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Abstract

Background: Identification of cancer subtypes is of great importance to facilitate cancer diagnosis and therapy. A
number of methods have been proposed to integrate multi-sources data to identify cancer subtypes in recent years.
However, few of them consider the regulatory associations between genome features and the contribution weights
of different data-views in data integration. It is widely accepted that the regulatory associations between features play
important roles in cancer subtype studies. In addition, different data-views may have different contributions in data
integration for cancer subtype prediction.

Results: In this paper, we propose a method, CSPRY, to improve the cancer subtype prediction by incorporating
multi-sources transcriptome expression data and heterogeneous biological networks. We extract multiple expression
features of each genome element based on the regulatory associations in the heterogeneous biological networks and
use a generalized matrix correlation method (RV>) to predict the similarities between samples in each view of
expression data. We fuse the similarity information in multiple data-views according to different integration weights.
Based on the integrated similarities between samples, we cluster samples into different subtype groups.
Comprehensive experiments on TCGA cancer datasets demonstrate that the proposed method can identify more
clinically meaningful cancer subtypes comparing with most existing methods.

Conclusions: The consideration of regulatory associations between biological features and data-views contribution
is important to improve the understanding of cancer subtypes. The proposed method provides an open framework to
incorporate transcriptome expression data and biological regulation network to predict cancer subtypes.
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Background

Cancer disease is one of great danger to human health at
present. Rather than being a single disease, a cancer type
usually includes multiple subtypes in terms of different
molecular pathogeneses and clinical features [1-5]. It is
crucial to identify cancer subtypes to facilitate the preci-
sion of cancer diagnosis and therapy [6]. In recent years,
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the advance of high-throughput sequencing techniques
produced large-scale sequencing data in diverse cancer
types and made it easy to study cancer disease on genome
molecular level [7, 8]. For example, The Cancer Genome
Atlas (TCGA) pilot project [9] generated various types of
cancer sequencing data on over 11,000 patient samples
for over 34 cancer types [10]. The diverse genome-wide
datasets allow researchers to improve cancer subtype pre-
diction comprehensively using computational techniques.
However, we still have limited subtype knowledge to
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human cancer diseases at present since the heterogeneity
and complexity of cancers [5].

In recent years, many computational approaches were
proposed to take the advantage of multiple types of cancer
data to detect more clinically meaningful cancer subtypes
[8, 11-14], such as iCluster [11, 13], CNMF (consensus
non-negative matrix factorization) [13, 15], SNF (simi-
larity network fusion) [8], WSNF [5] and ANF [16], etc.
iCluster is a machine learning method to identify subtype
clusters from multiple data sources by using EM algo-
rithm, whereas feature selection is usually necessary for
it works on high-dimensional data. CNMF is a modified
non-negative matrix factorization method that identi-
fies biological subtype patterns in multi-sources data by
using non-negative matrix factorization approach. Nev-
ertheless, it is time-consuming for it works on the high-
dimensional biology data. SNF integrates multiple types
of genomic data to identify cancer subtypes, while it
uses iterative method to fuse similarity networks between
samples, and the model is complex and hard to be inter-
preted in practice [16]. The recent HSNF [17] method
enhanced the power of SNF, whereas the stability still
need to be further improved. In addition, the feature
importance provides useful information of features, and it
hopes to improve the overall similarity estimation in data
integration. WSNF incorporates the mRNA-TF-miRNA
regulatory network information to predict the impor-
tance of each feature, and thus to identify cancer subtypes
using SNF framework based on the weighted similarity
information between samples. Although these integrative
methods had been proven to be effective in subtype pre-
diction, they did not consider the data-view weight in
data integration, while different data-views may have dif-
ferent contributions to subtype prediction. To consider
the contributions of different data-views, ANF [16] fuses
multi-view affinity networks to identify cancer subtypes
by incorporating multiple types of data. However, ANF
did not consider the feature importance and the fea-
ture relationships in data integration. The heterogeneous
biological regulatory network includes the relationships
between features and it hopes to improve the subtype pre-
diction by incorporating the network information in data
integration, since different regulatory mechanisms may
exist in different cancer subtypes.

In this paper, we propose CSPRV (Cancer Subtype Pre-
diction using RV, [18]) to improve the cancer subtype
prediction by incorporating multi-sources expression data
and heterogeneous biology regulatory networks. Given
the expression data of genome elements, we first extract
multiple expression features for each regulatory element
based on the heterogeneous biological networks. Specifi-
cally, similar to [5], we consider gene (nRNA) and miRNA
expression and mRNA-TF-miRNA regulatory network in
this study (TF: transcription factor). We then reduce the
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extracted high-dimensional expression features to low-
dimensional space and assemble them to construct an
integrative feature matrix for each sample. Based on the
extracted feature matrices of samples, we use a matrix
correlation method, RV, [18], to predict the similari-
ties between samples in each expression data-view, and
then fuse the similarity information in samples from all
considering data-views according to different integration
weights. Finally, we cluster patient samples into differ-
ent cancer subtypes based on the predicted integrative
similarity network between samples.

