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Abstract

Background: Human cancers are complex ecosystems composed of cells with distinct molecular signatures. Such
intratumoral heterogeneity poses a major challenge to cancer diagnosis and treatment. Recent advancements of
single-cell techniques such as scRNA-seq have brought unprecedented insights into cellular heterogeneity.
Subsequently, a challenging computational problem is to cluster high dimensional noisy datasets with substantially
fewer cells than the number of genes.

Methods: In this paper, we introduced a consensus clustering framework conCluster, for cancer subtype
identification from single-cell RNA-seq data. Using an ensemble strategy, conCluster fuses multiple basic partitions to
consensus clusters.

Results: Applied to real cancer scRNA-seq datasets, conCluster can more accurately detect cancer subtypes than the
widely used scRNA-seq clustering methods. Further, we conducted co-expression network analysis for the identified
melanoma subtypes.

Conclusions: Our analysis demonstrates that these subtypes exhibit distinct gene co-expression networks and
significant gene sets with different functional enrichment.
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Background
Characterization of intratumoral heterogeneity is criti-
cal to precision cancer therapy, as diverse cell popula-
tions usually enable relapse and resistance to treatment
[1]. Conventional bulk RNA-seq technology reveals the
average gene expression of a collection of cells, and sub-
sequently many methods have been developed to infer-
ence tumor evolution using data from bulk-sequencing of
tumor samples [2, 3]. These approaches require decon-
volution of the mixed signals of the underlying tumor
subpopulations, which are often ambiguous [4].
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Recently, single-cell RNA-Seq (scRNA-seq) quantifies
the expression of diverse cellular populations and enables
researchers to analyze the difference among cells [5–7].
A full characterization of the transcriptional landscape of
individual cell holds enormous potential for detection of
clinically important tumor subpopulations, understand-
ing of tumor heterogeneity and further clinical appli-
cations [8, 9]. Clustering of single-cell expression data
provides an intuitive way for identification of cell types
from a mass of heterogeneous cells, which can be used in
diverse downstream expression analysis [10–12].

Due to noise, high dimensionality and data hetero-
geneity, newly produced scRNA-seq data pose a grand
challenge for traditional clustering algorithms, such as
K-means, hierarchical clustering, and spectral clustering
[13]. One feasible strategy is to first reduce the high
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dimensional data into a lower dimensional subspace and
apply traditional clustering to the dimension-reduced
data. The widely used dimension reduction methods
include principal component analysis (PCA) [14] or t-
Distributed Stochastic Neighbor Embedding algorithm
(t-SNE) [15]. Meanwhile, a number of methods which
specifically designed for scRNA-seq analysis have been
introduced, including Seurat [16], CIDR [17], SNN-cliq
[18], SINCERA [19] and SC3 [20]. These advanced meth-
ods have greatly improved the capability of scRNA-seq
data analysis. However, as clustering methods are mostly
sensitive to noise and initial parameters, how to accu-
rately cluster scRNA-seq data across different environ-
ments and revealing biological insights is still a substantial
challenge [21].

Here, we proposed a consensus clustering model, con-
Cluster, for cancer subtype identification from single-cell
RNA-seq data. Specifically, conCluster first obtains a set
of basic partitions using tSNE+K-means clustering with
different initial parameters, and then fuses these differ-
ent partitions into consensus clusters. Our conCluster
method can also be easily extended to ensemble the clus-
tering results of different clustering methods. We applied
conCluster to real cancer scRNA-seq datasets, and fur-
ther constructed the co-expression networks for the iden-
tified cancer subtypes to analyze their difference. The
experimental results demonstrate the effectiveness and
robustness of conCluster compared with five widely used
clustering methods.

Methods
Overview of the conCluster model
To identify subtypes from a collection of cancer cells,
we developed conCluster to ensemble multiple cluster-
ing results. Let EN∗G denotes a single-cell gene expression
matrix, in which rows correspond to different cells and
columns correspond to genes. Each element of Eij corre-
sponds to the expression of gene j in the ith cell. Our con-
Cluster takes the expression matrix E as input, through
four steps, finally partition the N cells into K clusters,
represented as C = {Ck |k = 1, 2, · · · , K }. Figure 1 shows
the overview of the proposed conCluster model. In the
following, we will elaborate each step in detail.

