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Emerging evidence has shown that the hepatocyte growth
factor (HGF) and its receptor, MET proto-oncogene, receptor
tyrosine kinase (MET), promote cell proliferation, motility,
morphogenesis, and angiogenesis. Whereas up-regulation of
MET expression has been observed in aggressive and meta-
static prostate cancer, a clear understanding of MET function
in prostate tumorigenesis remains elusive. Here, we devel-
oped a conditional Met transgenic mouse strain, H11Met/�:
PB-Cre4, to mimic human prostate cancer cells with increased
MET expression in the prostatic luminal epithelium. We
found that these mice develop prostatic intraepithelial neo-
plasia after HGF administration. To further assess the biolog-
ical role of MET in prostate cancer progression, we bred
H11Met/�/PtenLoxP/LoxP:PBCre4 compound mice, in which
transgenic Met expression and deletion of the tumor suppres-
sor gene Pten occurred simultaneously only in prostatic epi-
thelial cells. These compound mice exhibited accelerated
prostate tumor formation and invasion as well as increased
metastasis compared with PtenLoxP/LoxP:PB-Cre4 mice. More-
over, prostatic sarcomatoid carcinomas and lesions resem-
bling the epithelial-to-mesenchymal transition developed in
tumor lesions of the compound mice. RNA-Seq and qRT-PCR
analyses revealed a robust enrichment of known tumor pro-
gression and metastasis-promoting genes in samples isolated
from H11Met/�/PtenLoxP/LoxP:PB-Cre4 compound mice com-
pared with those from PtenLoxP/LoxP:PB-Cre4 littermate con-
trols. HGF-induced cell proliferation and migration also
increased in mouse embryonic fibroblasts (MEFs) from ani-
mals with both Met transgene expression and Pten deletion
compared with Pten-null MEFs. The results from these newly
developed mouse models indicate a role for MET in hastening

tumorigenesis and metastasis when combined with the loss of
tumor suppressors.

Prostate cancer is the most common malignancy and the
second leading cause of cancer mortality in men in the United
States (1). The androgen-signaling pathway plays an essential
role in prostate tumorigenesis. Thus, androgen deprivation
therapy results in a rapid tumor regression and has been rou-
tinely used in clinics for the treatment of advanced prostate
cancer. However, androgen deprivation therapy eventually fails
in nearly all cases of prostate cancer when patients develop
castration-resistant prostate cancer (CRPC),3 which currently
lacks curable treatment and claims more than 250,000 lives
worldwide each year (2).

Hepatocyte growth factor (HGF) plays a critical role in the
regulation of cell growth, cell motility, morphogenesis, and
angiogenesis (3). It has been shown that HGF derived from
prostate stroma significantly increases proliferation, motility,
and invasion of malignant cells through its receptor, c-Met (4,
5). The c-Met receptor tyrosine kinase is encoded by MET, a
proto-oncogene, and has been shown to play a promotional role
in the proliferation and progression of a wide variety of human
malignancies, including prostate cancer (4, 6). The aberrant
expression of HGF and c-Met often correlates with poor prog-
nosis in cancer patients (7). Specifically, up-regulation of c-Met
expression was observed in a majority of the metastatic prostate
cancer lesions (6, 8 –11). Interestingly, an inverse correlation
between the expression of AR and c-Met has been observed in
prostate epithelium and prostate cancer cell lines (4, 6, 8, 12,
13). An increase of c-Met expression was also observed in cas-
trated rat (4, 15) and mouse models (14). Moreover, it has been
shown that the AR represses Met expression in prostate cancer
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normal prostate luminal cells and primary prostate cancer cells
(13). The above data imply a critical role of HGF/MET signaling
pathways in prostate tumorigenesis.

Whereas overexpression of c-Met is frequently observed in
metastatic prostate cancers and positively correlates with pros-
tate cancer progression (17, 18), the biological consequence of
aberrant Met up-regulation in disease progression and CRPC
development is largely unknown. In addition, there is a lack of
appropriate mouse models to directly assess an increased
expression of c-Met in prostate cancer initiation and progres-
sion. In this study, we developed a conditional Met transgenic
mouse strain in which the mouse Met transgene was specifically
targeted into the H11b locus (19). By intercrossing the Met-
floxed mice with PB-Cre4 mice (20), we generated a conditional
Met transgenic mouse line, H11Met/�:PB-Cre4. Conditional
expression of the Met transgene in prostatic luminal epithelial
cells is achieved by Cre expression, mimicking the condition of
human prostate cancer cells with increased MET expression.
Intriguingly, H11Met/�:PB-Cre4 mice develop prostatic intra-
epithelial neoplasia (PIN) after HGF administration. To assess
the effect of Met in prostate cancer progression, we generated
H11Met/�/PtenLoxP/LoxP:PB-Cre4 compound mice, in which
transgenic Met expression and deletion of the tumor suppres-
sor Pten simultaneously co-occur in prostatic epithelial cells.
We observed accelerated prostate cancer progression, aggres-
sive tumor invasion, and increased metastasis in these com-
pound mice. Moreover, development of prostatic sarcomatoid
carcinomas and lesions resembling epithelial-to-mesenchymal
transition is also observed in the prostate of the compound
mice. RNA-Seq and qRT-PCR analyses showed a robust enrich-
ment of known tumor progression and metastasis–promoting
genes, including Met, Spp1, Fn1, and Cdh2, in samples isolated
from H11Met/�/PtenLoxP/LoxP:PB-Cre4 compound mice com-
pared with those from PtenLoxP/LoxP:PB-Cre4 littermate con-
trols. Our study demonstrates a promotional role of Met in
PTEN-mediated oncogenic transformation in prostate tumor-
igenesis and provides a series of novel and biologically relevant
mouse models for investigating prostate cancer initiation and
progression.