The main contributions of this study can be summa-
rized as: (1) we consider more expression features for each
focused genomic regulatory element based on the biologi-
cal regulatory network in samples. (2) we use a generalized
matrix correlation method to estimate the similarities
between samples directly by considering the regulatory
associations between features. (3) we take into account
the contribution weights of different data-views in data
integration. Comprehensive experiments based on TCGA
BRCA and GBM datasets demonstrate that the proposed
method is effective to identify more clinically meaningful
cancer subtypes.

Methods

We present a novel method that incorporates tran-
scriptome profile data and mRNA-TF-miRNA regula-
tory network to predict cancer subtypes in cancer.
The main idea is that we consider not only the
transcriptome-wide expression of regulators but also
the regulatory associations between them. For the
transcriptome-wide expression data, we consider gene
and miRNA expression data, respectively. Meanwhile,
we integrate the mRNA-TF-miRNA regulatory network
with the transcriptome expression data to consider
associations between transcriptome regulatory elements.
Figure 1 shows the overall procedure of our method
in this paper. The details of each step are described
as following.

Step 1: Extraction of transcriptome expression features

In this paper, we take into account two types of transcrip-
tome expression data (gene: mRNA, if no specific states
in following context, and miRNA expression) to inte-
grate them with mRNA-TF-miRNA regulatory network
for cancer subtype prediction. For each type of transcrip-
tome expression features (gene or miRNA), we consider
not only its expression, but also the expression features
of its regulators or targets in the mRNA-TF-miRNA het-
erogeneous regulatory network. The intent to consider
the features expression in network associations is that the
expression of one considering genomic element is usually
co-regulated by multiple regulators or links to multiple
targets. There may exist situations that expression of the
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Fig. 1 Overall procedure of the proposed integration framework. The mRNA-TF-miRNA heterogeneous regulatory network, gene (mRNA and TF)
and miRNA expression data were considered in this study. S; denotes sample i

Data dimension reduction
and feature assembling

element have no much changes across samples, while the
expression of its regulators or targets may have much
difference across samples. These expression changes may
have different regulatory patterns in different subtypes.
The mRNA-TF-miRNA regulatory network includes
the regulatory associations between mRNA<mRNA,

TF—mRNA, miRNA— mRNA and miRNA <« TF. Figure 2
shows the basic regulatory model between them in bio-
logical regulation process [5]. In the figure, a regulatory
association is presented by a link, which the source cor-
responding to the regulator element and the end corre-

sponding to the target.

TFs co-regulate target mRNAs

TF-miRNA regulations

mRNA-mRNA regulations

Fig. 2 The basic biological regulation model between mRNA, TF (transcription factor) and miRNA

miRNAs co-regulate target MRNAs
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Based on the basic biological regulation model, we
extract multiple expression features for both genes and
miRNAs by incorporating the regulatory association
information in mMRNA-TF-miRNA network. For the genes
or miRNAs, we inspect the expression of them and their
related transcription expression features from three kinds
of regulatory associations in the network. As shown in
Fig. 3, (a-c) shows schematics of the three kinds of reg-
ulatory associations centering on genes in the mRNA-
TF-miRNA network; (d-f) shows schematics of the three
kinds of regulatory associations centering on miRNAs in
the mRNA-TF-miRNA network.

In detail, given a gene g, four transcriptome expression
features can be defined,

(1). Gene expression level.

fo=E (g) (1)

(2). Mean expression of its regulator mRNAs.

i £ (g)

N 2)

fi =fo (MRNA — mRNAg, ) =
Where E (gi) is the gene expression of regulator gene g; to
gk, N is the number of the regulator genes of gy.
(3). Mean expression of its regulator TFs.
L E @)

fo = fy (TF — mRNAy) = === ®)

Where E (t;) is the expression of regulator TF ¢; to g, N is
the number of the regulator TFs of gy.
(4). Mean expression of its regulator miRNAs.

Yy E (mi)
N

Where E (m;) is the expression of regulator miRNA m; to
gk, N is the number of the regulator miRNAs of g;.

f3 =fo (MiRNA — mRNAy, ) = (4)
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Similarly, given a miRNA my, four transcriptome
expression features can be defined,
(1). miRNA expression level.

Jo = E(my) (5)

(2). Mean expression of its target mRNAs (genes).

