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Abstract

Background: Interactions among transcription factors (TFs) and histone modifications (HMs) play an important role
in the precise regulation of gene expression. The context specificity of those interactions and further its dynamics in
normal and disease remains largely unknown. Recent development in genomics technology enables transcription
profiling by RNA-seq and protein’s binding profiling by ChiP-seq. Integrative analysis of the two types of data allows
us to investigate TFs and HMs interactions both from the genome co-localization and downstream target gene
expression.

Results: We propose a integrative pipeline to explore the co-localization of 55 TFs and 11 HMs and its dynamics
in human GM12878 and K562 by matched ChIP-seq and RNA-seq data from ENCODE. We classify TFs and HMs
into three types based on their binding enrichment around transcription start site (TSS). Then a set of statistical
indexes are proposed to characterize the TF-TF and TF-HM co-localizations. We found that Rad21, SMC3, and
CTCF co-localized across five cell lines. High resolution Hi-C data in GM12878 shows that they associate most of
the Hi-C peak loci with a specific CTCF-motif “anchor” and supports that CTCF, SMC3, and RAD2 co-localization
serves important role in 3D chromatin structure. Meanwhile, 17 TF-TF pairs are highly dynamic between GM12878 and
K562. We then build SYM models to correlate high and low expression level of target genes with TF binding and HM
strength. We found that H3k9%ac, H3k27ac, and three TFs (ELF1, TAF1, and POL2) are predictive with the accuracy about
85~92%.

Conclusion: We propose a pipeline to analyze the co-localization of TF and HM and their dynamics across cell lines
from ChlP-seq, and investigate their regulatory potency by RNA-seq. The integrative analysis of two level data reveals
new insight for the cooperation of TFs and HMs and is helpful in understanding cell line specificity of TF/HM interactions.
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Background

Gene expression is known to be regulated by transcrip-
tion factors (TFs) and histone modifications (HMs). To
achieve precise regulation, those regulatory factors often
work in a cooperative way. Physically, TFs and HMs tend
to localize together at regulatory elements (promoter,
enhancer, or insulator) in genome to achieve complex
and accurate regulation of target genes [1-4]. For example,
the initiation of transcription involves many protein-protein
interactions among transcription factors, which bind to the
promoter or enhancer and stabilize RNA polymerase [5-7].
In addition, recent studies have shown that histone modifi-
cations play significant regulation roles in the process of
transcriptional initiation and elongation by interacting with
transcription factors [8, 9]. Therefore, co-localization among
TFs binding and HMs is critically important for understand-
ing the precise control of gene expression [10, 11].

In general, there are two information sources useful to
infer the cooperation among TFs and HMs. One is used
to check the downstream effect on expression level of their
target gene, which can be easily measured by microarray
and RNA-seq. Previous studies have shown that TFs bind-
ing and HMs are predictive for gene expression in some
model organisms [12, 13]. They found that histone modifi-
cation levels and gene expression are very well correlated
and only a small number of HMs are necessary to accur-
ately predict gene expression in human CD4+ T-cells [14].
Using a Bayesian network, causal and combinatorial
relationships among HMs and gene expression were
investigated and some known relationships were con-
firmed [15]. Another information source is used to
check the co-localization of TFs and HMs in chromatin,
which can be measured by ChIP-seq technology [10].
Recently, Xie et al. [16] analyzed TF co-localization in
human cells by a self-organizing map and revealed many
interesting TF-TF associations and extensive change across
cell lines. Furthermore, Zhang et al. [17] took long-range
interactions into account and developed a new tool, named
3CPET, to infer the probable protein complexes in main-
taining chromatin interactions. Taken together, a number
of studies proved that TF/HMs’ cooperative interaction is
important and can be investigated from various levels.

Here we argue that the localization data and down-
stream gene expression level should be integrated to
predict high quality TE/HM interactions,because gene
expression measured the results of TF/HM interactions
while the upstream TF/HMSs’ co-localization in genome
provides the causal explanation for the effect. Integration of
the two information sources, the direct co-localization
in chromatin and the indirect effect on gene expression,
is necessary and holds the promise to improve infer-
ence accuracy. With this solid base, the detailed inter-
action among TFs and HMs, its cell-line-specificity and
diseases-specificity can be investigated.
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Thanks to ENCODE Consortium, large scale data on
whole-genome localization of protein—-DNA binding sites
[18, 19] and the absolute concentration of transcripts are
available [20]. Particularly in some cell lines it provided
the comprehensive ChIP-seq and matched RNA-seq data,
for example genome-wide binding landscape of many TFs
and HMs and target gene expression are available in
human GM12878 and K562 cell lines (Additional file 1:
Table S1). This allows us to investigate the relationship
among TFs binding, HMs location, and gene expression in
a systematic and quantitative manner. Meanwhile we can
probe the dynamics of TF and HM co-localization in nor-
mal and cancer cell lines.

We propose a two-step integrative pipeline for ChIP-seq
and RNA-seq. We first analyze and identify cooperation of
TF and HM as well as the dynamics across normal and
cancer cell lines. Then we investigate the regulatory po-
tency of all these cooperations in gene expression process.
To this end, we extracted signal peaks from the ChIP-seq
data for 55 TFs and 11 HMs and the gene expression level
from the RNA-Seq data in human GM12878 and K562
cell lines (Additional file 1: Table S2). The localization of
55 TFs and 11 HMs were analyzed in the upstream and
downstream region of transcription start sites in the two
cell lines. We observed three types of localization patterns,
GM12878_rich_factor, K562 _rich_factor, and unbiased_
factor, based on their binding enrichment around TSS.
Then, we compared the overlap ratio and the average
overlap ratio of TFs’ binding or HMs in two cell lines. The
results are further used to analyze potential cooperation of
TFs and HMs. Finally, we build a SVM classifier to predict
the highly and lowly expressed genes by utilizing the TF
or HM association strength (TFAS) [21]. We found that
two HMs (H3k9ac and H3k27ac) and three TFs (ELFI,
TAF1, and POL2) are predictive with the accuracy about
85~92%. The highest prediction accuracy is 93% obtained
by 66 factors model. Our research provides new insight
for the cooperation of TFs and HMs on gene expression
and is helpful for the study of the cooperation of various
factors.