Step1 Filter genes
To focus on the intrinsic transcriptomic signatures of
these tumor cells, we filtered out rare and ubiquitous
genes and identified the most variable genes across the
single-cell dataset. Firstly, as the rare and ubiquitous genes
are usually not useful for clustering, we filtered out genes
that are either expressed in less than r% of cells (rare
genes) or expressed in at least (100-r)% of cells (ubiquitous
genes). As in the previous study [22], r is set as 6. Next, we
identified the gene set that was the most v% variable across

these single-cells, by controlling the relationship between
mean expression and variability.

Step 2 Reduce dimension using t-SNE
To further reduce the dimensionality, we adopted the
widely used t-SNE to reduce the high dimensional data
into a lower dimensional subspace. Detailedly, perplex-
ity is an important parameter of t-SNE, which is used as
a smooth measure of the effective number of neighbors.
Previous studies indicate that performance of t-SNE is
fairly robust with changes in the perplexity between 5 and
50. Here, we set perplexity as 30 and used t-SNE to reduce
the filtered scRNA expression data into two dimensions.

Step3 Partition cells in multiple ways
Based on the transformed two-dimensional data matrices,
we performed K-means clustering with different initial
parameters T times to obtain different basic partitions for
these single cells. In this step, we can also utilize other
basic clustering methods. For each individual clustering
result, we derived a binary matrix BN∗Kt , which was con-
structed based the corresponding cluster labels of N cells,
where Kt (t = 1, 2, · · · , T) is the cluster number in the tth
basic partition. For each row of BN∗Kt , only one element
is 1, others are 0.

Step4 Consensus clustering
After gaining the T different partitions, we concatenated
all those binary matrices into a larger binary matrix
B = {BN∗Kt |t = 1, 2, · · · , T }. Furthermore, we performed
K-means clustering based on the merged binary matrix.
Here, Calinski-Harabaz Index [22] is utilized to decide
the number of clusters. Then we fused the results of each
individual clustering result into a consensus one [23].

Evaluation Metrics
When cell labels are available in the dataset, we adopted
the adjusted rand index (ARI) to measure the accuracy of
clustering [24]. For a set of N cells and two different parti-
tions of these cells, the overlap between the two partitions
can be summarized in a contingency table, in which each
entry denotes the number of objects in common between
the two partitions. The ARI is then calculated as:
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where (.) denotes a binomial coefficient, nij is the element
from the contingency table, ai is the sum of the ith row of
the contingency table, bj is the sum of the jth column of
the contingency table.
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Fig. 1 The schematic workflow of conCluster

Datasets
Single-cell expression data from two recent scRNA-seq
studies were selected from the data repository NCBI Gene
Expression Omnibus (GSE72056 [25], GSE73727 [26]).

As they contained the cell types in the original publi-
cations, it can be used to further validate the clustering
results of different methods. In these studies, cell types
were determined through a multi-stage process involving
additional information such as cell-type molecular sig-
natures. The first dataset contains a collection of cells
from human melanoma tumor, consisted of 4645 single
cells isolated from 19 patients; and the second dataset is
from human pancreatic islet, containing 6 known human
islet cell types. To ensure good data quality, samples with
a library size less than 10,000 were excluded. Data sets
transformed by logTPM were used as inputs of different
methods.

Results
Performance evaluation on single cell RNA-seq data
To fully evaluate the performance, we compared con-
Cluster with five widely used scRNA-seq data clustering
methods, including spectral clustering, tSNE+K-means,
SNN-Cliq, CIDR and SC3. Specifically, spectral clustering
is an efficient traditional clustering method; tSNE+K-
means is K-means clustering combined with the nonlin-
ear dimensionality reduction technique tSNE; SNN-Cliq
adopts a shared nearest neighbours approach to calcu-
late similarities between cells and performs single cell

clustering using a graph-theoretical model; CIDR uses an
imputation approach to alleviate the impact of dropouts
in scRNA-seq data in a principled manner; and SC3
transforms a cell-to-cell distance matrix from individ-
ual K-means clustering to get a consensus partitions. To
run the main SC3 method, the parameter ks is required
to set. For CIDR, there are two parameters (nPC and
nCluster). SNN-cliq relies on four paramters (k, distance
r and m). We tried different values of these parame-
ters and selected those values which obtain the highest
ARI. Here, we selected two single cell RNA-seq datasets
[GSE72056 and GSE73727], as they contained preexisting
cluster structures that can be used for validation.