ZfilE( i)

fi = fm, (MiRNA,,, — mRNA) = N

(6)
Where E (g;) is the expression of its target gene g; of m1y,
N is the number of the target genes of m.

(3). Mean expression of its target TFs.

N L E®)
f2 = fm, (MiRNA,y,, — TF) = FT (7)
Where E (¢;) is the expression of target TF ¢; of my, N is
the number of the target TFs of m.
(4). Mean expression of its regulator TFs.

TLE®)

S3 =fm (TF — miRNA,,, ) = N

(8)
Where E (tj) is the expression of regulator TF ¢; to my, N
is the number of the regulator TFs of mi.

As we stated above, for each gene or miRNA, four
transcriptome expression features can be extracted by
incorporating the corresponding regulatory associations
in mRNA-TF-miRNA network. For each type of extracted
transcriptome expression feature i, an expression matrix
Ef,?xn can be used to denote the expression of all m
genes/miRNAs in #n patient samples in i. Therefore, four
expression feature datasets for genes and four expres-
sion feature datasets for miRNAs can be extracted,
respectively.

a mRNA— mRNA b

MRNA; | +++ | mRNA; | -+ mRNA,

mRNA;  + -+ mRNA; ... mRNA,

TF— mRNA c

miRNA— mRNA

miRNA| « « « | miRNA;| « « « |miRNA,

d miRNA— mRNA e miRNA —TF f TF— miRNA
miRNA miRNA

2 &o

Fig. 3 The schematics of the regulatory associations between different regulator elements in mMRNA-TF-miRNA network. (a-c) Three types of
regulatory associations centering on genes; (d-f) Three types of regulatory associations centering on miRNAs

20N
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Step 2: Data dimension reduction and feature assembling
The extracted transcriptome expression features are usu-
ally high-dimensional data. The high-dimensionality chal-
lenge may raise the extreme bias when using the data
directly to predict the similarity information between
samples. To ease the high-dimensionality challenge in this
study, we use the principal component analysis (PCA)
method [19, 20] to perform dimension reduction for each
extracted expression feature matrix in both gene and
miRNA data views. To obtain the same dimension for all
gene/miRNA extracted expression features, and thus to
facilitate the downstream similarity analyses, we reduce
all gene/miRNA expression feature matrices to the largest
components that ensure all four-expression datasets have
least dimension redundancy and the explained variance
rate> 0.9. Based on the reduction features, for each
patient sample, we assemble all reduction gene/miRNA
features from different expression feature matrices to
compose two ensemble feature matrices in both gene
and miRNA profile views (Fig. 1). The two ensemble
feature matrices provide more comprehensive transcrip-
tome expression features centering on genes and miRNAs
respectively, which include not only expression informa-
tion of both genes and miRNAs, but also the associations
between them.

Step 3: Similarity network prediction and fusion

Based on the processed feature matrices of samples,
we calculate the correlation coefficient between feature
matrices of samples. Specifically, given two feature matri-
ces X® of sample i and Y() of sample j, we use the
modified RV-coefficient (RV3) [18] method to calculate
the correlation between X® and Y). The RV, correlation
coefficient between X and Y is defined as,

Vec (ﬁ’)/Vec ({’?’)
RV (X, Y)=

Vec(ﬁ’)/Vec ()5?’) X Vec(YAf/)/Vec (YA)?’)
9)

The XX' = XX' — diag (XX'), where diag (XX) is a
matrix which only includes the diagonal elements of XX’
on its diagonal, and zero’s elsewhere. X’ is the transpose
of X. Vec(X) is the symbol of the vectorized version of X
[18]. The two most important advantages of RV, method
are: (1) it can measure the correlation between matrices
directly, which contain more comprehensive features of
samples; (2) it is robust to the matrix sizes and the cor-
relation coefficient ranges from -1 to 1, which is similar
to depicting the correlation between matrices as Pearson
method.

Based on the ensemble feature matrices of samples,
we predict expression correlations between samples in
each data view. Then we use a scaled exponential kernel
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function to determine the similarity between samples by
using a correlation-based distance measurement. Given
two samples X; and Xj, the RV correlation coefficient is
0 (X,',X/), we defined the distance between X; and X; as,

d (X, X;) = 1 - p (X;, X)) (10)
The similarity between X; and X; is similarly defined as [8],

d* (Xi, X;) )

ME)

W (X, Xj) = exp (— (11)
where w is a hyper-parameter that can be defined empiri-
cally by users, the recommend range is [0.3, 0.8] in [8], and
we set default value is 0.3 in this study. Here, the difference
in our method is that we use different distance measure-
ment in scaled similarity prediction. ¢;; is a parameter
that uses to eliminate the scaling problem, and it can be
defined as [8],

mean (d (X;, N;)) + d (X;, X;) 4+ mean (d (X;, N;))
3

Eij =
(12)

where the mean (d (X;,N;)) is the average distance
between X; and all its neighbors.

