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Abstract

Low-dose computed tomography (LDCT) plays a critical role in the early detection of lung cancer. 

Despite the life-saving benefit of early detection by LDCT, there are many limitations of this 

imaging modality including high rates of detection of indeterminate pulmonary nodules. 

Radiomics is the process of extracting and analyzing image-based, quantitative features from a 

region-of-interest which then can be analyzed to develop decision support tools that can improve 

lung cancer screening. Although prior published research has shown that delta radiomics (i.e., 

changes in features over time) have utility in predicting treatment response, limited work has been 

conducted using delta radiomics in lung cancer screening. As such, we conducted analyses to 

assess the performance of incorporating delta with conventional (non delta) features using 

machine learning to predict lung nodule malignancy. We found the best improved area under the 

receiver operating characteristic curve (AUC) was 0.822 when delta features were combined with 

conventional features versus an AUC 0.773 for conventional features only. Overall, this study 

demonstrated the important utility of combining delta radiomics features with conventional 

radiomics features to improve performance of models in the lung cancer screening setting.
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I. INTRODUCTION

LUNG cancer is the leading cause of cancer-related death in the United States and 

worldwide [1]. In the United States in 2018, there will be approximately 234,030 new cases 

of lung cancer, accounting for about 13.5 percent of all cancer diagnoses, and an estimated 

154,050 deaths, accounting for about 25.3 percent of all cancer deaths [2]. There has been 

little improvement in lung cancer patient survival since most lung cancers are diagnosed at a 
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late stage where treatment options are limited. As such, the majority of patients who are 

diagnosed with lung cancer will die from their disease [3].

Medical imaging technology, specifically low-dose computed tomography (LDCT), plays a 

critical role in the early detection of lung cancer. Until recently, a screening modality to 

detect early stage lung cancer has not existed. The National Lung Screening Trial (NLST), a 

randomized clinical trial comparing LDCT versus standard chest radiography (CXR), found 

that screening with LDCT was associated with a significant 20 percent reduction in overall 

mortality. Despite the life-saving benefit of early detection by LDCT, there are many 

limitations of this imaging modality including high rates of detection of indeterminate 

pulmonary nodules (IPN).

Radiomics is the process of extracting and analyzing image-based, quantitative features from 

a region-of-interest (e.g., IPN, lung tumor, whole lung, etc.) which then can be analyzed to 

develop decision support tools [4]. These quantitative image-based features characterize 

size, shape, volume, and texture from the region-of-interest. With high-throughput 

computing, it is now possible to extract radiomic features from standard-of-care imaging 

such as LDCT. As such, radiomic analysis could be leveraged to develop accurate and non-

invasive tools to improve nodule management in the lung cancer screening setting.

Prior published research has shown that delta radiomics (i.e., changes in features over time) 

have utility in predicting treatment response for various cancers including colorectal cancer, 

liver cancer, and lung cancer. [5] [6] [7]. For example, intra-radiation therapy delta 

radiomics features computed from PET images showed success in predicting overall survival 

of lung cancer patients [8]. Additionally, delta radiomics features from pre-treatment and 

post-treatment CT images along with clinical data yielded improved prognostic models [9].

In this study we utilized LDCT scans from the NLST to generate delta radiomics from 

baseline and follow-up screening intervals with the goal of building models that predict risk 

of cancer for IPNs. This paper begins by describing the dataset in Section II. Section III 

describes the radiomics feature sets. Section IV describes the classifiers and feature 

selectors. Section V outlines the experimental framework. Section VI and Section VII 

presents the results and discussion respectively. Finally, Section VIII presents the 

conclusions.

II. MATERIAL AND DATASET

This research was approved by the University of South Florida Institutional Review Board. 

The LDCT images were obtained through the National Cancer Institute (NCI) Cancer Data 

Access System. The NLST study design and main findings have been described previously 

[10]. Briefly, the NLST was a randomized multi-center trial comparing screening with 

LDCT versus CXR in high-risk individuals. Eligibility criteria included current smokers or 

former smokers who were 55 to 74 years of age with a minimum 30 pack-year smoking 

history; former smokers had to quit smoking within 15 years of enrollment [11] [12]. 

