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Summary

Actions are guided by a Bayesian-like interaction between priors based on experience and current 

sensory evidence. Here, we unveil a complete neural implementation of Bayesian-like behavior, 

including adaptation of a prior. We recorded the spiking of single neurons in the smooth eye 

movement region of the frontal eye fields (FEFSEM), a region that is causally involved in smooth 

pursuit eye movements. Monkeys tracked moving targets in contexts that set different priors for 

target speed. Before the onset of target motion, preparatory activity encodes and adapts in parallel 

with the behavioral adaptation of the prior. During the initiation of pursuit, FEFSEM output 

encodes a maximum a posteriori estimate of target speed based on a reliability-weighted 

combination of the prior and sensory evidence. FEFSEM responses during pursuit are sufficient 

both to adapt a prior that may be stored in FEFSEM and, through known downstream pathways, to 

cause Bayesian-like behavior in pursuit.

Introduction

Nearly all behaviors are guided by an interaction between past experience and current 

sensory information. When sensory evidence is weak, past experience dominates behavior; 

conversely reliable sensory evidence dominates past experience. This intuitive mode of 

operation has been formalized using Bayesian inference, where a prior based on past 

experience interacts with sensory evidence to create a posterior distribution that can be used 

to generate a stimulus estimate and guide behavior1,2,3. Many studies have revealed that 

sensory-motor behavior can be understood in relation to the features of Bayesian 

inference2,4,5,6,7,8,9,10,11. Here, we reveal how one particular neural circuit creates Bayesian-

like behavior.

For many years, we have known that past experience and expectation have an influence on 

anticipatory smooth pursuit eye movements12,13,14. More recently, our lab showed that 
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priors for target speed and direction also bias the visually-driven initiation of pursuit eye 

movements10 and that the priors themselves are rapidly adaptable based on the recent history 

of target motion11. The initiation of pursuit conforms to the expectations of Bayesian 

inference in that priors have a strong impact when the motion of unreliable, low-contrast 

targets drives pursuit, and a weaker influence for more-reliable, high-contrast targets10. 

Darlington et al.11 showed that the reliability-weighted interaction of sensory evidence and 

priors for pursuit is Bayes optimal according to the definitions of Stocker and Simoncelli15, 

even though optimality is not a requirement for Bayesian behavior16,17.

Pursuit provides a behavioral and anatomical framework to analyze the neural basis for the 

reliability-weighted combination of priors and sensory evidence: we know the basic neural 

circuit for pursuit and the general contribution of each node in the circuit to generation of the 

behavior18. Extrastriate area MT encodes the direction and speed of visual motion in its 

population spiking activity, provides the visual drive to the pursuit system19 and, 

importantly, encodes stimulus reliability in the amplitude of its population response20. The 

smooth eye movement region of the frontal eye fields (FEFSEM) is a vital node of the intact 

smooth pursuit circuit. Suprathreshold stimulation of FEFSEM elicits smooth eye 

movements21 and neurons in FEFSEM selectively modulate their activity during pursuit22,23. 

Subthreshold microstimulation demonstrates that the output of FEFSEM controls the strength 

of visual-motor transmission24,25,26. The effect of FEFSEM output on pursuit eye movements 

is mediated through known pathways to the pontine brainstem and pursuit-related regions of 

the cerebellum27,28,29. Inactivation of FEFSEM has drastic effects on pursuit30,31,32. Even 

though pursuit recovers somewhat over weeks after lesions of FEFSEM
31, the weight of the 

evidence indicates that FEFSEM plays an important, causal role in pursuit by modulating the 

strength (or gain) of visual-motor transmission.

Our previous papers suggested a tight link between visual-motor gain control, FEFSEM, and 

Bayesian behavior in pursuit eye movements10,11,33. Therefore, the aim of the present 

experiments was to determine the role of the FEFSEM in generating Bayesian-like behavior 

in pursuit. We recorded single neuron activity in FEFSEM during pursuit eye movements in a 

behavioral paradigm that rapidly adapts a prior for target speed. Our results reveal a 

complete account of a neural computation that appears to mediate Bayesian inference in a 

sensory-motor system.

Results

Previous papers showed that experience-based priors for target speed and direction influence 

the speed and direction in the initiation of smooth pursuit eye movement10,11. The effect of 

the priors depends on the strength of visual motion inputs and can be explained in the 

framework provided by Bayesian inference. Here, we use recordings from FEFSEM to shed 

light on the neural mechanisms of three important components of Bayesian-like behavior. 

(1) We discover a neural representation of recent experience that adapts in parallel with a 

behavioral prior for target speed. (2) We reveal that FEFSEM uses a reliability-weighted 

combination of sensory evidence and the neural prior to compute an output that is 

qualitatively similar to a maximum a posteriori estimate of target speed; that estimate is used 
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to guide pursuit behavior. (3) We demonstrate how the neural prior could be stored in the 

strength of recurrent synapses and adapted locally in FEFSEM based on experience.