We predict the similarities between samples centering
on both genes and miRNAs, and fuse the similarity infor-
mation according to the data weight parameters. For each
pair of samples X; and X, the predicted similarity between
them centering on gene and miRNA views are W, (XL', X])
and W, (Xi, X]), respectively. Then the combined similar-
ity between them is defined as,

We (X, Xj) = aWq (X5, Xj) + (1 — a) Wiy (X5, X5) (13)

where o € [0, 1].

Step 4: Subtype group clustering

We use spectral clustering method to cluster patient sam-
ples into different subtype groups based on the integrative
similarity information between samples. Concretely, sup-
pose we define m subtype groups in # samples and a
cluster partition matrix Yy,x, = (¥1,%2,- - ,¥n) is used
to indicate the labels of samples. For each sample i, y; is
the corresponding indicator vector, which y; € {0, 1}”. If
i belongs to subgroup &, y; (k) = 1, otherwise y; (k) = 0.
The spectral clustering method tries to identify the sub-
group labels of samples according to solving the following
optimal question [8],

min Trace (QTL+Q) ,5.:.QTQ=1 (14)
QeRYle
where Q = Y(YTY)" 12 is a scaled partition matrix,

Lt = I — D"YV2WD™1/2 is the normalized Laplacian
matrix given the similarity matrix W. D is the diagonal
matrix with diagonal elements being the sum of each row
in W.
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Results

Datasets

In this paper, we use the transcriptome datasets of two
cancer types from TCGA, which are processed and pro-
vided in [5]. The two cancer types include breast invasive
carcinoma (BRCA) with 587 samples and glioblastoma
multiforme (GBM) with 276 samples. The BRCA datasets
include gene (mMRNA and TF) and miRNA expression
data in all 587 samples. The gene and miRNA expression
data are log2 transformation data and low expressed or
uninformative genes and miRNAs are removed [5]. The
gene and miRNA expression in GBM are microarray data,
and the missing values are imputed and low expression
or uninformative elements are removed [5]. The mRNA-
TE-miRNA regulatory network data are obtained from
[5], which are collected from several public databases,
including ENCODE [21], TransmiR [22], TarBase [23] and
STRING [24], etc. Since the network build on gene identi-
ties, to obtain more reliable network information, we map
all gene identities to gene symbols and remove the genes
with no mapped symbol from the heterogeneous network
in each cancer data. To obtain consistent gene and miRNA
list in both the gene/miRNA expression data and the net-
work, we remove genes/miRNAs which are not in the
network. Finally, in BRCA data, 11,396 genes (mRNAs),
1,302 TFs and 361 miRNAs are conserved in 587 samples;
in GBM data, 9637 genes (mRNAs), 1059 TFs and 287
miRNAs are conserved in 276 samples. After collecting
all expression data together, we use z-score standardized
expression data across samples in our clustering pipeline.
We also download the clinical data in each cancer type to
evaluate the analysis results.

Parameter selection

By integrating the gene/miRNA expression data with
mRNA-TF-miRNA regulatory network together, we
extracted more comprehensive expression features of
each gene/miRNA. We used principal component anal-
ysis (PCA) method to reduce the high-dimensional fea-
ture data. In BRCA data, we finally conserved 268 and
124 components in gene and miRNA expression feature
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datasets, respectively (explained variance rate=0.92). In
GBM data, we finally conserved 161 and 87 components
in gene and miRNA expression feature datasets, respec-
tively (explained variance rate=0.95). In fact, we tested
it on the two cancer data and found the overall perfor-
mance was not sensitive to the explained variance rate
(Additional file 1: Tables S1 and S2). In our pipeline, to pre-
dict the subtype groups, one important hyper-parameter
that needs to be tuned is the integrating data-view weight
Eq. (13), which defines the similarity weight predicted on
gene view in similarity integration. Different data-view
weights may lead to different cancer subtype predictions.
Before doing that, we set the default value 1 = 0.3 Eq. (11)
in our study after testing the overall performance using
different setting values (Additional file 1: Tables S3 and
S4). To select the best « in each cancer data, we set «
ranging from 0 to 1 with 0.1 differential at each trial and
evaluated the subtype prediction performance on each
parameter condition. Specifically, based on the clinical
data in each cancer type, we performed the survival sig-
nificance analyses for the identified cancer subtypes by
using different integration parameters () and then eval-
uated the Cox log-rank test [25] p-value performance in
survival time estimation. As studied in [5], five subtypes
in breast invasive carcinoma data (BRCA) and three sub-
types in glioblastoma multiforme cancer data (GBM) were
defined. In this study, to be consistent with the previous
study and fair to method comparison, we set the same
cluster number in each cancer type data in clustering step
as in [5].