Results

Activation of HGF/Met signaling in prostatic epithelial cells
induces oncogenic transformation in the mouse prostate

Increased c-Met expression has been observed frequently in
advanced prostate cancers (4, 8). Unfortunately, there is no
appropriate mouse model that can be used to directly assess the
effect of increased expression of c-Met in prostate cancer initi-
ation and progression. In this study, we generated a conditional
Met transgenic line using integrase-mediated transgenic tech-
nology (19). A loxP-flanked transcriptional silencing element,
LoxP-stop-loxP (LSL) cassette, was inserted between the CAG
promoter (21, 22) and the FLAG-tagged mouse Met coding
sequence (Fig. 1A). Because the CAG promoter is ubiquitously
active in most mouse tissues (23), the Met transgene expression
in this model can be achieved in a constitutive but tissue-spe-
cific manner through Cre recombinase-mediated removal of
the LSL cassette (Fig. 1A). To generate prostate-specific expres-

sion of the Met transgene, H11Met/� mice were bred with
PB-Cre4 mice, in which Cre expression is regulated by a modi-
fied probasin promoter, ARR2PB, in prostatic luminal epithe-
lium (20). To confirm PB-Cre4–mediated genomic recombina-
tion, genomic DNA samples were isolated from a variety of
tissues of the H11Met/�:PB-Cre4 mice. Genetic recombination
and removal of the LSL cassette from the Met transgene were
detected specifically in the prostate, but not in the bladder,
testes, kidney, liver, lungs, or tail (Fig. 1B). To detect the Met
transgene expression, cell lysates from mouse prostate tissues
of H11Met/�:PB-Cre4 or H11Met/� only mice were immunopre-
cipitated with either a FLAG antibody or normal IgG as the
control. Transgenic Met expression was detected in the sample
immunoprecipitated with the FLAG antibody, but not with an
IgG or in the tissue samples isolated from control mice (Fig.
1C). These data demonstrate the specific expression of the Met
transgene in the prostate of H11Met/�:PB-Cre4 mice.

H11Met/�:PB-Cre4 mice were born at the expected Mende-
lian ratios and appeared normal with no obvious differences
from their WT littermates at birth. Per the recommendations of
the Mouse Models of Human Cancers Consortium Prostate
Pathology Committee (24), we assessed H11Met/�:PB-Cre4
mice from birth to 20 months of age and did not observe any
obvious pathological changes in the mouse prostate tissues. To
assess HGF-Met–mediated effects, we then administered
recombinant HGF to 6-month-old H11Met/�:PB-Cre4 mice as
well as age- and sex-matched WT controls and examined their
prostates between 8 and 10 months of age (n � 4, each group).
We observed pathological lesions of typical low-grade prostatic
intraepithelial neoplasia in H11Met/�:PB-Cre4 mice but not
controls (Fig. 1D). Immunohistochemical (IHC) analyses
showed strong cytoplasmic immunoreactivity to a Met anti-
body in atypical cells within PIN lesions (Fig. 1E). Intriguingly,
these cells are also reactive to phospho-Met antibody, provid-
ing a direct link between the activation of the Met transgene and
PIN transformation in the mouse prostate (Fig. 1F). These data
demonstrate that activating HGF-Met signaling induces onco-
genic transformation in the mouse prostate. However, the
transgenic mice did not reveal prostate carcinomas, suggesting
that other additional factors may be required in initiating pros-
tate tumor development.

Simultaneous expression of Met and deletion of Pten in the
prostate induces earlier onset and more aggressive prostatic
carcinomas

Both increased MET expression and aberrant phosphatidy-
linositol 3-kinase signaling alterations have been observed in
advanced and metastatic prostate cancers (4, 8). Recent studies
further suggest these two alterations may co-exist in prostate
cancer (25). To directly assess the collaborative role of these
alterations in prostate tumorigenesis, we generated H11Met/�/
PtenLoxP/LoxP:PB-Cre4 (H11Met/�/PtenL/L:PB-Cre4) compound
mice, in which conditional Met expression and Pten deletion
co-occur in prostate epithelium. This new mouse model
enables us to investigate the potential effect of increased MET
expression and PTEN deletion in prostate tumorigenesis. We
observed the pathologic changes that represent mouse PIN
lesions in the four prostatic lobes in PtenL/L:PB-Cre4 mice up to
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4 months of age. As shown in the representative images (Fig. 2,
A1–A3), analysis of the prostates revealed cribriform structures
along with stratification of cells, papilliferous structures, and
tufts of cells. Lesions in both the dorsal and lateral lobes appear
more severe than in other lobes (Fig. 2, A2 and A2�). Intrigu-
ingly, the age-matched H11Met/�/PtenL/L:PB-Cre4 mice devel-
oped much more drastic lesions (Fig. 2, B1–B3). Typical cribri-
form and papilliferous structures completely filled the lumen of
prostatic glands (Fig. 2, B1–B3). Atypical epithelial cells lacking
normal polarity appeared in all prostatic lobes (Fig. 2, B1�–B3�).
IHC analyses of the PIN regions in both genotype mice showed
similar immunoreactivities with AR, E-cadherin, cytokeratin-8
(CK8), or p63 antibody (Fig. 2, C3–C5, C7, D3–D5, and D7) but
no staining with synaptophysin (Fig. 2, C9 and D9), a marker of
prostatic neuroendocrine cells. Interestingly, more atypical
cells showed positive staining of CK5, the prostatic basal cell
marker, within PIN lesions of H11Met/�/PtenL/L:PB-Cre4 mice
than those of PtenL/L:PB-Cre4 mice (Fig. 2 (C6 and D6) and Fig.
S1C).

We then continued our analysis of aged PtenL/L:PB-Cre4 and
H11Met/�/PtenL/L:PB-Cre4 mice up to 24 months of age. We
observed that PtenL/L:PB-Cre4 mice develop intracystic carci-
nomas between 4 and 10 months of age and adenocarcinoma
and invasive carcinomas after 10 months (Table 1). The repre-
sentative images show corresponding pathologic changes, with
features typical of prostatic adenocarcinomas and invasive car-

cinomas as reported previously (26) (Fig. 2, E1–E3). In contrast,
H11Met/�/PtenL/L:PB-Cre4 mice showed more aggressive
tumor phenotypes than PtenL/L:PB-Cre4 littermates. Compar-
ison of the pathologies of PtenL/L:PB-Cre4 and H11Met/�/
PtenL/L:PB-Cre4 mice revealed an overall more invasive tumor
phenotype in the latter (Fig. 2, E versus F). In addition to pros-
tatic adenocarcinomas and invasive carcinomas (Fig. 2, F1–F3),
we also observed pathological changes that are similar to pros-
tatic sarcomatoid carcinomas as well as features of an
epithelial–mesenchymal transition (EMT) indicating nuclear
atypia, a polygonal cell pattern, and pleomorphism (Fig. 2, F3
and F3�). A significant increase in MET staining (Fig. 2H1) was
observed in tumor lesions of the compound mice. Elevated
staining of phospho-Met and phospho-Erk was also observed in
adjacent sections of tumor tissues isolated from the compound
mice compared with those from PtenL/L:PB-Cre4 only mice (see
Fig. S1, A1–A3 and B1–B3), suggesting the activation of HGF/
Met axis in the tumor lesions. Similar to the expression patterns
observed in the HGPIN regions of younger H11Met/�/PtenL/L:
PB-Cre4 mice, adenocarcinoma lesions from the compound
mice also revealed an increase in the number of CK5-positive
cells compared with those from PtenL/L:PB-Cre4 only mice (Fig.
2H5 and Fig. S1C). We did not observe any significant difference
in the expression of AR, CK8, and E-cadherin between the above
two groups of mice (Fig. 2, G2–G4 and H2–H4). Samples from
both PtenL/L:PB-Cre4 and H11Met/�/PtenL/L:PB-Cre4 were nega-