Results
The dynamics of TF and HM localization
We develop a two-step analysis pipeline (Fig. 1) to inte-
grate ChIP-seq, RNA-seq, and genome annotation to
pinpoint the unique roles of transcription factor and his-
tone modification in biological processes and particularly
their location at specific DNA region. Importantly we
correlate TFs binding and HMs with gene expression
level to detect reliable co-operations related with down-
stream effects. Crossing cell line comparison further in-
dicate dynamic pattern of those co-operations.

Starting from the whole genome localization informa-
tion produced by ChIP-seq experiment, we counted the
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Fig. 1 The two-step integrative pipeline to analyze matched ChIP-seq and RNA-seq data

peak number of 55 TFs and 11 HMs in two cell lines. As

shown in Fig. 2a, the results indicated

number is from 211/207 to 52,162/77,063 in GM12878/
K562. H3k4mel has a lot of peaks while POL3 has a few
peaks. For some TFs or HMs, their peak numbers in two

that the peak

cell lines are quite different. If we set a and b as the total
numbers of a given TF or HM in two cell lines, the
values of |a-bl|/a + b for JUND, ATF3, BCL3, and MAFK
are 0.88, 0.81, 0.81, and 0.72 respectively. And the max-
imum value of |a-b|/a+b among 11 HMs is obtained
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Fig. 2 The dynamics of TF and HM localization between GM12878 and K562. a The peak numbers of 55 TFs and 11 HMs in two cell lines. The
X-axis is the number of peaks, and the Y-axis represents the name of TF/HM. b The signal intensity of six factors in a 40 kb DNA region which
was separated into 200 bins flanking TSS in two cell lines. Each bin is 200 bp in size. The X-axis is the relative position of bins, and the Y-axis is
the signal intensity of a given TF/HM. c The total difference index of 55 TFs and 11 HMs between GM12878 and K562. The X-axis represents the
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by H3k27me3 with 0.36. On the other hand, the values
of |a-b|/a+b for POL3, PML, TAF1, and CTCF are
0.01, 0.02, 0.03, and 0.04 respectively. It shows that the
numbers of peaks of these transcription factors are con-
sistent in two cell lines.

We next check the signal features of TF binding and
HM around TSSs, which are important for gene expres-
sion and regulation [13, 21, 22]. For 9555 genes, in two
cell lines, we calculated the signal intensity of 55 TFs
and 11 HMs in each of the 200 bins and obtained their
distribution features in a 40 kb DNA region. It turned
out that the signal peaks are concentrated in 4 kb region
centered on TSS. The closer a bin gets to the TSS, the
stronger the signal intensity of TFs or HMs. The distribu-
tion of six factors in two cell lines was shown in Fig. 2b.
The signal intensities of CTCF and H3K4mel show very
similar distribution. But, some TFs or HMs have large
variation such as BCL3, USF2, MAFK and JUND. Overall,
there are three types of TF and HM based on their bind-
ing enrichment around TSS in two cell lines. We named
them GM12878_rich_factor, K562 _rich_factor, and unbia-
sed_factor respectively for the follow-up study. Compared
with HM, the variation of TF is larger. The results indi-
cated that the signal intensity carries rich information to
compare TFs binding and HM between normal and can-
cer cell lines.

To quantify the variation of TF binding or HM between
two cell lines, we propose the total difference index Dy;g,
and the ratio f to investigate the dynamics of TF or HM
localization between the two cell lines (refer to eq. (2) and
(3) in Methods section for the details). The rank of Dy;g,q
for all 66 factors shown in Fig. 2¢ can indicate the trend of
all TFs’ and HMs' variation between cell lines, and is used
for analyzing their dynamic in two cell lines. The results
showed some factors such as CTCF do not change much.
Those factors mostly belong to the unbiased_factor set (32
factors) with 0.6 <f< 1.5 and -0.25 < Dyg,,5; < 0.2. This is
consistent with the fact that CTCF works as a general
transcription factor and is involved in many cellular pro-
cesses, including transcriptional regulation, insulator ac-
tivity, and regulation of chromatin architecture. BCL3 and
JUND showed obvious difference. They belong to the
GM12878_rich_factor set (15 factors) with f>1.5 and
Dyignar > 0.2 and the K562_rich_factor set (19 factors) with
£<0.6 and Dyg,m < —0.25 respectively (Table 1). This
demonstrates that our new index Dyg,,,; provides rich in-
formation to abstract TFs or HMs with cell line specificity
for further investigation.

The dynamics of TF-TF co-localization

We next explore the cooperative interactions among
TFs and HMs. In order to test the co-localization of TF
and HM for genome-wide and enhancer regions, we
calculated the overlap ratio R, for all pairs of 55 TFs
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(Fig. 3a, b, d and e). Then, the Pearson correlation coeffi-
cient (PCC) of the R, values for the 1485 TF pairs in two
cell lines was calculated. The high correlation 0.73
(p-value< 2.2e-16) suggests that the co-localizations are
overall conservative (Fig. 3d). The overlap ratio of RAD21
and SMC3 are 78.2% and 81.4% for genome-wide and en-
hancer regions separately in GM12878, and the value are
75.6% and 91.2% for genome-wide and enhancer regions
separately in K562. For the combination of POL2 and
TAF1, The overlap ratio are 76.1% and 80.7% in GM12878
and 84.6% and 94.6% in K562 separately. The results
showed that there are stronger co-binding in enhancer re-
gions for some TF pairs. In contrast, the overlap ratio be-
tween ZNF274 and any other TFs is almost zero which is
may due to the less peaks of ZNF274 (233 in GM12878
and 305 in K562) according to the results of peak counting
above. Based on the pairwise relationship, the combination
patterns of three TFs with higher overlap ratio were ob-
tained. POL2 + TAF1 + TBP (TATA Box Binding Protein)
and Rad21+ SMC3 + CTCF show strong combination.
The overlap ratios among them are more than 60%. By
comparison, we found that their signal distribution around
TSS was largely consistent (The total difference indexes
are —0.03, 0.03 and 0.11 for CTCF, RAD21, and SMC3).
For the combination of Rad21 + SMC3 + CTCE, the results
were consistent with previous works that CTCF is re-
quired to recruit cohesin complex members consist of
Smcl/Smc3 heterodimers and two non-Smc subunits
Sccl (Rad21) and Scc3 to shared sites [16, 19, 23-25].
Furthermore, we obtained similar results for Rad21 +
SMC3 + CTCF in Helas3, Sknsh, and Hepg2 cell lines. It
demonstrates that higher overlap feature of the three TFs
have certain conservation across cell lines (Table 2).
Importantly, we found one strong Hi-C experimental
data to support our finding in Table 2 and provide better
understanding for the consistency of combination Rad21 +
SMC3 + CTCF across five cell lines. Rao et al. used in situ
Hi-C to probe the 3D architecture of genomes, construct-
ing haploid and diploid maps of nine cell types [26]. The
densest, in human lymphoblastoid cells, contains 4.9 billion
contacts, achieving 1kb resolution. They found that in
GM12878 the vast majority of peak loci are bound by the
insulator protein CTCF (86%) and the cohesin subunits
RAD21 (86%) and SMC3 (87%). This result is consistent
with our finding for CTCF+SMC3 + RAD21 combinations.
This finding is also supported by numerous reports, using a
variety of experimental modalities, that suggest a role for
CTCF and cohesin in mediating DNA loops. Because many
of these loops demarcate domains, this observation is also
consistent with studies suggesting that CTCFE delimits
structural and regulatory domains [27-29]. They found that
most peak loci encompass a unique DNA site containing a
CTCEF-binding motif, to which all three proteins (CTCE,
SMC3, and RAD21) were bound [26]. They were thus able
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Table 1 Three sets of TF/HM based on their enrichment around TSS