Figure 4(a-b) show the Cox log-rank test [25] p-value
performance of the identified cancer subtypes by using
different similarity integration parameters in BRCA and
GBM data. In each plot, the dot size is determined by
the negative logarithm p-value in survival analyses. As
shown in Fig. 4(a), in BRCA data, we obtain significant
subtype prediction in survival analyses when « ranging
from 0.0 to 0.5. Especially, when o = 0.4, we obtain the
most significant subtype estimation in survival analyses
(p = 1.60e — 03). As shown in Fig. 4(b), in GBM data, we
obtain significant subtype prediction in survival analyses

BRCA

logua(p-value)
0.0 05 1.0 1.5 2.0 25 3.0 3.5
°
8

00 01 02 03 04 05 06 07 08 09 10

Gene Weight

b

logio(p-value)
00051.01520253.0354.0455.0
<

00 01 02 03 04 05 06 07 08 09 10

Gene Weight

Fig. 4 The Cox log-rank test p-value distribution in survival analyses of the identified subtypes using different integration weights in data
integration. (a). p-value distribution in BRCA data; (b). p-value distribution in GBM data
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Table 1 Performance comparison of different integrative methods

Dataset CNMF iCluster CcC SNF SNF-CC ANF WSNF CSPRV
BRCA 248e-02 9.70e-02 6.58e-02 5.64e-02 7.60e-02 2.98e-02 3.09e-02 1.60e-03
GBM 2.26e-01 1.72e-01 3.21e-01 2.53e-03 2.54e-03 8.72e-02 1.89e-03 143e-04

Cox log-rank test p-values of the identified subtypes in survival analyses were evaluated

when o ranging from 0.2 to 0.6. Especially, when o = 0.3,
we obtain the most significant subtype estimation in sur-
vival analyses (p = 1.43e — 04). Based on the performance
in survival analyses of the identified cancer subtypes, we
selected the best integration weight parameter to identify
cancer subtypes in each cancer data in our downstream
analyses. Importantly, we notice that there are different
contributions of different data-views to subtype identi-
fication in the two cancer types. This may imply that
there are different transcriptome regulatory mechanisms
in different cancer types.

Performance comparison with existing methods

We conducted cancer subtype prediction by using our
proposed method on both BRCA and GBM data. To
investigate the performance of the proposed method, we
compared the performance of it with other seven existing
integrative methods on the two cancer data. We inves-
tigated the Cox log-rank test p-value in clinical survival
analyses for the identified cancer subtypes by using each
method. It is reasonable that a good subtype prediction
method should identify cancer subtypes with significant
differential of survival time estimation. In comparison
experiments, the number of subtypes in all two data were
as same as in previous study [5] (five in BRCA and three in
GBM). The seven reference integrative methods included
CNMF [13, 15], iCluster [11], CC (consensus clustering)
[13, 26], SNF [8], SNF-CC [13], ANF [16] and WSNF
[5]. CC is a method can detect consensus clusters in

multiple data sources. SNF-CC integrates the SNF and
CC methods together to identify cancer subtypes from
multiple datasets. Specifically, since the iCluster is high-
computationally for high-dimensional data and feature
selection is necessary in practice [13], in our experiments,
we selected 10% of features if the number of features>
10,000 in one dataset, otherwise all features were used.
In detail, in BRCA data, we selected the top 10% impor-
tant features by the decreasing of variance. While, in GBM
data, since all expression data were standardized data,
all gene/miRNA had similar variance in samples. To test
the overall performance of iCluster on these data, we
run iCluster five times by randomly selecting 10% of fea-
tures in the datasets which had feature number> 10,000,
and used the median of p-values in survival analyses as
the final reference. For other comparison methods, in all
datasets, we set different parameters and used the best
p-value in survival analyses as the final reference in the
comparison. Table 1 shows the comparison performance
of the identified subtypes in survival analysis by using
different methods in two cancer datasets. As shown in
Table 1, the proposed method predicts more significant
cancer subtypes with survival difference in both BRCA
(p = 1.60e — 03) and GBM (p = 1.43e — 04) datasets.
Especially, considering the WSNF [5] method also incor-
porated the mRNA-TF-miRNA regulatory network to
identify cancer subtypes, we find the proposed method
consistently obtains more significant subtype prediction
than WSNF in both BRCA and GBM datasets. This may
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Fig. 5 The identified subtypes in BRCA data. (a). Heatmap of the predicted integrative similarity network between samples (arranging samples by
predicted subtype labels); (b). Kaplan-Meier survival probability curves of patients in the identified subtypes
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Table 2 Average diagnosis ages and survival time of patients in the identified subtypes in BRCA data (Avg. survival time based on

status=1 samples)

Subtype 1 Subtype 2 Subtype 3 Subtype 4 Subtype 5
Avg. diagnosis age (years) 59.7 56.7 589 553 59.7
Avg. survival time (days) 920.0 1275.0 1309.1 1802.8 2028.5

because that we considered not only the transcriptome-
wide expression of regulators but also the associations
between them.