Figure 1. Generation of mice with prostate-specific expression of Met. A, schematic of the conditional mouse Met transgene-targeting construct. Red
triangles, LoxP sequences. B, genomic PCR analysis of prostate-specific recombination of Met transgene. C, anti-Met immunoblot (IB) of whole prostate extracts
from 3-month-old H11Met/� and H11Met/�:PB-Cre4 mice immunoprecipitated (IP) with FLAG antibody or normal IgG beads. D–F, histological and immunohis-
tochemical analysis of 10-month-old H11Met/�:PB-Cre4 mouse 12-weeks post-HGF administration. D and D�, low and high magnification of H&E staining. Shown
is immunohistochemical analysis of Met (E and E�) and phosphorylated Met (F and F�) expression on sequential sections.
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Figure 2. Conditional expression of the mouse Met transgene and homozygous Pten deletion in mouse prostate leads to development of HGPIN and
prostatic adenocarcinomas. A and B, histology of 3-month-old PtenL/L:PB-Cre4 (A) and H11Met/�/PtenL/L:PB-Cre4 (B) mouse prostates. �200 magnification
images of mPIN lesions in AP/DLP/VP are shown in A1–A3 and B1–B3. Boxes, �400 magnification images (A1�–A3� and B1�–B3�). C and D, immunohistochemical
analysis of 4-month-old PtenL/L:PB-Cre4 (C1–C9) and H11Met/�/PtenL/L:PB-Cre4 (D1–D9) mouse prostates with different antibodies as labeled. E and F, histology
of 12-month-old PtenL/L:PB-Cre4 (E) and H11Met/�/PtenL/L:PB-Cre4 (F) mouse prostates. �200 magnification images of prostatic adenocarcinomas are shown in
E1–E3 and F1–F3. Boxes, �400 magnification images of invasive adenocarcinoma (E1�–E3� and F1�–F3�), as well as an expansion of EMT pattern with nuclear
atypia, polygonal cell pattern, and pleomorphism (F3�) in H11Met/�/PtenL/L:PB-Cre4 tumor. G and H, immunohistochemical analysis of PtenL/L:PB-Cre4 (G1–G6)
and H11Met/�/PtenL/L:PB-Cre4 (H1–H6) adenocarcinoma with different antibodies as labeled.
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tive for synaptophysin staining (Fig. 2, G6 and H6). The presence of
increased CK5 expression in tumor cells of H11Met/�/PtenL/L:PB-
Cre4 suggests a novel role of the Met transgene in inducing pros-
tatic tumor cell transdifferentiation.

Conditional expression of Met enhances tumor aggressiveness
and induces an epithelial-to-mesenchymal transition in
prostate tumors

Scrutiny of H11Met/�/PtenL/L:PB-Cre4 compound mice revealed
an aggressive tumor phenotype with sarcomatoid carcinoma
development that did not occur in prostatic lesions of the PtenL/L:
PB-Cre4 mice. Representative images from 12-month-old
H11Met/�/PtenL/L:PB-Cre4 compound mice show poorly differen-
tiated carcinomas with areas of invasion, where the epithelial
tumor cells have permeated the basement membrane into the sur-
rounding tissue (Fig. 3, A and A1). Cells located at sites of invasion
maintain a columnar epithelial shape and some regions of pseu-
dostratified epithelial layers (Fig. 3A1, arrows). A transition from
adenocarcinoma and invasive carcinoma lesions to pathology
resembling sarcomatoid carcinomas can be observed. Sarcoma-
toid carcinoma was classified as a biphasic malignant neoplasm,
which is frequently observed during the process of EMT (27–29).
We observed spindle-like tumor cells (Fig. 3A2, arrows), tumor
cells with a multitude of mitotic figures (Fig. 3A3, arrows), and
haphazard acini and lobules of pleomorphic cells (Fig. 3A4), indi-
cating that the above lesions possess mesenchymal morphology
and highly proliferative and invasive features.

Observation of the co-occurring prostatic adenocarcinoma,
invasive carcinoma, and sarcomatoid carcinoma in the prostate
of H11Met/�/PtenL/L:PB-Cre4 is new and has not been observed
in PtenL/L:PB-Cre4 mice. It suggests an important role of Met in
promoting tumor progression. To further characterize these
lesions, we performed co-immunofluorescent assays to assess
the cellular properties of the various regions within the tumor
lesions, which include poorly differentiated and invasive carci-
nomas (Fig. 3, B1–B1�), sarcomatoid carcinomas (Fig. 3,
D1–D1�), and the transition between these two phenotypes
(Fig. 3, C1–C1�). Tumor cells in adenocarcinoma regions
appeared positively stained for CK8, a prostatic luminal epithe-
lial cell marker, and negatively stained for vimentin (Vim), a
stromal cell marker (Fig. 3, B2–B4�). Within EMT “transition”
areas (Fig. 3, C1–C1�), the majority of spindle-like tumor cells
were immunoreactive for Vim, but not for the luminal cell
marker CK8. Intriguingly, scattered tumor cells revealed dou-
ble-positive staining for CK8 and Vim (Fig. 3, C4 –C4�). More-
over, in sarcomatoid lesions, large, polygonal-shaped cells with

little cytoplasm and broad pleomorphic nuclei (Fig. 3, D1–D1�)
showed positive staining for both CK8 and Vim (Fig. 3, D2–D4).
Using IHC approaches, we further assessed the cellular proper-
ties of sarcomatoid tumor cells (Fig. 3E1). The majority of
tumor cells showed positive staining with the AR and CK8 (Fig.
3, E2 and E3) but not E-cadherin (Fig. 3E4). Positive staining of
Vim appeared in the tumor cells. These expression patterns are
consistent with the above co-immunofluorescent experiments
and suggest that the process of EMT has occurred in those cells.
Additionally, we also examined Ki67 expression and observed
significant Ki67-positive cells in sarcomatoid tumor areas,
demonstrating the highly proliferative feature of sarcomatoid
carcinoma cells (Fig. 3E6). Development of EMT and sarcoma-
toid tumor lesions in the prostate of H11Met/�/PtenL/L:PB-Cre4
compound mice provides a direct line of evidence of the pro-
motional role of Met in prostate cancer progression.

