Table 1.
Prediction | ||||
---|---|---|---|---|
Method | Sensitivity | Specificity | Accuracy | AUC |
LASSO | 0.63(0.05) | 0.62(0.04) | 0.62(0.02) | 0.66(0.02) |
Enet | 0.65(0.05) | 0.64(0.05) | 0.63(0.02) | 0.68(0.02) |
Network | 0.82(0.06) | 0.82(0.06) | 0.81(0.05) | 0.89(0.05) |
Abs-Network | 0.82(0.05) | 0.82(0.06) | 0.81(0.04) | 0.89(0.04) |
Merge-LASSO | 0.65(0.04) | 0.65(0.06) | 0.63(0.02) | 0.68(0.02) |
Merge-Enet | 0.65(0.05) | 0.64(0.05) | 0.63(0.02) | 0.68(0.02) |
Merge-Network | 0.87(0.04) | 0.88(0.03) | 0.88(0.03) | 0.95(0.02) |
Merge-Abs-Network | 0.88(0.04) | 0.88(0.03) | 0.88(0.02) | 0.95(0.02) |
Int-LASSO | 0.88(0.02) | 0.88(0.02) | 0.88(0.02) | 0.96(0.01) |
Int-Enet | 0.88(0.02) | 0.88(0.02) | 0.88(0.02) | 0.96(0.01) |
Int-Network | 0.89(0.02) | 0.90(0.02) | 0.89(0.01) | 0.96(0.01) |
Int-Abs-Network | 0.90(0.02) | 0.90(0.02) | 0.90(0.01) | 0.97(0.01) |
MetaLasso | 0.75(0.05) | 0.76(0.04) | 0.76(0.04) | 0.84(0.04) |
β is shown in (9),
The maximum value for each measure is highlighted using boldface font