Cancer subtype prediction in breast cancer data

We used the proposed method (CSPRV) to identify can-
cer subtypes in BRCA gene/miRNA expression datasets
by incorporating mRNA-TF-miRNA regulatory network.
Then, we evaluated the identified cancer subtypes based
on various corresponding clinical data in breast cancer
and analysed the differential of expression patterns of dif-
ferent transcriptome elements across subtypes. We iden-
tified five cancer subtype groups in breast cancer data.
The five number of cancer subtypes in our study were
defined as study in [5]. To investigate the consistence of
the predicted cancer subtypes with the integrative sim-
ilarity between samples, we generated the heatmap of
the predicted integrative similarity network by arranging
the samples according to the predicted subtype labels.
As shown in Fig. 5(a), there are relatively clear block
boundaries between different subtypes in the predicted
similarity network between samples. This illustrates that
the identified subtype groups are consistent with the pre-
dicted similarity information. The silhouette plots show
that four-fifth clusters have positive silhouette score, while
the largest one (cluster 3) have negative mean silhouette
score (Additional file 1: Figure S1(a), visualization uses
tool in [13]). This may be for the reason that the data
noise of samples and the relatively weak discrimination
of predicted similarity in cluster 3 samples. To consider
this situation, we further investigated the significance of
the clinical survival probability distributions of the iden-
tified subtypes. Kaplan-Meier survival analyses [27] were
performed on the identified cancer subtypes. As shown
in Fig. 5(b), there are significant differential of the sur-
vival probability estimations in different subtypes (p =
1.60e — 03). This illustrates that the CSPRV can detect
clinically meaningful cancer subtypes in survival time esti-
mation in breast cancer data, although the clustering of
subtype cluster 3 is not as well as others. In addition, we
also investigated the distributions of initial diagnosis ages
and the survival time of the patients in each cancer sub-
type. Table 2 shows the average initial diagnosis age and
survival time in each cancer subtype (ignored samples
that have no corresponding information). We can see that
there are not significantly different average diagnosis ages
in the identified subtypes and most values are around 57

years old. This may illustrate that the breast cancer has
higher risk of occurring in women around or over than
55 years old. In addition, we also notice that there are
very different survival time in the identified subtypes. For
example, in subtype cluster 1, the average survival time is
only 920.0 days, while it is 2028.5 days in subtype 5. This
indeed demonstrates that the identified subtypes provide
significant clues in survival rate estimation.

To further recognize the transcription differential in
the identified subtypes, we investigated the expression
patterns of different transcriptome elements across the
identified subtypes. Similar to the study in [5], we used
59 normal samples from TCGA as reference and detected
the differentially expressed mRNAs, TFs and miRNAs
across five identified subtypes. In detail, we used the
voom [28] method in Limma [29] R package to detect
the differential elements by comparing each subtype with
normal group. We selected the differentially expressed
(|logFC| >1.5; BH-adjusted-p< 0.01) genes (920 mRNAs
and 81 TFs) and miRNAs (119 miRNAs) in all subtype
groups (excepted common elements in all subtypes),
and investigated the expression patterns of them in our
analyses. As shown in Fig. 6, there are relatively clear
different expression patterns in subtypes comparing with
the normal group, especially in the mRNA and miRNA
datasets. We also checked the overlaps of the differentially
expressed mRNAs/miRNAs in five cancer subtypes using

HighSubtype

| B
. Normal

Low
row z-score

Fig. 6 Heatmap of the differentially expressed mRNAs, TFs and
miRNAs in the identified BRCA subtypes
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the normal group as reference (Additional file 1: Figure
S2(a-b)). We notice that there are not only some common
changes in all subtypes, but also subtype-specific changes
in gene and miRNA expression data, respectively.