It has been shown that PtenL/L:PB-Cre4 mice develop meta-
static diseases in the lung and lymphoid nodes (30). Given the
more aggressive tumor phenotype seen in H11Met/�/PtenL/L:
PB-Cre4 compound mice, we systematically examined the mice
for the presence of metastases during this investigation. We
observed prostate cancer metastasis in both PtenL/L:PB-Cre4
and H11Met/�/PtenL/L:PB-Cre4 mice after 10 months of age
(Table 1). Five of eight H11Met/�/PtenL/L:PB-Cre4 mice (62.5%)
showed metastatic lesions, but only one of eight PtenL/L:PB-
Cre4 mice (12.5%) revealed lung and lymph node metastasis
(Table 1). H11Met/�/PtenL/L:PB-Cre4 mice showed metastatic
lesions in lungs and periprostatic lymph nodes (Fig. 4). Histo-
pathological analysis of the lung tissues confirmed the presence
of distal metastasis in H11Met/�/PtenL/L:PB-Cre4 mice, show-
ing circumscribed nodules within the lung parenchyma (Fig. 4,
A and A1). The metastatic foci in the lung were composed of
solid nests (poorly differentiated; Fig. 4A1). Histological section
of the lymph node demonstrated partial replacement of the
cortex by metastatic adenocarcinoma. The lymph node metas-
tasis showed prominent lumen formation (Fig. 4B1). The nuclei
displayed a moderate degree of polymorphism, and cytoplas-
mic vacuoles were present in a subset of the tumor cells. Addi-
tionally, IHC analyses of the metastatic tumor cells showed pos-
itive staining for AR and Met (Fig. 4, A3–A4 and B3–B4).

Investigation of transcriptional profiles that contribute to
prostate cancer progression and metastasis

To determine the molecular mechanisms underlying early-
onset Met-mediated tumor development and progression, we
performed RNA-Seq approaches to search for the alterations

Table 1
Pathological abnormalities of H11Met/�/PtenL/L:PB-Cre4 and PtenL/L:PB-Cre4 mice

Genotype <4 months 4 –10 months >10 months

PtenL/L:PB-Cre4 4 of 4 LGPIN 6 of 6 multifocal HGPIN 6 of 8 intracystic carcinoma
2 of 4 multifocal HGPIN 2 of 6 intracystic carcinoma 4 of 8 adenocarcinoma

3 of 8 invasive carcinoma
1 of 8 invasive carcinoma with metastasisa

H11Met/�/PtenL/L:PB-Cre4 5 of 5 multifocal HGPIN 5 of 5 multifocal HGPIN 7 of 8 adenocarcinoma, 6 of 8 invasive carcinoma
1 of 5 intracystic carcinoma 6 of 8 invasive carcinoma
2 of 5 adenocarcinomas 5 of 8 invasive carcinoma with EMT
1 of 5 invasive carcinoma 5 of 8 invasive carcinoma with metastasisb

a Metastatic sites include lymph node and lung tissues.
b Metastatic sites include lymph node, lung, and pancreas tissues.
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between prostate tumor tissues isolated from PtenL/L:PB-Cre4
and H11Met/�/PtenL/L:PB-Cre4 compound mice. We micro-
scopically confirmed that the tumor tissues used to prepare
RNA samples for these analyses were composed of more than
80% tumor cells. Analyses of gene expression profiles yielded
1075 differentially expressed genes that were up-regulated
�2-fold and 966 differentially expressed genes that were down-

regulated �2-fold in H11Met/�/PtenL/L:PB-Cre4 when com-
pared with the PtenL/L:PB-Cre4 mice. A heat map (Fig. 5A)
depicts the potential targets that are associated with EMT,
tumor progression, cell adhesion, and apoptosis within the con-
text of prostate cancer (31–54). As shown in Fig. 5B, we
observed a significant increase in the expression of both Met
and Hgf in prostate tumor samples of H11Met/�/PtenL/L:PB-

Figure 3. Epithelial-to-mesenchymal features are present in H11Met/�/PtenL/L:PB-Cre4 tumors. A, histology of a 12-month-old H11Met/�/PtenL/L:PB-Cre4
mouse prostate. High-magnification images showed invasive prostatic adenocarcinoma (A1) and significant expansion of sarcomatoid carcinoma with spin-
dled, epithelioid features, nuclear atypia, atypical mitoses, and pleomorphism (A2–A4). B–D, low and high magnification of histology and immunofluorescence
images of invasive adenocarcinoma (B1–B5�), EMT (C1–C5�), and sarcomatoid carcinoma (D1–D5�). The invasive adenocarcinoma showed an epithelial pattern
characteristic of glandular structures (B1 and B1�) that was positive for CK8 but negative for vimentin (B2–B5�). The cells in the EMT region (C1 and C1�) were
predominantly spindle-like cells, which were stained positive for CK8 and vimentin (C2–C5�). Sarcomatoid carcinoma regions showed a polygonal cell pattern,
fusiform, and large pleomorphic nuclei (D1–D1�) and were positive for both CK8 and vimentin (D2–D5�). E, immunohistochemical analysis of AR (E2), CK8 (E3),
E-cadherin (E4), vimentin (E5), and Ki67 (E6) in H11Met/�/PtenL/L:PB-Cre4 sarcomatoid carcinoma region.

The role of HGF-Met in prostate tumorigenesis

20128 J. Biol. Chem. (2018) 293(52) 20123–20136



Cre4 compound mice compared with PtenL/L:PB-Cre4 mice.
An increasing HGF expression in the above tumor tissues sug-
gests an autocrine regulation of HGF/Met signaling in prostatic
tumor growth and progression. Because the tumor samples
from the H11Met/�/PtenL/L:PB-Cre4 compound mice showed
the pathological changes of EMT and sarcomatoid tumors, we
further validated the expression of EMT markers Fn1 (55),
Cdh2 (56, 57), Zeb2 (56, 58), and Spp1 (59) (n � 4) (Fig. 5B).
Quantitative PCR analyses showed a significant increase in
the expression of the above EMT-related genes in the
H11Met/�/PtenL/L:PB-Cre4 compound mice compared with
the PtenL/L:PB-Cre4 mice (Fig. 5B). Using IHC approaches,
we further confirmed elevated expression of Spp1, Fn1, and
N-cadherin proteins in prostate tumor samples isolated
from H11Met/�/PtenL/L:PB-Cre4 compound mice (Fig. 5,
D1–D3 versus C1–C3). These data provide a molecular basis
for HGF/Met signaling in promoting EMT lesions in
H11Met/�/PtenL/L:PB-Cre4 compound mice.