GM12878_rich_factor unbiased_factor

K562_rich_factor

Factor f Dsignal Factor Diignal Factor f Dsignal
BCL3 9.28 081 NFYB 142 0.18 P300 0.60 -0.25
USF2 3.00 0.50 NRF1 1.39 0.16 H3k36me3 0.57 -0.28
MEF2A 2.80 047 BCLAF1 1.29 0.13 GABPA 0.54 -030
MXI1 2.77 047 PUI 129 0.13 H4k20me1 053 —-031
RFX5 2.31 0.39 SMC3 1.24 0.1 EGR1 0.52 -0.31
EZH2 221 0.38 H3k4me3 1.24 0.1 NFYA 0.50 -033
SP1 221 038 SIX5 1.19 0.09 H3k27me3 048 -035
ELK1 1.96 0.33 H3k4me2 1.19 0.09 MAX 047 -036
YY1 1.90 0.31 PML .11 0.05 NRSF 047 -036
CHD2 1.84 029 RAD21 1.07 0.03 NFE2 045 -038
H3k9me3 1.83 0.29 POL3 1.03 0.02 E2F4 042 -041
SRF 1.79 0.28 H3k79me2 1.03 0.02 CFOS 042 - 041
TBLR1 1.70 0.26 H3k4mel 0.97 -0.01 ETS1 0.39 -043
STAT1 157 0.22 CTCF 0.94 -0.03 CMYC 0.35 -048
TR4 1.53 0.21 TAF1 093 -0.04 COREST 0.26 -0.58

ELF1 092 -0.04 CEBPB 023 -062

H3k27ac 091 -0.05 ATF3 0.13 -0.77

CREB1 0.90 -0.05 MAFK 0.13 -0.77

H3k9ac 0.86 —-007 JUND 0.04 —-092

H2AZ 0.82 -0.10

STATS 0.81 -0.11

ZBTB33 0.77 -0.13

POL2 0.77 -013

TBP 0.75 -0.14

ZNF143 0.72 -0.17

CDbP 0.69 -0.18

CHD1 0.66 -0.21

ZNF274 0.66 -0.21

MAZ 0.65 -0.21

BHLHE40 0.64 -0.22

ZNF384 0.62 -0.24

USF1 0.61 -0.24

to associate most of the peak loci (6991 of 12,903, or 54%)
with a specific CTCF-motif “anchor”. This supports that
CTCE SMC3, and RAD2 co-localization serves important
role in 3D chromatin structure.

On the other hand, no matter how strong the total
correlation is, the overlap ratios of some TF pairs show
great changes. Let Rg and Ry be the overlap ratios of TF
pairs in GM12878 and K562 respectively, the relative vari-
ation index Iy, between GM12878 and K562 is measure
by (Rg - Rr)/(Rg + Ri-+ a) (Fig. 3c). Here a=0.001 is added
to avoid the case that Rg+ R equals zero. The mean y
and the standard deviation o of I, are —0.05 and 0.36.

And 90/1485 TF pairs are with significant variation falling
outside y + 20.

By requiring the overlap ratio of TF pairs in both cell
lines larger than the third quartile, we got 17 TF pairs
(Table 3). For those TF pairs, their overlap ratios are
with large changes between two cell lines. We found that
there are 13 TF pairs related with JUND and only two
TF pairs (BCL3:P300 and PML:USF1) have higher R¢.

On the other hand, by calculating the TFAS value of
55 TFs based on their signal peaks in 40 kb region cen-
tered on TSS, we obtained the PCC values of TF pairs to
explore its interaction tendency. The POL2 + TAF1 +
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TBP and Rad2l + SMC3 + CTCF combinations display
higher PCC values. The results are consistent with the
above analysis (Table 4).