Participants received a baseline (T0) screen and two follow-up screens approximately twelve 

months apart (T1 and T2).
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In this analysis, we identified two cohorts of participants from the NLST based on their 

screening history. All participants had a T0 3 positive screen (i.e., a nodule >= 4 mm or 

other clinically significant abnormality) that was not diagnosed as lung cancer. Cohort1 and 

Cohort2 are as follows:

1) Cohort1 participants had a positive screen at T0 that was diagnosed as a screen-

detected lung cancer (SDLC) after a positive screen at T1. Therefore, Cohort1 

participants had two screenings; and SDLC diagnosis was about a year from 

initial screen (T0).

2) Cohort2 participants had a positive screen at T0 that was not diagnosed as lung 

cancer and then a positive screen at T1 which was not diagnosed as SDLC until 

after a positive screen at T2. Therefore, Cohort2 participants had three 

screenings; and SDLC diagnosis was about two years from the initial screen 

(T0).

More details about the data set can be found in [13]. Cohort1 and Cohort2 screenings are 

illustrated in Fig. 1. As described in [14], cancer-free cohorts (i.e., non-cancer controls) had 

three positive screens (T0 to T2) that were not diagnosed as lung cancer. The controls and 

lung cancer cases were frequency matched 2:1 on age, sex, and smoking history. The exact 

ratio used here differs slightly because of data errors (e.g., could not find the nodule in all 

scans). Details of the demographics and clinical characteristics are described in [13] [14].

For each nodule of interest in the two cohorts, radiologists from the Moffitt Cancer Center 

(Tampa, Florida) performed 3D image segmentation using Definiens Developer XD © 

software (Munich, Germany) [15] [16]. This semi-automated segmentation relies on the 

radiologists to locate the nodule and the Definiens software segments the nodule using a 

single-click segmentation approach.

Based on our study design, Cohort 1 was used as the Training Cohort and Cohort 2 was used 

as the Test Cohort. The number of lung cancer cases and non-cancer controls for each cohort 

are presented in Table 1.

III. FEATURE SETS

We utilized two sets of radiomic features: Definiens [17] and Pyradiomics [18]. 

Additionally, we used a subset of Definiens features that have been shown to be highly 

reproducible (i.e., Rider stable features) [19] which are described below. Delta features were 

calculated as described in III-D. Though the radiomic features in this paper have been 

deployed previously, the underlying algorithms computing such features are unique. 

Therefore, delta radiomics were calculated for each feature set and subsequently used to 

explore the effect of delta features on lung cancer prediction.

A. DEFINIENS FEATURES

Definiens Developer XD© was utilized to extract 3D features. The extracted features 

describe tumor characteristics such as tumor size, tumor volume, tumor location, gray level 

run-length matrix (GLRLM), gray level co-occurrence matrix (GLCM), pixel histogram, 
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Laws, and wavelet features [20]. The total number of extracted Definiens tumor descriptors 

was 219 features. A complete list of Definiens features is found in [17].

B. RIDER STABLE FEATURES

Rider stable features are a subset of Definiens features that have been previously shown to 

be reproducible [19] [21]. Following multiple test-retest experiments, these features yielded 

a high concordance correlation coefficient measure (CCC ≥ 0.90). There are 23 Rider stable 

features and the complete list of Rider features is provided in [19].

C. PYRADIOMICS FEATURES

Using the Definiens segmentations, PyRadiomics tool (version 1.2.0) [18] was used to 

extract PyRadiomics features. In PyRadiomics tool, features are computed using the original 

image (i.e., raw image) and additional features are computed after applying image operation 

filters (e.g., LoG [Laplacian of Gaussian]). For this analysis, we only utilized Pyradiomics 

features computed from the original (non-transformed) images. The total number of 

Pyradiomics features computed using the original image are 94 and include shape, first-

order, GLCM, GLRLM, and gray-level size zone matrix features (GLSZM). A complete list 

of features and algorithms to calculate the images are described in [22].