Figure 2 shows the clustering performance of differ-
ent algorithms as measured by the adjusted rand index
(ARI). For dataset GSE73727 with 6 clusters, these meth-
ods achieve better performance when the cluster number
is close to 6. For dataset GSE72056 with 2 clusters (malig-
nant and benign tumor), the performance is the best when
k equals to 2. Overall, the proposed conCluster identi-
fies the subtypes of these single cells more correctly, as
reflected by an adjusted rand index close to 0.9, which is
higher than those of the five compared methods for both
the datasets. Some methods such as SNN-cliq and SC3
can get comparable performance to conCluster. However,
their performance is not stable for different datasets and
clusters. The ARI of traditional clustering method such
as spectral clustering is relative lower than other meth-
ods. Although the performance of tSNE+K-means is not
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Fig. 2 Performance evaluation of conCluster and five widely-used scRNA-data clustering methods. Adjusted Rand Index (ARI) is employed to
measure the similarity between inferred and true cluster labels

so good and K-means exhibits the stochasticity in the
clustering structures due to the random initialization, our
conCluster based on multiple tSNE+K-means gains better
solutions than other methods. Its performance suggests
that the ensemble of multiple partitions of the data helps
to merge clusters together in a sensible way.

Identification of cancer subtypes
Further, we applied conCluster and the five compared
algorithms on the malignant melanoma tumor cells in
GSE72056. In this dataset, there are 1257 malignant cells
after excluding benign tumor cells. Determining the num-
ber of clusters is known to be difficult in clustering.

Fig. 3 Identification of subtypes from the human melanoma scRNA-seq data set. The different colors denote the clusters output by each algorithm
(Clusters numbers k = 6)
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As there is not ground truth of the clusters for these
malignant cells, we utilized Calinski-Harabaz Index [22]
to determine the number of clusters. conCluster man-
aged to identify six clusters in the dataset. As shown in
Fig. 3, conCluster displays five more clearly recognizable
clusters than the compared methods. SNN-cliq, tSNE+K-
means and SC3 also get relatively clear clusters, whereas
spectral clustering and CIDR did not perform well in
differentiating these clusters.

Next, to identify the regulatory genes of each sub-
type of the malignant melanoma, we conducted gene
co-expression network analysis. A co-expression net-
work identifies which genes have a tendency to show

a coordinated expression pattern in specific subtype.
This co-expression network can be represented as a
gene¨Cgene similarity matrix. Here, we identified genes
having significant expression difference among cells by
applying a 5% FDR. These genes were used to recon-
struct the subtype specific co-expression network and
identify a number of modules of high co-expression genes.
we utilized WGCNA to construct co-expression mod-
ules, which is a widely used tool for co-expression anal-
ysis. Figure 4 shows the co-expression network for each
melanoma subtype. We noticed that different subtypes
include the distinct co-expression gene subsets. These
genes with the highest degree of connectivity usually are

Fig. 4 The co-expression networks are visualized for six different subtypes of human malignant melanoma tumor. Node represents gene, Edge
weight indicates the statistical significance of co-expression relationship
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expected to be drivers which are required for signaling
pathways of essential function.

We computed the network degree for each gene in the
co-expression networks of different melanoma subtypes,
and identify genes with the most connections. To examine
the potential functions of those genes, we performed sys-
tematic gene ontology enrichment analysis using DAVID
tools and summarized the key biological processes and
pathways [27]. The most highly connected genes in each
network and the corresponding gene ontology enrichment
analysis are listed in Table 1. Overall, these modules are
significantly enriched for biologically important processes
that are relevant to melanoma, including response to light
stimulus, antigen processing and regulation of cell death.