By choosing a threshold, we obtained a TF interaction
network as shown in Fig. 4. We use different node colors
to label the GM12878_rich_factor, K562_rich_factor, and
unbiased_factor. The edge colors indicate the specificity
in different cell lines (GM12878_specificity_TF pairs,
K562_specificity_TF pairs, and unbiased_TF pairs). The
network shows that JUND serves as a hub in K562 and
plays important roles in cancer by interacting with other
TFs. It's also interesting that JUND cooperates with
ATF3 and together working with chromatin factors P300
and CEBPB. While in GM12878, BCL3 alone works with
P300 and may guide the chromatin factor to activate
regulatory regions. Comparing with the giant complex in
K562, GMI12878 wuses a very different strategy.
CTCF + RAD21+SMC3 and POL2+ TBP + TAF1+
PML are tight clusters in the network and required in
both cell types. This TF and chromatin factor
co-operation is consistent with previous studies that

Table 2 The overlap ratios of TF combinations in five cell lines

TF combination GM12878 K562 Helas3 Sknsh Hepg2
RAD21.CTCF 0.777 0.779 0.686 0.856 0.757
RAD21:SMC3 0.781 0.756 0.805 0.846 0.657
CTCF:SMC3 0.745 0672 0.701 0.854 0.637

HMs regulate gene transcription by modulating local
chromatin state and thereby changing the binding status
of TFs within gene regulation regions [13, 30]. And the
analyses based on the experimental data indicated that
distinct HM patterns appear around TF binding sites, and

Table 3 TF pairs with cell line specificity

TF combinations Rs Rk Iy

1 ATF3:CEBPB 0.028 0.281 -0.821
2 ATF3.JUND 0.002 0449 -0.991
3 ATF3:P300 0.032 0358 -0.838
4 BCL3:P300 0366 0.071 0676

5 CMYCJUND 0.007 0.251 -0.945
6 EGR1JUND 0.024 0300 —0.849
7 ELF1JUND 0.015 0.341 -0918
8 ETSTJUND 0.013 0.263 -0.907
9 GABPA:JUND 0.002 0311 —0.986
10 JUND:MAX 0.027 0465 —0.891
[ JUND:MAZ 0.041 0488 —0.844
12 JUND:NRSF 0.013 0.254 -0.903
13 JUND:POL2 0.016 0347 -0914
14 JUND:TAF1 0.031 0315 -0.823
15 JUND:ZNF143 0.005 0.291 —0.968
16 JUND:ZNF384 0.039 0.346 —-0.798
17 PML:USF1 0.280 0.000 1.000
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Table 4 TF pairs with top 10 PCC in GM12878 and K562
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Index RAD21/CTCF RAD21/SMC3 CTCF/SMC3  TAF1/PML  TAF1/POL2 POL2/PML TBP/POL2 TBP/TAF1

MAX/MXIL  MAX/CMYC

Cell line

GM12878 R, 0.777 0.781 0.745 0.708
PCC 0.787 0.865 0.760 0.735

K562 Ro 0.779 0.756 0672 0.645
pCC 0.781 0.830 0.738 0.760

0.761 0.776 0612 0.577 0.731 0514
0.766 0.776 0.710 0.708 0.731 0514
0.846 0.692 0.747 0.736 0.555 0.705
0.828 0.759 0.799 0819 0.554 0.705

the ChIP-seq signals of TFs binding and HMs are highly
predictive of each other [30-32]. Based on the clique like
interaction, we can predict that TBP and PML cooperate.

Next we add the HMs in the cooperation analysis.
Based on the peak signal data of 11 HMs, the overlap ra-
tios between 11 HMs and 55 TFs were calculated for
GM12878 cell line. The results showed that there was
consistency for the overlap features of 11 HMs with TFs.
But the overlap ratio of the same HM with different TFs
had large variations (Additional file 1: Figure S1). Part of
HMs (H3K9ac and H3K79me2) obtained higher overlap
ratio greater than 50%, which indicated close relation-
ship between these HMs and TFs. The studies in K562
give us consistent conclusions.

The average overlap ratio of TFs and HMs

To get a clear understanding of the potential cooperativity
between a certain TF and other TFs, we defined a new par-
ameter R,, named the average overlap ratio. For each TF or
HM, we calculated its R, and found that the R, values of
66 factors presented clear divergence in a cell line. It is a
range from 40 to 3%. Among them, COREST, CMYC,
ELK1, ETS1, and BCLAF1 are the top 5 TFs with the
higher R, in GM12878, and CREB1, ELK1l, BCLAFI,
POL3, and BCL3 are the top 5 TFs in K562 (Fig. 5a), with
two common factors ELK1 and BCLAF1. Next, we found
that the average overlap ratios of some TFs have significant
variation between GM12878 and K562. The R,, values of
each TF in the two cell lines are roughly consistent for most

NRSF GABPA
ETS1
ZNF143
e I CVG0
MAZ
\ ZNF384
ATF3 JUND ELF1
CMYC
P300 /
f_g
BCL3 MAX
— MXIL
CTCF
USF1
PML
[ RAD21 SMC3 ]
Fig. 4 The interaction network among TFs. The node color labels the TF type (Red: GM12878_rich_factor; Blue: K562_rich_factor; Green: unbiased_factor)
and the edge color indicate the specificity of TF pairs in different cell lines (Red: GM12878_specificity_TF pairs; blue: K562_specificity_TF pairs; Green:
unbiased_TF pairs)
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TFs, with the exception of a few TFs including BCL3 and
CREBI. For example, in K562, CREB1 is the TF with the
top location in the R,, list, but in GM12878 its relative
location is ranked in 33. Both of them are related with
Leukaemia [33]. BCL3 gene is a proto-oncogene candidate
which is identified by its translocation into the immuno-
globulin alpha-locus in some cases of B-cell leukemia. And
CREB (cyclic AMP response element-binding protein) is a
transcription factor associated with neoplastic myelopoiesis
by regulating RFC3 (Replication factor C3) expression [34].
The results indicated that the TF combination patterns
have specificity in GM12878 and K562 cell lines.

On the other hand, for the TF pairs with higher over-
lap, its average overlap ratio is lower. For example, no
matter how big the total peak number or the overlap ra-
tio for CTCF is, its average overlap ratio is always the
lowest. The average overlap ratio of CTCF is about 8%,
although the combinations of CTCF with Rad21 or
SMC3 have a higher overlap ratio about 70% in both cell
lines. In opposite, some TFs have lower overlap ratio,
but they have higher average overlap. For instance, the
overlap ratios of ATF3 are less than 2% with CDP,
EZH2, JUND, POL3, PU.1, RAD21, and ZNF274, how-
ever its average overlap ratios are 28.4% in GM12878
and 23.02% in K562. The average overlap ratio of TFs
provides a new clue about its overall interaction capabil-
ity with other TFs.