Conditional expression of Met increases cellular proliferation,
migration, and induction of EMT-associated gene expression

Development of EMT and sarcomatoid carcinomas in the
prostate of H11Met/�/PtenL/L:PB-Cre4 mice suggests a promo-
tional role of Met in cell proliferation, mobility, and migration
(60). To test our hypothesis, we performed a set of proof-in-
principle experiments using mouse embryonic fibroblasts
(MEFs) that were prepared from PtenL/L, PtenL/L:CMVCreER�,
and H11Met/�/PtenL/L:CMVCreER� embryos (see “Materials
and methods”). Using in vitro cell-wounding assays, we directly
assessed the effect of Met expression in cell mobility and migra-
tion. MEFs of the various genotypes were cultured to 90% con-
fluence and then wounded by a single scratch as described pre-
viously (61) and maintained in serum-free medium either in the
presence or absence of HGF for 12 h. Images captured imme-
diately after cell wounding demonstrated equal sized scratches
across different genotypes (Fig. 6, A1–A6). Following 12 h of
wound healing, significant differences in the wound area were
visually evident between the various genotypes (Fig. 6, B1–B6).

Whereas PtenL/L:CMVCreER� and PtenL/L control MEFs
exhibited slight migration toward the wound, MEFs from
H11Met/�/PtenL/L:CMVCreER� embryos (Fig. 6, B5–B6) dem-
onstrated more closure of the wound, indicative of an increased
ability to migrate. Whereas no significant difference was
detected between the samples cultured in the absence or pres-
ence of HGF, we did observed a slight increase in wound healing
from the H11Met/�/PtenL/L:CMVCreER� MEFs in the presence
of HGF, but not in other samples (Fig. 6C). In this study, we also
assessed the proliferative ability of the above MEFs using MTS
assays. Although, in agreement with previous studies (30), dele-
tion of Pten increases cellular proliferation in MEFs (Fig. 6D,
blue line), conditional expression of Met in combination with
Pten deletion further enhances cellular proliferation (Fig. 6D,
red line). Using qRT-PCR approaches, we examined the expres-
sion of Met, Fn1, and Cdh2 in MEFs within three different gen-
otypes. We observed increased expression of Met, as well as Fn1
and Cdh2, in H11Met/�/PtenL/L:CMVCreER� MEFs compared
with both PtenL/L:CMVCreER� and PtenL/L MEFs (Fig. 6D).
Taken together, the above results demonstrate a promotional
role of Met in cellular migration and proliferation, which is
consistent with the aggressive tumor phenotype with EMT fea-
tures as observed in our mouse models.

Discussion

Emerging evidence from basic, translational, and clinical
studies has shown the significance of the HGF/Met signaling
pathway in prostate cancer progression and CRPC develop-
ment (62). Up-regulation of c-Met expression has been
observed in a majority of advanced and metastatic prostate can-
cer lesions (6, 8 –11). However, the biological role of Met in
oncogenic transformation and prostate cancer initiation has
not been investigated using biologically relevant models. In this
study, we developed a novel mouse model, H11Met/�:PB-Cre4
mice, where expression of the mouse Met gene is specifically
activated in prostatic luminal epithelial cells through Cre-
LoxP–mediated recombination. We observed mouse prostatic
intraepithelial neoplasia development in H11Met/�:PB-Cre4

Figure 4. Lung and lymph node metastases develop in H11Met/�/PtenL/L:PB-Cre4 mice. Shown are representative images of H&E-stained lung (A) and
lymph node (B) metastases. High-magnification images showing a solid growth pattern in the lung (A1) and a glandular pattern in the lymph node (B1).
Immunohistochemical analysis of AR (A2 and B2) and Met (A3 and B3) showed positivity in both lung and lymph node metastases of H11Met/�/PtenL/L:PB-Cre4
mice.
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mice following the administration of HGF but not in control
mice that also received HGF treatments. These results repre-
sent the first line of evidence directly demonstrating that the
activation of the HGF/Met signaling axis can initiate oncogenic
transformation and PIN formation in the mouse prostate. In
this study, we did not observe more severe pathologic changes
in H11Met/�:PB-Cre4 mice, suggesting that the activation of the
HGF/Met axis alone is not sufficient to induce PIN lesions to
progress to prostate cancer. Although the precise mechanisms

for the above observation are currently unclear, other onco-
genic hits may be required in collaboratively enhancing Met-
induced tumor formation in the mouse prostate. In addition,
low and inconsistent levels of HGF have been reported in mice
(63). Therefore, the H11Met/�:PB-Cre4 mice will be an experi-
mental tool for further investigating the biological role of Met
and other potential hits in prostate cancer initiation.

Multiple lines of evidence have shown the important roles of
Met and phosphatidylinositol 3-kinase signaling pathways in

Figure 5. The conditional expression of mouse Met transgene and homozygous Pten deletion induces a gene signature pattern that is associated
with tumor progression. A, heat map of representative gene sets that are altered in PtenL/L:PB-Cre4 and H11Met/�/PtenL/L:PB-Cre4 tumors. B, qRT-PCR validation
of the gene expression in PtenL/L:PB-Cre4 and H11Met/�/PtenL/L:PB-Cre4 tumors. The data are presented as the mean � S.D. (error bars) for three independent
samples. *, p � 0.05; **, p � 0.01; ***, p � 0.001. C, immunohistochemical analysis of SPP1 (C1 and D1), FN1 (C2 and D2), and N-cadherin (C3 and D3) expression
in prostate tumors of PtenL/L:PB-Cre4 and H11Met/�/PtenL/L:PB-Cre4 (D1–D3) mice.
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prostate cancer progression and metastasis (3). However, the
combinatorial effect of these two pathways in prostate tumori-
genesis has not been fully evaluated using the biologically rele-
vant mouse model. In this study, we directly addressed this
question using newly generated H11Met/�/PtenL/L:PB-Cre4
mice. We observed the development of prostatic invasive car-
cinomas and metastatic diseases in lung and lymph node tissues
in PtenL/L:PB-Cre4 mice as reported previously (30). Intrigu-
ingly, H11Met/�/PtenL/L:PB-Cre4 littermates exhibited more
aggressive tumor phenotypes in this study (Table 1). In addition
to an accelerated HGPIN and prostatic adenocarcinoma
development, H11Met/�/PtenL/L:PB-Cre4 compound mice
also showed dominant EMT and sarcomatoid carcinoma
lesions with invasive carcinomas. Increased metastatic diseases
in lungs and lymph nodes at earlier ages were also revealed in
the compound mice compared with Pten null mice. All of these
data support a promotional role of Met in prostate cancer pro-

gression and metastasis. It should be noted that PtenL/L:PB-
Cre4 mice in this study developed prostate tumors relatively
more slowly than those in the previous report (30). Actually,
our above observation on PtenL/L:PB-Cre4 mice was in agree-
ment with a few other studies (26, 64), although the precise
reasons for the difference is not clear.