D. DELTA FEATURE COMPUTATIONS

Delta features were computed by calculating the difference for a given feature from two 

serial screening intervals. For example, delta radiomics for Cohort 1 was computed by 

calculating the difference of features at T0 from the features at T1 (C1T1 - C1T0). Delta 

radiomics for Cohort 2 was computed for i) the difference between features at T0 and 

features at T1 (C2T1 - C2T0), and ii) the difference of features at T1 from features at T2 

(C2T2 - C2T1). Fig. 2 and Fig. 3 depict how the delta features were computed across the 

various screening intervals.

Delta features were computed for the Definiens features, the PyRadiomics features, and the 

Rider features. The computed delta features were included with the original feature sets for 

each feature in a feature set/subset. The total number of features before and after 

concatenating delta features is shown in Table 2.

IV. CLASSIFIERS AND FEATURE SELECTORS

The classifiers and feature selectors utilized were from the Weka software implementation 

version 3.6.15 [23]. We used the following classifiers: Naive Bayes, Decision trees, Random 

Forests, and Support Vector Machine (SVM). Additionally, for each classifier, we used 

feature selection algorithms to select the most predictive, and in some cases non-redundant 

5, 10, 15, and 20 features. Feature selection algorithms used were: ReliefF, Symmetric 

uncertainty, and Minimum Redundancy Maximum Relevance feature selector (mRMR). 

Briefly, here we describe each classifier and feature selector.
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A. NAIVE BAYES

Naive Bayes algorithm [24], is a simple and powerful algorithm that is used to classify 

instances to a particular class. It is based on Bayes’ theorem and assume the independence 

of features of a given class. Although, features are mostly dependent on each other, the 

Naive Bayes classifier uses the independence assumption (i.e., class conditional 

independence) to reduce computation cost, and thus it called “naive” [25]. While its final 

probabilities are often imperfect, the highest probability class is correct enough to make this 

a competitive classifier.

B. DECISION TREES

Decision trees [26], comprise a set of classification algorithms where a tree structure is 

constructed by a divide and conquer based recursive method where each feature is used as a 

test to split the instances at each node. Decision trees are a top-down tree structure that has a 

root node, intermediate nodes, and leaf nodes (decision nodes) connected with branches. 

Purity is tested at each split, if a node is pure (or close) no further split is performed. Each 

leaf node is assigned to an appropriate class. To classify a new instance, traversing the tree 

from root to leaf (target class) is performed based on the outcome of each node test.

C. RANDOM FORESTS

Random forests [27] is an effective classifier that combines multiple models to increase the 

overall classification accuracy. Classification models in random forests are decision trees 

built on bagged sets of the original data, and the final random forest classification is the 

voting result of all decision trees. In this paper, the number of trees used for the random 

forests classifier was 200 trees, and the total number of feature candidates was set to log2 

(Number of features) + 1.

D. SUPPORT VECTOR MACHINES

A support vector machine (SVM) [28] [29], is a supervised classification algorithm that 

mainly separates instances of two classes by fitting a hyperplane to maximize the margin 

between the two classes. The hyperplane is defined by support vectors. In this paper, we 

used Libsvm with linear and RBF kernels. Additionally, we used grid search to tune the cost 

and gamma parameters.

E. RELIEFF FEATURE SELECTOR

ReliefF [30], is simple, fast, and effective feature selector to rank features. The higher the 

rank, the more predictive the feature. This selector uses the nearest neighbor algorithm to 

find near hits and near misses of the same and opposite class and updates the rank 

accordingly. We have used ReliefF to choose the top-ranked 5, 10, 15, and 20 features.