TF and HM are two types of critical factors that coor-
dinately regulate gene transcription. As a consequence,
TE-binding and histone-modification are often highly

correlated in TSS proximal regions. Based on the same
definition, we calculated the average overlap ratio of a
HM with other 10 HMs as well as 55 TFs in two cell
lines (Fig. 5b). The results indicated that HMs related
with gene silencing such as H3K27me3 and H3K9me3
have lower R,,, but ones related with gene activating
have higher R,, such as H3K9ac and H3K27ac. This re-
sults show a certain coincide with Bieberstein’s studies
[35]. Their researches presented that the activating his-
tone modifications H3K4me3 and H3K9ac mapped to
first exon-intron boundaries to help recruit general tran-
scription factors (GTFs) to promoters [36]. It is possible
that the marks changes chromatin states by affecting the
affinity between histone and DNA, and further produce
an effect on the TF binding with DNA. Among them,
H3K9ac exhibit a maximum R,, which is 80%. That pro-
vides a great chance for histone modification to model
TF binding affinities. As a result, HMs could help the
prediction of TF binding sites [31].

Pinpoint TFs and TF-TF interaction with gene expression

We next pinpoint TFs and TF-TF interaction to predict
their downstream effect, i.e., predicting gene expression
level with TFs or HMs. As we know, gene expression
has cell line or tissue variation. The prediction of gene
expression level in a particular tissue and its dynamics
across tissues are very important for the study of expres-
sion regulation. Here we look at the relative contribution
of each factor in more details in order to understand gene
regulatory mechanism. We constructed a classification
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model based on SVM to examine the relative importance
of each individual factor [37]. Based on the FPKM (frag-
ments per kilobase of exon per million fragments mapped)
values [20], all of 9555 genes were classified into two cat-
egories with high or low expression level. Then, the rela-
tive importance can be represented by the predicting
capability for discriminating gene categories as high or
low expression level in human genome. In each cell line,
the SVM model was built for each TF or HM with its
association strength (TFAS) as inputs and gene’s group
(high or low expression level) as outputs.

Firstly, we constructed a SVM model for the identifi-
cation of gene expression level using each TF or HM as
the single predictor. The prediction accuracies were
shown in Table 5. Strikingly, most TFs alone can predict
gene expression levels with fairly high accuracies. By direct
comparison, TFs and HMs presented different capability
for predicting gene expression level. We found that some
factors such as H3k9ac, H3k27ac, ELF1, TAF1, and POL2
were significantly more predictive than other factors. These
factors mostly possess transcriptional activation function
and have more peaks. These TF bindings are essential for
transcriptional initiation of most promoters, and therefore
it makes sense that their binding signals have the highest
predictive capabilities. In contrast, other factors such as
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MAFK, POL3, ZNF274, EZH2, NFE2, and TR4 were sig-
nificantly less predictive. Those factors generally have lesser
peaks and tend to have specific or complex functions. It is
expected that these TFs such as POL3 are less predictive
because they are involved in initiating transcription of only
a small fraction of promoters. This provides a clue that the
factors with more peaks are related with cell type
non-specific genes and the factors with less peaks are re-
lated with cell type specific genes. Furthermore, the TFs or
HMs with low average overlap ratio may be associated with
expression of cell type specific genes. In general, Enrich-
ments (with more binding peaks) of HM or TF at transcrip-
tion start site are positively related to its high predictability.

Next, the total 66 association strengths of 55 TFs and 11
HMs were used to predict gene expression level and the
highest classification accuracy is achieved as 92.2% and
93.7% for GM12878 and K562 respectively (Table 6). We
found that the 66 factors model could identified genes
with a slightly higher accuracy than the single factor
models. The accuracies are 3% and 1.9% more than the
highest prediction accuracies with single factor. The high
prediction accuracies across two cell lines suggested the
strong correlations between gene expression level and TF
binding or HMs in two considered cell conditions. But,
the limited improvement also illustrated that there are a

Table 5 The prediction accuracies of gene expression level for 66 factors in two cell lines (Acc values)

TF/HM GM12878(%) K562(%) TF/HM GM12878(%) K562(%) TF/HM GM12878(%) K562(%)
H3k9ac 89.18 90.75 PU.1 7152 70.87 STATS 60.15 60.21
ELF1 88.05 86.77 TBLR1 7045 63.27 RAD21 59.98 58.56
TAF1 87.67 90.18 GABPA 70.01 77.88 H3k27me3 5961 6245
POL2 86.65 91.77 NRF1 69.46 65.09 NRSF 59.00 63.88
H3k27ac 85.96 91.69 NFYB 69.07 63.04 H4k20me1 58.16 62.35
MXIL 85.31 68.23 SRF 68.08 61.18 CREB1 5797 64.88
YY1 84.03 82.17 CHD1 68.02 76.89 SMC3 5791 55.25
MAZ 83.99 87.94 ELK1 66.72 59.98 CFOS 5743 61.66
PML 83.21 81.25 USF1 66.62 69.46 CEBPB 56.82 68.67
EGR1 82.21 84.14 USF2 6643 56.13 H3k9me3 56.32 60.93
H2az 82.17 81.88 ZNF143 65.97 6848 ZBTB33 56.09 57.30
CHD2 7997 70.11 H3k36me3 65.22 7223 NFYA 55.90 60.00
TBP 79.89 88.89 MEF2A 64.92 5643 STAT1 54.96 5243
SP1 79.80 68.31 P300 64.80 72.58 ATF3 54.58 72.60
ZNF384 79.70 87.00 SIX5 64.78 62.24 Corest 5335 5781
MAX 7957 88.32 CmYC 64.02 76.87 EZH2 52.80 51.26
H3k4me?2 77.86 86.29 ETS1 62.93 7842 NFE2 52.20 52.64
H3k4me3 77.15 88.09 BCLAF1 6291 61.74 TR4 5209 5216
Ccbp 7652 83.09 E2F4 62.20 78.21 JUND 51.84 79.78
H3k79me2 7545 78.82 BCL3 61.55 5249 MAFK 50.86 59.21
H3kdme1 73.04 82.71 CTCF 6147 60.36 POL3 50.19 50.15
BHLHE40 7195 7721 RFX5 61.09 5412 ZNF274 50.04 50.06
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certain extent redundancy between factors which means
they share a similar amount of information for “predict-
ing” gene expression level.

Based on the prediction results of single factor, for any
TF or HM, we defined a prediction difference index be-
tween two cell lines.