In this study, we assessed the cellular properties of atypical
and tumor cells in PIN and cancer lesions in both PtenL/L:PB-
Cre4 and H11Met/�/PtenL/L:PB-Cre4 mice, respectively. Inter-
estingly, IHC analyses revealed an increase in cells that are
immunoreactive to CK5, a marker of prostatic basal epithelial
cells, within both PIN and prostatic adenocarcinoma lesions in
H11Met/�/PtenL/L:PB-Cre4 compound mice. Because a modi-
fied probasin promoter was used to activate transgenic Met
expression in prostatic luminal epithelial cells (20), increasing
CK5-positive cells in PIN and tumor lesions suggest that atyp-
ical and tumor cells underwent transdifferentiation during the

Figure 6. The conditional expression of mouse Met transgene and homozygous Pten deletion increases cell proliferation and migration in MEFs. A
and B, wound-healing assay of MEFs. Shown are before (A) and after (B) images of scratches in the monolayer of PtenL/L:CMVCreER-, PtenL/L:CMVCreER�, and
H11Met/�/PtenL/L:CMVCreER� MEFs cultured in the absence/presence of HGF for 12 h. C, graphical representation of relative wound closure. The data represent
quantifications of multiple images from two independent experiments � S.D. D, graphical representation of cellular proliferation of PtenL/L:CMVCreER	,
PtenL/L:CMVCreER�, and H11Met/�/PtenL/L:CMVCreER� MEFs measured by MTS reduction. The data represent the mean � S.D. of three independent experi-
ments. E, qRT-PCR analysis of Met, Fn1, and Cdh2 expression in PtenL/L:CMVCreER� and H11Met/�/PtenL/L:CMVCreER� MEFs. Bars, mean � S.D. (error bars) of three
independent experiments. *, p � 0.05; **, p � 0.01.
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period of tumor development and progression. Development of
EMT and sarcomatoid tumor lesions with invasive carcinomas
in the compound mice supports the trend of tumor progression
in the compound mice. Positive staining of AR in both EMT and
sarcomatoid tumor cells further demonstrates their origin of
prostatic luminal cells. These lines of evidence implicate a novel
role of transgenic Met in enhancing tumor cell transdifferentia-
tion and promoting EMT and tumor progression. In this study,
we also examined the role of transgenic Met in cell proliferation
and migration. In this set of proof-of-principle experiments, we
generated MEFs from either H11Met/�/PtenL/L:CMVCreER� or
PtenL/L:CMVCreER� embryos. Using MTS and monolayer
wound-healing assays, we detected an increase in cellular pro-
liferation and motility in MEFs possessing both transgenic Met
expression and Pten deletion. These results are consistent with
aggressive tumor phenotypes observed in the prostate of
H11Met/�/PtenL/L:PB-Cre4. Taken together, using both in vivo
and in vitro experimental approaches, we showed that increas-
ing Met expression enhances cell proliferation and mobility,
induces transdifferentiation, and promotes tumor progression
and metastasis.

To further understand the molecular mechanism underlying
Met-mediated tumor progression and metastasis, we examined
the transcriptional profile in prostate tumor tissues isolated
from both PtenL/L:PB-Cre4 and H11Met/�/PtenL/L:PB-Cre4
mice using RNA-Seq approaches. Increased expression of mes-
enchymal markers, such as vimentin, N-cadherin, fibronectin
1, and SPP1, was detected in tumor samples isolated from
H11Met/�/PtenL/L:PB-Cre4 mice compared with those from
PtenL/L:PB-Cre4 littermates. Identification of a subset of genes
related to tumor transdifferentiation and EMT in the samples
of H11Met/�/PtenL/L:PB-Cre4 mice is intriguing and provides a
molecular basis for transgenic Met-induced tumor progression
and metastasis in the compound mice. EMT has mostly been
studied with regard to the acquisition of invasive characteristics
and metastatic potential (60). Determining the molecular
mechanisms by which transgenic Met increases the expression
of genes that promote EMT and tumor progression is impor-
tant and should be carried out in the future.

A significant challenge within the field of prostate cancer has
been to develop biologically relevant models for studying met-
astatic bone lesions (65). The HGF-Met signaling axis is known
to be important to bone remodeling; both the ligand and recep-
tor are found to be expressed in the bone marrow and can
induce cellular proliferation of both osteoclasts and osteoblasts
(66, 67). Furthermore, an increase in expression of both the Met
receptor and the HGF ligand has been observed at sites of pros-
tate cancer bone metastasis, suggesting that this pathway may
be active during bone metastasis (8). Despite the evidence indi-
cating that c-Met expression is associated with bone metastases
in human prostate cancer, we were only able to detect metasta-
sis to the lung and lymphoid nodes in H11Met/�/PtenL/L:PB-
Cre4 compound mice as reported in PtenL/L:PB-Cre4 mice (30).
Although the reasons why prostate tumor cells with transgenic
Met expression are unable to further advance to aggressive dis-
ease with bone metastasis in the above compound mice are
unclear, data generated from this study have lead us to pursue a
few new experiments. Increased activation of Met receptor by

the HGF ligand may be necessary to achieve bone metastases
using the new mouse model with both transgenic HGF and Met
expression. Alternatively, modification of other signaling axes
may be necessary for the dissemination of prostate cancer cells
to the bones. In support of this hypothesis, a recent clinical trial
using cabozantinib, a dual inhibitor of c-Met and VEGFR2,
indicated a resolution of bone metastases in 12% of men treated
(68). Therefore, development of new mouse models with addi-
tional genetic changes in addition to Met activation may be
considered in the future.