F. SYMMETRIC UNCERTAINTY FEATURE SELECTOR

Symmetric uncertainty feature selector algorithm (SU) is a correlation based algorithm that 

selects relevant and non-redundant features for classification based on a feature-to-feature 

and a feature-to-class correlation measure [31]. SU ranks the features based on predictivity, 

and we have selected the top-ranked 5, 10, 15, and 20 features.
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G. MINIMUM REDUNDANCY MAXIMUM RELEVANCE FEATURES SELECTOR

Minimum redundancy maximum relevance (mRMR) [32] [33] is an incremental feature 

selector algorithm that attempts to find a subset of features which have minimum 

redundancy between them, and maximum relevance to the class. We have used the mRMR 

“C langauge” implementation provided in [34] Using mRMR, we have selected top the 5, 

10, 15, and 20 features

V. EXPERIMENTS

In this study, we tested the hypothesis that delta radiomics improve lung cancer incidence 

prediction in the lung cancer screening setting. As such, we performed two experiments to 

test the impact of incorporating delta features with conventional radiomic features (i.e., non-

delta features extracted from a single screening time-point) to predict future lung cancer risk. 

The screening time-point refers to the year when a nodule screening was conducted as 

shown in Fig. 1. The two experiments differ by the test set (i.e., either C2T1 or C2T2), while 

both experiments use the same train set (i.e., C1T1). Fig. 2 and Fig. 3 depict the two 

experiments where orange circles represent the baseline screening time-points while empty 

circles represents screening time-points where features were utilized.

Experiment 1 utilized diagnostic features for training and testing. As such, the features from 

the lung cancer cases and non-cancer controls were extracted from the same screening 

screening time-point (Fig. 2). Specifically, we trained on features to discriminate lung cancer 

nodules from non-cancer nodules and then tested the model to discriminate lung cancer 

nodules vs. non-cancer nodules.

For Experiment 2 we trained on diagnostic features and tested their ability to predict cancer 

in the follow-up screening interval (i.e., a risk prediction model). Specifically, we trained on 

features to discriminate lung cancer nodules from non-cancer nodules at the same screening 

time-point, and then tested this model to predict lung cancer in the followup interval (Fig. 3).

In the next two subsections we discuss these two experiments in more detail.

A. DIAGNOSTIC EXPERIMENT (EXPERIMENT 1)

In the diagnostic experiment, features were used to differentiate cancers and non-cancers at 

different screening time-points. Thus, a classification model was trained on features at 

C1T1, and then the model was tested on C2T2. The T0 screens were not used for training 

nor testing as any cases diagnosed at T0 were prevalent cancers and not incident cancers. For 

the diagnostic experiment, the union of features from C1T1 and delta features (C1T1-C1T0) 

were used for training. Testing was performed on the union of features from C2T2 and delta 

features (C2T2-C2T1). Fig. 2 illustrates training and testing for Experiment 1. Additionally, 

the diagnostic model is described in Algorithm 1.

B. RISK PREDICTION EXPERIMENT (EXPERIMENT 2)

In the risk prediction experiment, features were used to predict future cancer incidence. In 

this experiment, a classification model was trained on diagnostic features at C1T1, and then 

the model was tested to predict cancer incidence at C2T1. Again, features from T0 were not 
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used. For the risk prediction experiment, the union of features from C1T1 and delta features 

(C1T1- C1T0) were used for training. Testing was done on the union of features from C2T1 

and delta features (C2T1-C2T0). Fig. 3 demonstrates training and testing for experiment 2 

Additionally, the risk prediction model is described in Algorithm 2.

Algorithm 1: Diagnostic

Input:Cohort1 T0,T1 and Cohort2 T1,T2 Radiomics
features ∈ Definiens, Rider, PyRadiomics

Output:Diagnostic model
Computer Delta:Let Cohort1 T0,T1 be C1T0, C1T1,

and Cohort2 T1, T2 be C2T1, C2T2 .
C1delta = C1T1 − C1T0, and

C2delta = C2T2 − C2T1

1 Initialization:
Let train set TrainnoDelta be C1T1 and TestnoDelta be

C2T2 . Let train set (after union with delta) be
TrainwithDelta = union C1T1, C1delta and test set

(after union with delta) be TestwithDelta =

union C2T2, C2delta .