Where Acc®and Acc® are the prediction accuracies of
a given TF or HM in GM12878 and K562 separately.
The rank list of D, are shown in Fig. 6a.

We then extracted the factors with the top ten D,
(Dace >0) or the bottom ten (D, <0) as inputto con-
structed the SVM model of expression level prediction.
The prediction accuracies of the top ten are 89.5% and
87.8%, and the bottom ten are 80.0% and 89.1% respect-
ively in two cell lines. As shown in Table 5, the predic-
tion performances of the top ten TF and HM signals
almost achieved the highest accuracies which are ~ 2.7%
and ~ 4.6% lower than the performance by the full fac-
tors model. And this result is even lower than the pre-
diction of some single factor.

In Fig. 6, we found that the prediction difference index
D¢ is consistent with the total difference index Dy;gq
which is a parameter represented the dynamic variation
of a TF binding or HM between two cell lines. To fur-
ther demonstrate the relationship between Dy, and
D4, we then calculated the Pearson correlation coeffi-
cient as 0.84 (Fig. 6b). The results directly indicated that
the dynamic variation of TF binding or HM distribution
around TSS between two cell lines is positively related
to its prediction power difference of gene expression
level. Meanwhile, the results also illustrated that the pre-
dicting power of a TF/HM would present obvious differ-
ence if its binding has dynamic variation around TSS
between two cell lines. We suppose these factors with
great dynamic variation should be strongly associated
with cell line specific regulation. For example, JUND
may be related with specific vital process in K562. On
the other hand, the factors with higher predictive cap-
ability such as H3K9ac and H3k27ac barely appeared the
variation among cell lines. In general, they should take
part in the basic regulation processes.
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Discussions

Interaction of TFs and HMs

Co-occupancy of TF binding is a key mechanism for fine
regulation of gene expression. However, there are no
reliable approach for computationally measuring the de-
gree of TE-TF cooperation and quantitatively modeling
the dynamic variation between cell lines. We here intro-
duced a set of statistical indexes to investigate the degree
of TF-TF or TF-HM genome-wide overlap in TSS re-
gion. The overlap ratio of TFs provides a quantitative
parameter for measuring the degree of TFs interaction.
The higher the value is, the greater the chance of their
interaction to regulate gene expression. On the contrary,
TFs with low overlap ratio should be mutually-exclusive.
We obtained some TF combinations confirmed by previ-
ous experiments, also found new combinations for further
experiments. In addition, dynamics among cell lines pro-
vided an approach to study the dynamic of TFs or HMs
cooperation in the regulation process of gene expression.
We suppose that their interactions of TF combinations
with little variation are conserved in two cell lines. In fact,
the prediction of TF binding site by histone marks, or vice
versa, substantially depends on their higher co-occupancy.
Also it gives us a clue for information redundancy analysis
of TFs or HMs in predicting of gene expression level. We
can extract a set of TFs or HMs based on the overlap ana-
lysis for predicting models.

Meanwhile, the analysis of dynamic or conservation
for the combination of TF pairs is able to capture the
vast complexity of colocalization patterns, resulting in
identification of many previously known interactions. For
example, we identified ATF3:JUND as a K562-specific
combination. In fact, the ATF3/JUND heterodimer prefer-
entially binds to an AP-1-like site and are most likely the
important mediators of the response because overexpres-
sion of JUND [38]. On the other hand, we found the
conservative combination CTCF:Rad21 which act as
host cell restriction factors for Kaposi’s sarcoma-ssso-
ciated herpesvirus (KSHV) lytic replication by modulat-
ing viral gene transcription [39]. In addition to some
confirming known combinations, we also found add-
itional colocalization patterns that have not been previ-
ously documented. These may exist as entirely novel
combinations for further confirmation. Our results pro-
vide many insights into TF colocalizations that define
the regulatory code of humans.

Table 6 The prediction accuracies of gene expression level in two cell lines

Input GM12878 K562

Sn Sp Acc Sn Sp Acc
The total 66 factors 95.0% 89.4% 92.2% 94.5% 93.0% 93.7%
The top 10 factors with D >0 90.4% 88.7% 89.5% 83.9% 91.8% 87.8%
The bottom 10 factors with Da.. >0 68.4% 91.6% 80.0% 86.6% 91.5% 89.1%
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The relative importance of TFs and HMs for classification
The accurate regulation of gene expression is a complex
process and many TFs and HMs participated. In previ-
ous studies, it has been shown that TF binding and his-
tone modification are predictive for expression levels of
mRNA transcripts in some cell lines. However, these
studies have been limited to a limited number of TF or
HM data at that time. In 2010, Karlic et al. [14] system-
atically analyzed 38 HM and they only used the numbers
of tags for each histone modification or variant in 4 kb
surrounding the TSSs. They did not consider the distance
between HM and TSS. In our paper, not only HM but also
TF association strength (TFAS) that integrated all the peak
intensity of a TE/HM by considering their proximity to a
gene is used to predict gene expression level. Next, we built
the SVM model with single TF or HM to predict binary
classification as high or low gene expression and evaluated
the performance using accuracy. But Ouyang et al. [21] and
Cheng et.al [13] employ the correlation to evaluate the
predictive power by calculating the Pearson correlation
coefficient (PCC) value between the observed gene ex-
pression values and the predicted values. Our method
is more straight-forward to capture the main signals
with comprehensive data.

In particular, the relative importance of these factors
in the regulation of gene expression is still under de-
bated. Furthermore, it is a long way to go to precisely
quantify the expression level of each gene. In this study,
we avoid this challenge by an alternative way to classify
the high and low expression genes. We constructed a

SVM model with single TF or HM and focus on investi-
gating the relative contribution of TF binding or HMs in
the prediction of gene expression level. By listing TFs and
HMs based on the predicting power, we can understand
their potential capability in gene regulation. The results
show that the prediction accuracies vary significantly with
the substitute among HMs and TFs. Furthermore, our re-
sults suggest that two types of HMs (H3k9ac and H3k27ac)
with activation expression function and three TFs (ELFI,
TAFI1, and POL2) are predictive for gene expression with
the accuracy about 85~92%. And the active TFs have higher
prediction power than the repression TFs. And the highest
predictive accuracy was achieved for gene classification by
the 66 factors model.