Moreover, to check the biological functions of the genes
that expression alternatively changes across subtypes
(excepted common differential genes), we conducted
Gene Ontology enrichment analysis on these genes using
tools in [30, 31]. Figure 7 shows the situation of the
enrichment ontology terms of those cancer related genes
(only shown the terms with BH-adjusted-p<0.1). As
shown in Fig. 7, we can see that the most signifi-
cant enrichment terms are related to the cell division,
cell cycle phase, cell-to-cell signaling, etc. in biologi-
cal process. Some of these enrichment functions are
actually related to the breast cancer development, such
as cell division, cell signal transition, etc. This may
reveal that the different regulation patterns in biology
cells in cancer subtypes. We also conducted enrichment
analysis on those cancer-related miRNAs by using the
miEEA [32] tool in breast cancer. Table 3 shows the top-
5 most significant related terms. As shown in Table 3,
these miRNAs are enriched on the cancer diseases. This
indeed demonstrates that the abnormal expression of
miRNA is one of important factors to affect the can-
cer occurrence and thus raise different cancer subtype
attributions.

D Description
G0:0005576
16 GO:0000280 nuclear division
GO:0000279 M phase
G0:0022403 cell cycle phase
14 @ Biological Process G0 O . fopaliig
@ Celiolar Coroight GO:0007267 cell-cell signaling
. GO:0005576 extracellular region
@ Molecular Function
12 G0:0044459 plasma membrane part
GO:0005886 plasma membrane
I G0:0031224 intrinsic to membrane
% 10 G0:0030141 secretory granule
1 GO:0005509 calcium ion binding
5 GO: 46 binding
< 8 GO ine-typ idase activity
o
S G0:0004175 endopeptidase activity
T

l‘
o
G
> 0: @3 gpaos e
(Go:0031224) 00175 % O

0
-7 -5 -3 -1 1 3 5 7

Z-score
Fig. 7 Gene Ontology enrichment analysis of the differentially
expressed genes (MRNAs) in BRCA subtypes. z-score provides hint of
a term related to the up-regulated (positive) or down-regulated
(negative) genes [31]. The dash line is corresponding to adjusted
p-value=0.05
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Cancer subtype prediction in glioblastoma multiforme data
To further demonstrate the effectiveness of the proposed
method in cancer subtype identification, we used it to
identify cancer subtypes in glioblastoma multiforme can-
cer data (GBM). Similar to the study in [5], we defined
three subtype clusters and used the best « parameter
to predict subtypes in GBM data (Fig. 4(b)). Figure 8(a)
shows heatmap of the predicted integrative similarity net-
work by arranging the samples according to the predicted
subtype labels. There are clear block boundary between
subtypes. This illustrates that the predicted subtypes are
consistent with the estimated integrative similarity infor-
mation between samples. The silhouette plots of the
subtype clusters show all of them have positive global sil-
houette scores and the overall score is 0.12 (Additional
file 1: Figure S1(b), visualization uses tool in [13]). This
illustrates that most samples have well cluster prediction
in GBM data. Figure 8(b) shows the Kaplan-Meier sur-
vival probability curves of the identified cancer subtypes
in clinical survival analyses. We find that there are very
different survival probability estimations in the identified
subtypes (p=1.43e-04). This indeed illustrates that CSPRV
can detect clinically meaningful cancer subtypes in sur-
vival time estimation in GBM data. Similarly, we also
investigated the distribution of the initial diagnosis ages
and the survival time of the patients in each cancer

Table 3 Disease, pathway and gene ontology enrichment
analyses on the differentially expressed miRNAs in BRCA subtypes

Disease Adj-p-value
Neoplasms 1.31e-06
Carcinoma 8.93e-05
Adenocarcinoma 1.50e-03
Ovarian Neoplasms 1.97e-03
Breast Neoplasms 4.15e-03
Pathway Adj-p-value
P00011 Blood coagulation 9.76e-04
WP272 Blood Clotting Cascade 6.86e-03
P00045 Notch signaling pathway 9.88e-03
WP129 Matrix Metalloproteinases 9.88e-03
WP138 Androgen receptor signaling pathway 9.88e-03
Gene Ontology Adj-p-value
GO0005515 protein binding 2.90e-03
GO0035019 somatic stem cell maintenance 2.90e-03
GO0042246 tissue regeneration 2.90e-03
G0O0042742 defense response to bacterium 2.90e-03
GO0030177 positive regulation of wnt receptor 3.95e-03

signaling pathway

Top-5 significant enrichment terms are shown in each category
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Fig. 8 The identified subtypes in GBM data. (a). Heatmap of the predicted integrative similarity network between samples (arranging samples by
predicted subtype labels); (b). Kaplan-Meier survival probability curves of patients in the identified subtypes

subtype and found that they were significantly different
in cancer subtypes (Table 4, ignored samples that have
no corresponding information). As shown in Table 4, in
subtype cluster 1, the average initial diagnosis age is 51.1
years and the average survival time is 935.2 days; how-
ever, in the subtype cluster 2, the average initial diagnosis
age is 61.6 years (older 10 years than in cluster 1) and the
average survival time is only 346.3 days. This may illus-
trate that there are very different age-related risks and
survival rates in the glioblastoma multiforme disease in
different cancer subtypes. To further study the effect
of age factor to the survival rate in different cancer sub-
types, we simply divided the patient samples into two
groups by using 60-years cutoff, which corresponding to
non-old (age<=60) and old (age> 60) groups (peak in age
distribution in Additional file 1: Figure S3).