2 Training and Testing:
A) Train a classifier on TrainnoDelta and test on

TestnoDelta and report accuracy and AUC .

B) Train a classifier on TrainwithDelta and test on

TestwithDelta and report accuracy and AUC .
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Alogorithm 2: Risk Prediction

Input:Cohort1 T0,T1 and Cohort2 T0,T1 Radiomics
features ∈ Definiens, Rider, PyRadiomics

Output:Risk prediction model
Computer Delta:Let Cohort1 T0,T1 be C1T0, C1T1,

and Cohort2 T0, T1 be C2T0, C2T1 .
C1delta = C1T1 − C1T0, and

C2delta = C2T1 − C2T0

1 Initialization:
Let train set TrainnoDelta be C2T1 and TestnoDelta be

C2T1 . Let train set (after union with delta) be
TrainwithDelta = union C1T1, C1delta and test set

(after union with delta) be TestwithDelta =

union C2T1, C2delta .

2 Training and Testing:
A) Train a classifier on TrainnoDelta and test on

TestnoDelta and report accuracy and AUC .

B) Train a classifier on TrainwithDelta and test on

TestwithDelta and report accuracy and AUC .

VI. RESULTS

To obtain the performance of the trained models, Cohort 2 was used for testing. The number 

of cases in Cohort 2 from which we obtained the accuracy and AUC performance metrics of 

classifiers mentioned in Section IV is shown in Table 1. The area under Receiver Operating 

Characteristic AUROC (known as AUC) is a performance metric that quantitatively 

describes the Receiver Operating Characteristic curve (ROC) [35]. ROC is a curve plot of 

the Sensitivity (i.e., true positive rate TPR) versus false positive rate FPR by using different 

cutoff points [36] [37]. Sensitivity (TPR) and FPR formulas are given in Equations 1, and 2 

respectively; where TP is the true positive cases (i.e., correctly classified positive cases), FP 
is the false negative cases (i.e., negative cases misclassified as positive), and P is the number 

of positive cases in the test set (i.e., Cohort2), whereas, N is the number of negative cases in 

the test set (i.e., Cohort2).

Sensitivity (TPR) = TP
P (1)
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FPR = FP
N (2)

In the diagnostic experiment, when utilizing Definiens conventional (non-delta) features 

with delta features, the highest accuracy was 82.07%, and the highest AUC was 0.851 using 

the Random Forests classifier. Using a Random Forests classifier, the highest accuracy of the 

model using only Definiens features was 80.66%, and the highest AUC was 0.833 When 

using Rider conventional features with delta features, the highest accuracy was 83.96%, and 

the highest AUC was 0.858 using a Random Forests classifier. The highest accuracy of the 

model using conventional Rider features was 81.13%, and the highest AUC was 0.82 using a 

Random Forests classifier. Using PyRadiomics conventional features with delta features 

yielded a highest accuracy of 83.49% and a highest AUC of 0.817 using a Random Forest 

classifier. By comparison, the model only using conventional PyRadiomics features yielded 

a highest accuracy of 79.71% and a highest AUC of 0.784 using a Random Forests classifier 

with five top features selected by ReliefF feature selector. Fig. 4a and Fig. 4b compare the 

best accuracy and AUC of a model when using conventional features only versus using both 

conventional features and delta features. The best accuracy and AUC are also presented in 

Table 3. Additionally, Table 4, Table 5, and Table 6 presents the results of the diagnostic 

experiments using Definiens, Rider, and PyRadiomics features sets.