We compare the predictive difference of a certain TF
or HM between two cell lines. The results indicated that
some factors change dramatically. We have previously
shown that the single factor model for gene expression
prediction is cell line specific. The best prediction accur-
acies are achieved by H3K9ac in GM12878 but POL2 in
K562. In addition, TFs and HMs show different relative
importance in different cell lines. A TF might be active
and exhibit significant influence on gene expression in
K562, but inactive with little effect on gene expression
in GM12878. For example, JUND shows a relatively
stronger effect on gene expression in K562 than in
GM12878 while MXIL shows the opposite trend. Based
on the correlation analysis of D, and D, we found
that the variation of predicting power is closely related
with its distribution dynamic variation around TSS in
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two cell lines. And those TFs with simplex function always
present higher predictive capability, for instance, active
factors such as H3K9ac, ELF1, TAF1, POL2, H3K27ac,
EGRI, or repressive factors such as MXI1 and CDP. But
the prediction power of the TFs with complex or bidirec-
tional functions such as ATF3, CTCE, and SRF is weak.

Simplified model with six factors

For a few TFs and HMs with higher predictive power,
we found their total difference indexes Dy;g,, are the
lowest, and their overlap ratio and average overlap ratio
are high. For example, the prediction accuracies of
POL2, TAF1, and TBP are 86.6%, 87.6%, and 79.9% in
GM12878 and 91.8%, 90.2%, and 88.9% in K562. Mean-
while,the TFs with highest overlap ratio but lower aver-
age overlap ratio have moderate prediction power such
as Rad21, SMC3, and CTCF. Their prediction accuracies
are 60.0%, 57.9%, and 61.5% in GM12878 and 58.6%,
55.3%, and 60.4% in K562.

Then, a six factors model including POL2, TAFI,
PML, ELF1, H3K27ac, and H3K9ac was constructed.
The six factors chosen have transcriptional activation
function and higher predictive power. The prediction ac-
curacies are 92.0% and 93.3% and pretty close to the pre-
diction accuracy of all 66 factors. Adding other TF/HM
features cannot improve the prediction power of gene
expression level. The results give us an idea that some
major factors are the most useful in predicting of gene
expression level. This observation is consistent with the
results in [21] that only a handful of TFs’ binding can
explain the large percentage of expression variance.
From our study, we can extract key TFs or HMs based
on the analysis of the overlap and average overlap ratio
to predict gene expression level.

Future extension with cis-regulatory element annotation

We acknowledge the limitation that we mainly focus on
the cooperation in trans level. It’s well known that the
cis-regulatory elements (specifically enhancer) are im-
portant to work together with trans-element (TF and
HM) to precisely determine the downstream gene ex-
pression. Here we focus on the complexity at trans level,
i.e., the combinatorial effect of TF and HM by checking
their co-localization in regulatory element and down-
stream gene expression effect. We implicitly consider
the enhancer by looking at the distal binding peaks of
TF and HM and summarize the binding strength. How-
ever, we didn’t look at the specific “enhancer” region to-
gether with co-localized TFs/MHs, which will provide
more detailed and enriched information. Furthermore,
we simplified the multiple to multiple mappings between
regulatory regions to target genes. We will extend the
current work to TF, HM and regulatory element cooper-
ations. In future we will also integrate some new data
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types, for example ATAC-seq and Hi-C/HiChIP, and hold
the promise to provide binding profiles for many TFs
once and high resolution regulatory element-gene
association.

Conclusions

In summary, we analyzed the distribution and overlap-
ping state of TF and HM and obtained three types of TF
and HM (GM12878_rich_factor, K562_rich_factor and
unbiased_factor) based on their enrichment around TSS
in two cell lines. We calculated the overlap ratio of 1485
TF pairs to test the genome-wide co-localization in two
cell lines. The correlation analysis indicated that their
co-localizations are overall conservative, but 17 TF pairs
are highly dynamic between GM12878 and K562. Using
TF or HM association strength with gene, we investi-
gated the regulatory potency of TF/HM in predicting
gene expression level and their dynamics variation be-
tween cell lines. Those studies provided a detailed correl-
ation analysis of the 66 regulatory factors, and new insight
for the cooperation of TFs and HMs on gene expression.
The results are helpful in understanding interaction pat-
terns of TF/HM as well as their cell line specificity in the
gene expression and regulation process.

In short, we integrate ChIP-seq and RNA-seq data to
explore TF/HM interactions related with gene expression
and further their dynamics across cell lines. These re-
searches are helpful for the further study of the interaction
for various factors in the gene expression and regulation
process. In methodology, we propose a set of novel in-
dexes to study the interaction among TF/HM, and provide
new insight for the dynamic regulation of TFs and HMs
on gene expression. We constructed a SVM model for the
identification of gene expression level using each TF or
HM as the single predictor. By listing TFs and HMs based
on the predicting power, we can further investigate the
regulatory potency of TF and HM.

Methods

Matched RNA-seq and ChIP-seq data

The genomic coordinates of the Hgl9 human Refseq genes
were downloaded from UCSC (http://genome.ucsc.edu/
cgi-bin/hgTables). We excluded overlapping gene tran-
scripts in 20 kb region upstream and downstream of TSS
and leaved a set of 9555 genes for analysis. In GM12878
and K562, ENCODE Consortium (https://www.encodepro
ect.org/) provided the comprehensive ChIP-seq for TFs and
HMs and matched RNA-seq data. The ChIP-seq data of 55
TFs (narrow peaks format) and 11 HMs (broad peaks for-
mat) in common in both cell lines were extracted for the
following analysis and calculation. The peak data shows
context specific location in whole genome for a specified
transcription factor binding or histone modification in a
given cell type. This allows us not only to analyze TF/HM
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co-localization in one cell line but also compare co-
localization dynamics across cell lines.

The matched RNA-seq data of GM12878 and K562
were also obtained from ENCODE. Based on the FPKM
definition (fragments per kilobase of exon per million
fragments mapped), the gene expression levels of 9555
genes were calculated by Cufflinks algorithm [20, 40, 41]
according to the RNA-seq expression profiles in two cell
lines. Then all genes were divided into 4 clusters by
quartile according to the FPKM. The top 25% genes
(2389 genes, FPKM=3.58) and the bottom 25% genes
(2389 genes, FPKM<2.9 x 10™°) were classified as highly
and lowly expressed genes, respectively, in GM12878.
And the top 25% genes (2389 genes, FPKM=>3.68) and
the bottom 25% genes (2389 genes, FPKM<0.9 x 10™°)
were classified as highly and lowly expressed genes, re-
spectively, in K562 (Additional file 1: Figure S2).