For example, in subtypes 1, the most connected gene was
involved in translation initiation (RPL12, RPL38, RPS24,
RPS3); in subtypes 2, the set of most highly connected
genes included genes involved in cellular response to stim-
ulus response (FOS, DUSP1,JUN, FOSB); in subtypes 3,
genes sets including B2M, HLA-A, HLA-B, are related
with antigen processing and presentation.

Conclusions
Cancers usually exhibit substantial tumor heterogeneity
in virtually all distinguishable phenotypic features, such
as cellular morphology, gene expression and metabolism.
In order to analyze tumor heterogeneity, it is impor-
tant to correctly group cell population into different

Table 1 Significant genes and GO analysis of the co-expression networks of different melanoma subtypes

Gene list Term type & name P-value

Subtype 1 RPS24 SNHG5 RPS3 RPL38 BP: cotranslational protein targeting 6.34E-8

RPL12 CTSB PAICS HLA-C BP: translational initiation 2.89E-7

RPS12 MTRNR2L2 MTRNR2L6 BP: regulation of apoptotic process 9.71E-2

GAS5 MTRNR2L10 ARPC1B KEGG: Antigen processing and presentation 8.47E-2

CC: focal adhesion 1.42E-3

Subtype 2 FOSB JUNB JUN IER2 BP: cellular response 2.28E-6

DNAJB1 TOB1 PPP1R15A BP: negative regulation of transcription 7.67E-3

LOC284454 MCL1 BRD2 BP: regulation of cell death 3.025E-3

DUSP1 SLC2A3 ZFP36 MF: transcription factor activity 1.65E-4

KEGG: Osteoclast differentiation 4.96 E-4

Subtype 3 HLA-C CTSB HLA-B GSG1 BP: interferon signaling pathway 2.09E-12

IL12RB1 HLA-A CTSD BP: positive regulation of T cell mediated cytotoxicity 2.96E-9

LOC90834 B2M HLA-F HLA-H BP:antigen processing 1.38E-6

AHNAK HLA-E SHOX BP: immune response 5.22E-11

KEGG:A ntigen processing and presentation 8.11E-8

Subtype 4 MTRNR2L6 MTRNR2L10 BP: cellular response to hormone stimulus 1.33E-2

MTRNR2L1 MTRNR2L3 BP: response to mechanical stimulus 1.50E-2

MTRNR2L2 MTRNR2L8 KEGG: Osteoclast differentiation 1.89E-2

FOSB IER2 MTRNR2L4 MF:DNA binding 8.34E-3

MTRNR2L7 ARGLU1 MF: transcription factor activity 6.79E-3

JUN RBM39 SET

Subtype 5 SHISA9 ABCC9 ORC4 KEGG: Cell cycle 5.28E-2

UGDH-AS1 LOC643406 ASTN2 CC: integral component of membrane 7.95E-2

MDM2 UGT8 LOC286437 CC: synapse 8.59E-2

TMEM212 XKR9 GLIPR1L2

SPC25 ARHGEF26-AS1

Subtype 6 C17orf76-AS1 RPS4X BP:translational initiation 1.21E-18

RPS6 GAS5 RPL29 BP:rRNA processing 7.40E-17

RPS3 RPS24 RPS27 BP:ribosomal small subunit biogenesis 8.07E-5

EEF1G RPS19 RPLP0 MF:structural constituent of ribosome 1.76E-15

RPL18A RPL26 RPL13AP5 KEGG:Ribosome 2.44E-10
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subtypes based on single-cell expression data. Due to
the unavoidable biological and technical variations, these
scRNA-seq dataseta are noisy and high dimensional,
which poses great challenges to the computational meth-
ods. In this paper, we proposed, conCluster, an unsu-
pervised consensus clustering method to overcome these
limitation and provide robust clustering. Specifically, our
conCluster fuses many basic partitions to a consen-
sus one, this procedure may reduce the impact that
the performances of individual clustering method tend
to affected by noises and different initial parameters.
Moreover, data preprocessing steps such as dimension-
ality reduction is important in scRNA-seq data analysis.
The experimental result indicates that the proposed con-
Cluster can more accurately detect cancer subtypes than
the compared widely used scRNA-seq clustering meth-
ods. The performance improvement of conCluster will
be of interest to researchers in the field of scRNA-seq
data analysis.
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