In the risk prediction experiment, when utilizing Definiens conventional features with delta 

features, the highest accuracy was 76.41%, and the highest AUC was 0.807 using a Random 

Forests classifier. By comparison, the highest accuracy of the model using only Definiens 

features was 75%, and the highest AUC was 0.767 using a Random Forests classifier. When 

using Rider conventional features with delta features, the highest accuracy was 78.3%, and 

the highest AUC was 0.822 using a Random Forests classifier and ReliefF feature selector to 

find the top twenty ranked features. The highest accuracy of the model using only Rider 

features was 76.88% using a Random Forests classifier, and the highest AUC was 0.773 

using Random Forests on the top fifteen ranked features selected by ReliefF features 

selector. The model that utilized PyRadiomics conventional features with delta features had 

a highest accuracy of 75.2% and an AUC of 0.731 using a Random Forests classifier, 

whereas the model that utilized only conventional PyRadiomics features yielded a highest 

accuracy of 74.52% and a highest AUC of 0.713 using a Random Forests classifier and the 

best fifteen mRMR selected features. Fig. 5a and Fig. 5b presents the comparisons between 

the best accuracy and AUC of models when using conventional features only versus using 

conventional features with delta features. Furthermore, Table 3 presents the best accuracy 

and the best AUC of the risk prediction experiment. Additionally, Table 7, Table 8, and 

Table 9 show detailed results of the risk prediction experiment using Definiens, Rider, and 

PyRadiomics features sets.

VII. DISCUSSION

This study sought to determine the impact of combining delta features with conventional 

(non-delta) features for diagnostic discrimination and lung cancer incidence prediction in the 
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lung cancer screening setting. While prior studies have investigated the change of radiomics 

features during therapy treatment to build prognostic models [9] [38] [39] [40], there has 

been limited published data to date in the lung cancer screening setting to predict future lung 

cancer incidence from an IPN. The main finding of this paper is that delta features 

incorporated with conventional features improve lung cancer incidence prediction. 

Furthermore, this improvement was observed across all features sets which included 

Definiens, Rider features, and Pyradiomics features.

Models trained on the Rider feature subset had the biggest improvement of performance 

when delta features were combined with conventional features for the diagnostic and risk 

prediction experiments. A possible explanation is that the Rider features have been shown to 

be highly reproducible features, and as such, they may be the most important in terms of 

performance. Therefore, while selecting reproducible features is critical for developing 

reproducible models, our results demonstrate that incorporating delta features with the 

reproducible conventional features (i.e., Rider features) yields substantial improvements in 

model performance. In the risk prediction experiment, after incorporating the Rider delta 

features with conventional Rider features, six delta radiomics features were selected by the 

ReliefF feature selector in addition to 14 Rider features from which the highest improvement 

of AUC was observed. Specifically, the AUC improved from 0.773 to 0.822 by including 

delta features with conventional Rider features.

These six delta Rider features included short axis, longest diameter, asymmetry, the 

maximum distance to border, mean, and standard deviation. Table 8 lists the selected 

features where delta features are denoted with a postfix “delta”. For the diagnostic 

experiment, the best model was from Rider features which yielded an AUC from 0.82, for 

conventional (non-delta) features only, to 0.858 when delta features were combined with 

conventional (non-delta) Rider features. This model included all delta and conventional 

(non-delta) Rider features (i.e., 46 features).

As shown in Tables 4 through 9, results of each experiment are provided for the best AUC, 

as AUC may be a more discriminant metric for a model derived from machine learning [41]. 

We list the best performing model’s results on AUC for conventional (non-delta) features 

and when combining delta features with conventional (non-delta) features. Although 

improvements were found in all of our experiments, none of the observed improvements in 

AUC model performance reached statistical significance using the significance test of the 

difference between the areas under two ROC curves [35]. This could be because of the 

relatively small size of the test set. The Accuracy of diagnostic model using pyradiomics 

features was statistically significant at p < 0.1 using the Mcnemar statistical test [42], as 

shown in Table 3, where a statistically significant result is denoted with asterisk. 

Additionally, using the Wilcoxon rank sum test [43], we found the accuracy and AUC results 

of the Diagnostic model is statistically significant at p < 0.1.

The previous study by Hawkins et al. [14], showed that using Rider features from the 

baseline predicts cancer incidence with 76.79% accuracy and AUC of 0.81. However, in our 

study, we did not use baseline features directly; rather, we calculated delta features between 

the first follow-up screening interval and baseline screen (i.e., C1T1 - C1T0 for training and 
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C2T1 - C2T0 for testing). Our sample size is slightly smaller than the previous work because 

we have removed cases from each cohort that do not exist in all screens for the purpose of 

delta computation. Nevertheless, incorporating delta features demonstrated improvements 

for risk prediction compared to the Hawkins et al. study. Specifically, using Rider delta 

features and Rider conventional features yielded an AUC of 0.822 and accuracy of 78.3%. 