Total difference index

To understand the dynamics of TFs and HMs among
cell lines, we focus on their distribution characteristics
and differences near TSS. Firstly, a 40kb DNA region
flanking TSS for each transcript was separated into 200
bins. Each bin is 200 bp in size. Then, we obtained 200
bins centered at TSS (20 kb upstream and 20 kb down-
stream). We assumed that the mid-point of signal peaks
is the interaction site between TFs (or HMs) and DNA.
For a given TF or HM, we counted the number of peaks
in the jth bin of the ith gene for the ath cell line called
N7 Then, the signal intensity S} in each of the 200 bins
in the ath cell line was calculated with # genes by the
following formula.

108 &
a __
S
i=1

N%(a = G,K) (1)

Here n equals to 9555. GM12878 is denoted as G, and
K562 is denoted as K.

Next, we defined a total difference index Dy, as fol-
lows to investigate the dynamics of TF or HM
localization between the two cell lines.

> 553 st
Dsignal = %
Z S§+ Z s
] ]
(2)

And the ratio of the signal intensity between GM12878
and K562 can be denoted by
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The overlap ratio and the average overlap ratio

For further investigating the potential interaction among
TFs, the genome-wide overlap degree of each TF pair
was analyzed. As shown in Fig. 7, the overlap state is es-
timated by the following formula,

|Sl —Sz| <

L+ 1L
_ 4
3 (4)

Here L; and L, are the peak widths, and S; and S, are
the peak centers of TF; and TF, respectively. Then, the
overlap state is encoded into binary states (equal to 1 if
formula (4) is holds; otherwise 0). We defined the over-
lap ratio as follows,

2n

Ry=— "
° N;+N,

(5)

Where n is the number of the overlapping peaks be-
tween two TFs, and N; and N, refer to the total peak
number of TF; and TF, respectively. The value indicates
the genome-wide co-localization degree of two TFs. We
assume that the cooperativity and the co-localization de-
gree are closely related.

Given a transcription factor, such as TF;, with m bind-
ing peaks (P1,P,,...P,,), we investigated the overlap state
of each peak with other TFs’ peaks and obtained a vector
X = {x1,%2, 2y, } for m peaks. And x(i=1,2, -, m) is
the number of transcription factors which have at least
one peak overlapped with the ith peak of TF; (Add-
itional file 1: Table S3). We defined the average overlap
ratio R, as follows,

m

1 Xi
Rm, == E Z I\_[ (6)

i=1

Here, the total number of other TFs is represented by
N, and it is 54 in this study. The parameter R,, indicate
the extent of potential interaction for this TF with other
TFs.

TF or HM association strength to target gene

Ouyang et al. [21] defined TF association strength
(TFAS) which integrated all the peak intensity of a TF
by considering their proximity to a gene. Let g; be the
intensity of the kth binding peak of TF; or HM; and dj
be the distance between the TSS of gene i and the kth
binding peak, the TFAS of TF; or HM; on gene i is
expressed by



Zhang et al. BMC Genomics 2018, 19(Suppl 10):914

Page 92 of 193

K%

Fig. 7 The schematic diagram of the overlap state between TF; and TF,. There are two peaks from TF; and TF, respectively. L; and L, are the
peak widths, and S; and S, are the peak centres of TF, and TF, respectively
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Here we sum all the binding peaks(k)of a given TF or
HM within a sufficiently large distance (20 kb upstream
and 20kb downstream of TSS) of gene i. We set dy
equal to 2 kb which depends on the distance distribution
of TF signal peaks.

The strength correlation of TF pairs around TSS

TEAS is designed to measure the strength of a TF regu-
lating its target gene. Here, we introduced TFAS to
analyze the potential interaction between transcriptional
factors in TSS region. For n genes, we calculated the
TEAS value of 55 TFs based on their signal peaks in 40
kb region centered on TSS. Then, the potential inter-
action of a pair of TFs was estimated by Pearson correl-
ation coefficient (PCC) of two sets of TFAS values. For
example, the PCC between TF, and TF, was calculated
as follow

n

> (%) (3,)

]

N

n

Py = —m :
\/ (x-%)* Z (r-7)°
=1 =1
(8)

Where X:{x1,%,,...,x,} and Y:{y, s, ...,y,} are the
vectors of the TFAS values for TF, and TF,, ¥ and ¥y are
the means of X and Y. The PCC values (-1<p, ,<1)
provided a new criterion to explore TF pair’s potential
interaction. The higher PCC, the stronger interaction
tendency.

SVM classifier

We used 1ibSVM to predict the gene expression level
[37] using the TFAS value of individual TFs (or HMs)
and their combinations as feature. We predict the binary
expression level of gene (high/low) and analyze and
compare the predictability or contribution of TF and
HM on gene expression in GM12878 and K562. A com-
prehensive list of 66 factors including 55 TFs and 11
HM were used.

Prediction evaluation

According to 5-fold cross-validation, 9555 genes were
randomly partitioned into 5 sets with equal sizes. A sin-
gle set is retained as the validation data for testing the
model, and the remaining 4 sets were used as training
data. The process is repeated 5 times, with each of the 5
sets used exactly once as the validation data. The 5 results
were averaged to produce a single estimation. Finally, the
prediction accuracy are estimated by sensitivity, specificity,
and accuracy as follows.

P TN S, +S
Acc = +

S, = .S, = ,Acc = 9
TP +FN’"? TN + FP 2 )

Here, TP and TN are the number of true positives and
true negatives. It means genes with high (low) expres-
sion level are predicted correctly. FN and FP are the
number of false negatives and false positives. It means
that genes with high (low) expression level are predicted
incorrectly.

Additional file

Additional file 1: Table S1. The brief introduction of two cell lines.
Table S2. Transcription factors associated with cancer in the 55TFs.
Table S3. The definition of the average overlap ratio for TF1 with m
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