We performed survival analyses on the two age
groups in each subtype. As shown in Fig. 9(a-c), there
are significant survival differential between the two
age groups in subtype cluster 1 and 3 (Cox log-
rank test p-value 5.03e-03 and 1.08e-04, respectively);
while in the subtype cluster 2, there is not signifi-
cant differential of the survival probability between two
age groups. This illustrates that age factor may have
different effects to the survival anticipate in different
subtypes.

Table 4 Average diagnosis ages and survival time of patients in
the identified subtypes in GBM data (Avg. survival time based on
status=1 samples)

Subtype 1 Subtype 2 Subtype 3
Avg. diagnosis age (years) 51.1 61.6 58.1
Avg. survival time (days) 9352 346.3 490.2

Discussion and conclusions
Identification of cancer subtypes is of great importance
to cancer diagnosis and therapy. Many approaches were
proposed to integrate multi-sources data to identify can-
cer subtypes in recent years, such as iCluster [11], SNF
[8], WSNF [5] and ANF [16], etc. SNF, on behalf of the
recent integration methods, is an effective and efficient
method that fuses multi-sources data according to simi-
larity networks between samples. It can discover cancer
subtypes with different survival patterns by integrating
multi-sources data. In view of SNF does not consider
the importance of features in similarity fusion, WSNF
predicts the importance of features by incorporating
mRNA-TF-miRNA regulatory network, and then predict
the subtypes based on the integrative similarity infor-
mation between samples by using SNF framework. It is
proved that the heterogeneous regulatory network infor-
mation is useful to assist similarity estimation between
samples. In this study, we consider not only the regula-
tory associations between features in mRNA-TF-miRNA
regulatory network, but also the weights of different
data-views. Comparing with WSNF predicts the feature
weights directly, CSPRV extracts multiple expression fea-
tures for each genomic feature based on the heteroge-
neous network and uses RV, matrix correlation method
to predict the similarity information between samples.
In fact, the extracted features also include the feature
importance information in high-dimensionality. In addi-
tion, CSPRYV also considers the weights of different data-
views in data integration according to manually defining
the weight parameters in algorithm. This strategy is more
robust to make the method to work on different cancer
data.

Although the proposed method detected more signif-
icant subtypes in survival estimation on the two can-
cer datasets, the robustness of the method still need
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Fig. 9 Kaplan-Meier survival probability curves of patients in two age groups in the identified subtype clusters in GBM data (ignored samples that
have no age information). (@-¢)The identified subtype 1, 2 and 3, respectively

to be further improved in future. For examples, as the
visualization of the integrative similarity in Fig. 5(a),
the largest subtype (cluster 3) is not clear as well as
other four clusters (silhouette score is -0.04) in BRCA
data. This illustrates that the discrimination of the pre-
dicted similarities between samples are not enough in
some extent, especially in the samples with large data
noise. Since we predict the similarity information based
on the correlation version distance, good data features
and data noise processing are important to similarity
prediction. The performance of the proposed method
hopes to be improved by considering more data infor-
mation. On the one hand, in this study, we currently
based on the datasets in [5], and the network only
includes mRNA, TF and miRNA features. More accurate
and complete heterogeneous networks hope to provide
more comprehensive transcriptome expression informa-
tion, thus to improve the performance on cancer subtype
prediction. On the other hand, to handle the data high-
dimensionality challenge, we used the PCA method to
perform dimension reduction in feature integration at
present, which is a linear model in feature embedding.
More robust and complex feature-embedding methods
may hope to be used to improve the quality of the learned
features. We plan to extend and improve the method
in future.

In conclusion, we proposed a new model, CSPRYV, to
integrate multiple types of transcriptome expression data
and heterogeneous biological network to identify can-
cer subtypes. Tests on TCGA BRCA and GBM datasets
demonstrated that the proposed method obtained more
significant subtypes, which shown different survival pat-
terns. We hope it could be a useful approach to facilitate
the cancer disease analyses in future.

Additional file

Additional file 1: Figures S1-S3 and Tables S1-S4. (PDF 526 kb)
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