We also noted improvements in model performance for the diagnostic experiment when 

delta features were included; however, Hawkins paper did not investigate diagnostic models. 

By using only nodule features to predict future cancer incidence, our findings broadly 

support the work of other studies which suggest Delta radiomics improves prediction models 

performance, although previous studies mostly involve a combination of clinical data, 

pretreatment, intratreatment, and post-treatment features.

There are some limitations and some strengths of this analysis. We conducted our analyses 

only on a small cohorts of NLST because it is not feasible to segment and extract radiomic 

features on the entire LDCT-arm of the NLST. Our radiomic pipeline is well established and 

is efficient for radiomic studies of lung cancer. However, nodule identification and 

segmentation is still a time bottleneck and requires some radiologist intervention. 

Approaches for automated segmentation are actively being pursued which will allow us to 

segment and extract radiomic features on large numbers of LDCT scans. We acknowledge 

there were fewer lung cancer cases in the training and testing sets. Despite the analyses on a 

subset of cases and controls, the modest sample size, nodule-size imbalance, we applied 

rigorous training and testing analyses to identify radiomic features that are predictive of lung 

cancer.

VIII. CONCLUSION

This paper investigated the impact of combining delta radiomics features with conventional 

(non-delta) features for diagnostic discrimination and to predict future nodule malignancy. 

Our experiments confirm that delta features can improve the performance of models derived 

from machine learning. An important finding that emerged from these experiments is the 

improvement of models performance specifically among Rider features when delta and 

conventional (non-delta) features were combined. Using delta features in combination with 

conventional Rider features, the highest AUC for the risk prediction experiment (experiment 

2) was 0.822 versus 0.733 for the model with only conventional Rider features. Additionally, 

our study did a diagnostic experiment (experiment 1) where improvement was also observed 

after combining delta features with conventional features. Overall, this study demonstrated 

the important utility of combining delta features with conventional features to improve 

performance of models in the lung cancer screening setting. Our future work includes 

applying deep learning to detect lung cancer using multiple lung screenings [44].
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FIGURE 1: Study design.
Cohort 1 (Training Cohort) is the upper half and Cohort 2 (Test Cohort) is the lower half. T0 

was screen positive in both cohorts. Cohort 1 lung cancer cases had a T1 positive screening 

diagnosed as an SDLC. Cohort 2 had a T1 positive screen not diagnosed as lung cancer, but 

a positive screen at T2 diagnosed as an SDLC.
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FIGURE 2: 
Visualization of diagnosis experiment (experiment 1), where Cohort 1 T1 images 

quantitative features (SDLC) are used for training, and Cohort 2 T2 images quantitative 

features (SDLC) are used for testing. Orange circle is the baseline. Blue circle is second 

screen of Cohort2. The color is just to visually differentiate between the baseline and second 

screen when they are aligned under each other.
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FIGURE 3: 
Visualization of risk prediction experiment (experiment 2), where Cohort 1 T1 images 

quantitative features (SDLC) are used for training, and Cohort 2 T1 images quantitative 

features (follow-up positive) are used for testing. Orange circles are the baseline.
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FIGURE 4: 
Best (a) accuracy and (b) AUC of models for the diagnostic experiment using conventional 

features (non-delta) only versus conventional features combined with delta features
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FIGURE 5: 
Best (a) accuracy and (b) AUC of models for risk prediction experiment using conventional 

features (non-delta) only versus conventional features combined with delta features
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TABLE 1:

Number of lung cancer cases (LCC) and non-cancer controls (NCC) for Cohort1 and Cohort 2

Cohort & Screening time-points LCC NCC

Cohort 1: T0 and T1 83 172

Cohort 2: T0, T1, and T2 77 135
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