In this study, we have developed a novel and biologically rel-
evant model for examining the role of c-Met in prostate tumor-
igenesis. We have shown that c-Met can enhance PTEN-medi-
ated prostate tumor progression by inducing an EMT tumor
phenotype and increasing the incidence of metastasis. Given
the importance of c-Met in human prostate cancer, we aim to
use this model to understand c-Met signaling and its effects
during prostate cancer development and progression.

Materials and methods

Generation of the Met transgene target vector

To generate the LSL-Met transgenic mouse line, we used
integrase-mediated transgenesis technology (19). In brief,
mouse Met cDNA was subcloned into the pB378 vector that
contains an attB recombination site. A loxP-PGK-Neomycin-
STOP-loxP cassette was inserted between the CMV early
enhancer/chicken �-actin (CAG) promoter and a FLAG-
tagged mouse Met coding sequence followed by a polyadenyl-
ation signal (Fig. 1A). The DNA was purified and microinjected
along with �C31 integrase mRNA into zygotic pro-nuclei of an
FVB mouse that contains an attP docking site at the H11 locus.
The above targeted mice were screened by mouse tail tissue
genomic PCR using P1 (5�-AGCGCATCGCCTTCTATCGC-
CTTC-3�) and P3 (5�-AAACAATCTGGGTGTTCC-3�) prim-
ers and further confirmed by DNA sequencing.

Mouse breeding and genotyping

The founder mice were bred with WT C57Bl6/J, and proge-
nies were genotyped to confirm the presence of the transgene.
To generate conditional Met transgenic mice, the LSL-Met
transgenic mice (H11Met/�) were intercrossed with the
PB-Cre4 strain, carrying the Cre transgene under the control of
a modified probasin promoter (ARR2PB) (20). Mice homozy-
gous for floxed Pten, PtenL/L, were obtained from the Jackson
Laboratory (Bar Harbor, ME; strain 004597). All animals used
in this study were on a C57BL/6 background, and all experi-
ments were performed in accordance with animal care guide-
lines approved by the institutional animal care and use commit-
tee at Beckman Research Institute and City of Hope.

For genotyping, mouse tail tips were incubated in lysis buffer
(catalog no. 102-T, VIAGEN Biotech, Los Angeles, CA) for
genomic DNA. The conditional expression of H11Met/� was
detected with the forward 5�-AGCGCATCGCCTTCTATCG-
CCTTC-3� and reverse 5�-AAACAATCTGGGTGTTCC-3�
primers. PCR was performed as follows: 5 min at 94 °C and then
34 cycles of 94 °C for 30 s, 62 °C for 30 s, and 72 °C for 70 s,
followed by a final step at 72 °C for 5 min. For Pten allele, the
forward 5�-TCCCAGAGTTCATACCAGGA-3� and reverse
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5�-AATCTGTGCATGAAGGGAAC-3� primers were used to
distinguish the WT and floxed alleles (69). For PB-Cre4,
the forward 5�-GCAGGAAGCTACTCTGCACCTTG-3� and
reverse 5�-GATCCTGGCAATTTCGGCTAT-3� primers were
used (70).

To assess the genetic recombination of the transgene,
genomic DNA samples were isolated from mice prostate, blad-
der, testicle, kidney, liver, lung, and tail, digested with lysis
buffer (100 mM NaCl, 10 mM EDTA, 20 mM Tris, pH 7.5, 0.5%
SDS, 0.2 mg/ml proteinase K). PCR was performed with differ-
ent DNA samples using the primers P1 (5�- AGCGCATCGC-
CTTCTATCGCCTTC-3�), P2 (5�-TTCGGCTTCTGGCGT-
GTGAC-3�), and P3 (5�-AAACAATCTGGGTGTTCC-3�).
Genomic DNA fragments from H11Met/�:PB-Cre4 mice were
amplified at 94 °C for 5 min and then 36 cycles of 94 °C for 45 s,
58 °C for 30 s, and 72 °C for 60 s, followed by 72 °C for 5 min.

Mouse procedures

For HGF injection, recombinant human HGF (294-HG/CF,
R&D Systems, Minneapolis, MN) was dissolved in sterile PBS at
100 �g/ml and stored at 	80 °C. Three doses of HGF were
given to 6-month-old H11Met/�:PB-Cre4 mice at 0.5 �g/g body
weight via intraperitoneal injection for 3 consecutive weeks.
Tissues were harvested 120 days after the initial HGF injection.

Immunoprecipitation and Western blotting

Prostates from H11Met/� and H11Met/�:PB-Cre4 mice were
cut into small pieces, homogenized, and used for protein col-
lection with radioimmune precipitation buffer (0.5% Nonidet
P-40, 0.3% Triton X-100, 15 mM MgCl2, 5 mM EDTA, 150 mM

NaCl, 50 mM Tris-HCl, pH 7.8) as described previously (70, 71).
Whole-cell lysates were precleared for 20 min with 10 �l of
protein A/G–agarose beads (Pierce, Waltham, MA) and then
incubated with pre-equilibrated anti-FLAG M2 magnetic beads
(M8823, Sigma-Aldrich) at 4 °C with gentle rotation overnight.
The beads were washed three times in lysis buffer, eluted by
boiling in SDS-sample buffer, and then resolved on an 8% SDS-
polyacrylamide gel. The proteins were transferred onto a nitro-
cellulose membrane and probed with anti-Met antibody (sc-
162, Santa Cruz Biotechnology, Inc.; 1:50). Detection was
performed with ECL reagents (Amersham Biosciences).

Histological analyses and immunostaining

Mouse tissues were fixed and processed as described in our
previous study (72). For histological analysis, 5-�m serial sec-
tions were processed from Clearify (American MasterTech
(Lodi, CA)) to water through a decreasing ethanol gradient,
stained with 5% (w/v) Harris hematoxylin and eosin, and pro-
cessed back to Clearify through an increasing ethanol gradient.

