT1 (Tyr-701)
(catalog no. 7649, Cell Signaling Technology), phospho-STAT5
(Tyr-694) (catalog no. 9351, Cell Signaling Technology), phos-
pho-SAP/JNK (Thr-183/Tyr-185) (catalog no. 9251, Cell Sig-
naling Technology), phospho-ERK1/2 (Thr-202/Tyr-204) (cat-

alog no. 9101, Cell Signaling Technology), phospho-AKT (Thr-
308) (catalog no. 9275, Cell Signaling Technology), phospho-
AKT (Ser-473) (catalog no. 9271, Cell Signaling Technology),
phospho-SHP2 (Tyr-580) (catalog no. 3754, Cell Signaling
Technology), Phospho-p38 (Thr-180/Tyr-182) (catalog. no. 9211,
Cell Signaling Technology), pan-actin (catalog no. 4968, Cell Sig-
naling Technology), human TIMP1 (catalog no. 8946, Cell Signal-
ing Technology), mouse TIMP1 (catalog no. MAB9801, R&D Sys-
tems), HIF1� (catalog no. A300-286A, Bethyl Laboratories), SOD2
(catalog no. MAB3419, R&D Systems), VEGF 164 (catalog no.
AF-493-NA, R&D Systems), total STAT3 (catalog no. 9139, Cell
Signaling Technology), total STAT1 (catalog no. 9172, Cell Signal-
ing Technology), total STAT5 (catalog no. 9310, Cell Signaling
Technology), total SAP/JNK (catalog no. 9258, Cell Signaling
Technology), total ERK1/2 (catalog no. 4695, Cell Signaling Tech-
nology), total AKT (catalog no. 9272, Cell Signaling Technology),
total SHP2 (catalog no. 3752, Cell Signaling Technology), and total
p38 (catalog no. 9212, Cell Signaling Technology). Bands were
detected by employing horseradish peroxidase–conjugated sec-
ondary antibodies (R&D Systems) using the West Femto substrate
(catalog no. 34095, Thermo Fisher Scientific) and a ChemiDoc MP
System (Bio-Rad). Band intensity was quantified using the Image
Lab software version 5.0 (Bio-Rad).

In the case of membranes reacted with phospho-STAT3
(Tyr-705), the same membrane was reblocked and probed
against total STAT3. Total STAT3 levels were detected using
an Alexa Fluor 680 – conjugated secondary antibody (catalog
no. A21057, Invitrogen) with the Odyssey� 9120 imaging sys-
tem (LI-COR Biosciences) and quantified with Image Studio
version 4.0.21 (LI-COR Biosciences). Membranes reacted with
phospho-STAT1 (Tyr-701) and phospho-STAT5 (Tyr-694)
were treated with stripping buffer (catalog no. 21059, Thermo
Fisher Scientific), reblocked, and probed against total STAT1
or STAT5 levels before detecting bands through horseradish
peroxidase– conjugated secondary antibodies.

Cell proliferation assays

A375 cells were seeded in 96-well cell culture plates at a den-
sity of 5000 cells/well in phenol red–free DMEM. After the
addition of 10 ng/ml cytokine, cells were grown for 5 days
before measuring cell proliferation using the Vybrant MTT cell
proliferation assay kit (catalog no. V13154, Thermo Fisher
Scientific).

Statistical analysis

Differences between the groups were assessed by means of a
two-tailed Welch’s t test, considering p values below 0.05 to be
significant. All analyses were performed using R version 3.0.3
(the R Foundation for Statistical Computing) and RStudio ver-
sion 0.98.1062 (RStudio).

Structural visualization

Protein structures were visualized with MacPymol version
1.7.2.1 (Schrödinger LLC) using available crystal structure data
for human OSM (Protein Data Bank code 1EVS) and a homo-
logy model of murine OSM constructed with SWISS-MODEL
(59).

Figure 13. OSMR activation stimulates expression of different target
genes. A, HIF1�, SOD2, and VEGF expression levels in NIH3T3 cells transduced
with shRNA directed against mLIFR (mOSMR signaling) 24 h after cytokine
stimulation. B, relative quantification of OSMR targets modulation by each
cytokine; band intensities were normalized against pan-actin expression lev-
els, followed by data transformation relative to the basal (Ctrl) level, which
was set to 0. Values are presented as mean � S.E. (error bars), n � 3 indepen-
dent cultures; not significant (n.s.), p � 0.05; *, p � 0.05; **, p � 0.01.
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Phylogeny inference

Protein sequences were retrieved from the NCBI Reference
Sequence (RefSeq) database and aligned by Clustal Omega (25,
60). These aligned sequences were then employed to construct
a phylogenetic tree by stochastic heuristics, applying the meta-
population genetic algorithm in MetaPIGA (61, 62).
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