For immunohistochemical assays, 5-�m sections were boiled
in 0.01 M citrate buffer (pH 6.0) for 20 min after redehydration
from Clearify to water, placed in 0.3% H2O2/methanol for 15
min, and blocked by 5% goat serum or 5% donkey serum. Tissue
slides were then exposed to first antibodies in PBS with 1% goat
(or donkey serum) at 4 °C overnight. The following dilutions
were used: 1:150 dilution of anti-MET (AF527, R&D Systems),
1:100 anti-phospho-MET (3077, Cell Signaling, Danvers, MA),
1:1000 anti-mouse/human AR (PA5-16750, Invitrogen), 1:200

anti-E-cadherin (c20820, BD Transduction Laboratories),
1:2000 anti-CK8 (MMS-162P, Covance, Brea, CA), 1:2600 anti-
CK5 (PRB-160P, Covance), 1:75 anti-synaptophysin (08-1130,
Invitrogen), 1:2000 anti-p63 (sc-8431, Santa Cruz Biotechnol-
ogy), 1:400 anti-ki67 (D3B5, Cell Signaling), 1:2500 anti-vimen-
tin (919101, Biolegend, San Diego, CA), 1:100 anti-fibronectin 1
(MA5-11981, Invitrogen), 1:200 anti-SPP1 (91655, Abcam,
Cambridge, MA), 1:100 anti-N-cadherin (33-3900, Invitrogen),
1:200 anti-phospho-ERK1/2 (D13.14.3E, Cell Signaling). Tis-
sues were then incubated with biotinylated goat anti-mouse,
goat anti-rabbit (Vector Laboratories, BA-1000 or BA-9200) or
donkey anti-goat (ab6987, Abcam) at 1:750 dilution for 1 h at
room temperature followed by a 45-min incubation with horse-
radish peroxidase– conjugated streptavidin (Vector Laborato-
ries, SA-5004). Immunostainings were visualized using a DAB
kit (Vector Laboratories, SK-4100). Slides were counterstained
with hematoxylin, and coverslips were mounted with Per-
mount Mounting Medium (SP15-500, Fisher).

For immunofluorescent staining, mouse tissues were cut into
5-�m sections and then boiled in 0.01 M citrate buffer (pH 6.0)
for 20 min after redehydration, blocked in 5% normal goat
serum for 30 min, and incubated with primary antibodies
diluted in 1% normal goat serum at 4 °C overnight. Slides were
washed in PBS and then incubated with fluorescence-conjugated
secondary antibodies for 1 h and mounted with VECTASHIELD
Mounting Medium with 4�,6-diamidino-2-phenylindole (H-1200,
Vector Laboratories).

Mouse embryonic fibroblasts, MTS cell viability assay, and
wound-healing assay

H11Met/�/PtenL/L females were mated with PtenL/L:CMV
CreER� males. Pregnant females received two intraperito-
neal injections of tamoxifen (Sigma) at E11.5 and E12.5 of 2
mg/25 g body weight and were sacrificed at E13.5. The
embryos were isolated in cold PBS and then digested with
0.25% trypsin for 30 min at 37 °C, followed by the addition of
Dulbecco’s modified Eagle’s medium containing 10% FBS
and 1% penicillin/streptomycin. The cells were directly
plated into 6-well plates and allowed to adhere overnight. To
determine the genotypes, embryo yolk sacs isolated during
the dissection were digested, and genomic DNA was
extracted (73, 74) and used for genotyping with appropriate
primers as mentioned above. For CMVCreER, the forward
5�-TTGCCTGCATTACCGGTCGATGCA-3� and reverse
5�-GATCCTGGCAATTTCGGCTAT-3� primers were used
with the program listed as follows: 94 °C for 5 min and then 29
cycles of 94 °C for 20 s, 64 °C for 30 s, and 72 °C for 25 s, followed
by 72 °C for 2 min.

For the MTS cell viability assay, 
2000 cells/well were plated
in 96-well plate and then harvested at different time points. Cell
growth assays were carried out using an MTS cell proliferation
assay kit (G5430, Promega, Madison, WI). Cell numbers were
determined by absorbance at 490 nm, as suggested by the
manufacturer.

For the wound-healing assay, 2 � 105 cells/well were seeded
into a 12-well plate and cultured in the absence or presence of
10 nM recombinant human HGF to 90% confluence. The cells
were then starved with 0.1% FBS overnight and scratched with
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a sterile 200-�l tip to form a straight wound. The cells were
washed three times with PBS and cultured in normal medium
for an additional 24 h. A Nikon ECLIPSE E800 microscope was
used to measure the wound closure. Images were recorded at 0,
12, and 24 h after wounding with QImaging RETIGA EXi cam-
era and QCapture software (QImaging, Surrey, Canada). The
distances invaded by the cells at the front of the wound were
measured from the control and the experimental samples.

RNA isolation, RNA-Seq, and qRT-PCR

RNA samples were isolated from age-matched mice of differ-
ent genotypes. The prostate tissues were homogenized in RNA-
Bee (TEL-TEST, Inc., Friendswood, TX), and total RNA was
isolated as recommended by the manufacturer. The purified
RNA libraries were then sequenced using the Illumina HiSeq
2000 at the City of Hope Integrative Genomics Core.

RT was carried out as described in our previous report (75).
For quantitative PCR, cDNA samples were mixed with SYBR
GreenER qPCR Super Mix Universal (11762, Invitrogen) and
specific primers, and quantitative PCR was performed accord-
ing to the manufacturer’s protocol. Relative mRNA levels were
calculated by the ��C(T) method (76). Reactions were done in
triplicate, and the values were normalized by Ppia (peptidyl-
prolyl isomerase A) expression levels. Primers for Met (5�-
CTGGTGCCCTTACACTAAAC-3�; 5�-GAGACCTTCCCT-
CACTTAGATA-3�), Hgf (5�-GATGAACTCCAGGGCATAA-
TC-3�; 5�-CAAGCTGCATCCTCCTATTC-3�), Spp1 (5�-ATC-
TCACCATTCGGATGAGTCT-3�; 5�-TGTAGGGACGATT-
GGAGTGAAA-3�) (77), Fn1 (5�-GTGACACTTATGAGCGC-
CCTA-3�; 5�-CCACTTGTCGCCAATCTTGTA-3�) (78), Cdh2
(5�-CCAGCAGATTTCAAGGTGGAC-3�; 5�-TTACAGCTAC-
CTGCCACTTTTC-3�) (79), Zeb2 (5�-CCACGCAGTGAGCAT-
CGAA-3�; 5�-CAGGTGGCAGGTCATTTTCTT-3�) (80), Vegf-c
(5�-AGACGGACACACATGGAGGT-3�; 5�-AAAGACTCAAT-
GCATGCCAC-3�) (81), and Ppia (5�-TGTGCCAGGGTGGTG-
ACTTT-3�; 5�-CGTTTGTGTTTGGTCCAGCAT-3�) (82) were
synthesized and used in the qPCRs, respectively.

Statistical analyses

Data are shown as the mean � S.D. Differences between
groups were examined by two-tailed Student’s t test or two-
way analysis of variance for comparisons among multiple
groups. For all analyses, p � 0.05 was considered statistically
significant.
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