A system for assessing and adapting priors for target speed in smooth pursuit eye 
movements

We start by introducing the behavioral paradigm we have been using to study the effect of 

recent experience on the initiation of pursuit eye movement. Most of the data were described 

in detail by Darlington et al.11, but we summarize it here to set the context for subsequent 

presentation of neural data.

In each trial, an initially-stationary target underwent ramp target motion (Figure 1c) and 

moved at a speed of 2, 10, or 20 deg/s. Monkeys initiated pursuit tracking by rapidly 

increasing eye speed in the direction of target motion and achieved accurate tracking within 

200–300 ms after the onset of target motion. To alter recent experience, we used a blocked 

experimental design and manipulated the statistics of target speeds in different blocks of 

trials (Figure 1a). During 50-trial “fast-context” blocks, 80% of the trials presented target 

motion at 20 deg/s and 20% presented motion at 10 deg/s. During 50-trial “slow-context” 

blocks, 80% of the trials presented target motion at 2 deg/s and 20% presented motion at 10 

deg/s. During interspersed 20-trial control-blocks, all of the trials presented target motion at 

10 deg/s. To control the reliability of visual motion signals we used targets of high-contrast 

(reliable visual motion signals) and low-contrast (unreliable visual motion signals).

As shown before11, target motion at the control speed of 10 deg/s evokes faster initial eye 

speeds during the fast-context versus the slow-context (Figure 1b, green versus blue bars). 

Because the target motion used to probe the behavioral prior is the same in both contexts, the 

effects on eye speed must be related to the expectations created by context rather than to any 

physical attribute of the visual stimulus. As expected for Bayesian-like behavior, the recent 

experience has a stronger behavioral effect when sensory evidence is weaker (low contrast) 

and therefore less reliable. In the slow-context (blue bars), eye speed averaged 16% versus 

10% slower than control for low- versus high-contrast targets (paired t-test, t94 = −8.34, p = 

6.18×10−13, n = 95, Cohen’s d = −0.86). In the fast-context (green bars), eye speed averaged 

13% versus 8% faster than control for low- versus high-contrast targets (paired t-test, t94 = 

7.03, p = 3.22×10−10, n = 95, Cohen’s d = 0.72). The behavioral data summarized in Figure 

1b are approximated well by a Bayesian model that we derived using the general strategy 

outlined in Stocker and Simoncelli15 (Supplementary Figure 1). Because the speed estimated 

by the Bayesian model falls between the peak of the prior and the sensory likelihood, it is 

best characterized as a reliability-weighted average.

Representation of a prior in FEFSEM preparatory activity

Preparatory activity in FEFSEM represents the speed context before target motion onset. 

Modulation of activity during fixation has been observed before35,36, but we now show in 

Figure 2a that the ramp is larger during the fast-context (green trace) compared to the slow-

context (blue trace). We obtained similar results across a population of 164 FEFSEM neurons 

in two monkeys. The modulation of preparatory activity, defined as the firing rate at the end 

of fixation minus that at the beginning of fixation (shaded intervals in Figure 2a), is 24% 
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smaller during the slow-context compared to the fast-context (Figure 2b, linear regression 

slope 0.76). The magnitude and sign of the preparatory activity varies across neurons but is 

closely correlated with the amplitude of each neuron’s firing rate response during the 

initiation of pursuit eye movements (Figure 2c). The degree of preparatory activity was 

similar in neurons categorized as putative inhibitory and excitatory neurons using the 

multidimensional waveform analysis developed by Snyder et al.37 (data not shown), 

suggesting that preparatory activity is part of the output from FEFSEM. Importantly, the 

preparatory activity appears during the fixation interval, which offers no explicit cues about 

either the upcoming target speed or the contrast of the pursuit target. We conclude that 

before the onset of target motion, the preparatory activity in FEFSEM could be interpreted as 

a noisy estimate of anticipated target speed and could represent the “prior probability” of 

speed in the coming trial.

Parallel adaptation of neural priors and pursuit behavior

We show next that representation of pursuit’s prior for target speed in FEFSEM adapts 

gradually across tens of trials in parallel with the effect of context on eye speed in the 

initiation of pursuit (Figure 3). Agreement of the trial courses of behavioral and neural 

adaptation supports the conclusion that a neural prior in FEFSEM is tightly linked to the 

behavioral prior expressed in pursuit. Also, the slowness of both neural and behavioral 

adaptation implies that the behavior we are studying is the product of a probabilistic process 

as opposed to some higher-level switch. The monkeys did not learn that there were different 

contexts in a way that would allow them to instantaneously switch their behavior upon 

encountering a 20 (or 2) deg/s trial in the fast (or slow) context.

Figure 3a quantifies the gradual adjustment of the representation of the prior in 10-trial bins 

according to the slope of the relationship between the modulations of preparatory activity in 

the slow- versus fast-context (same analysis as Figure 2b). The effect of context on 

preparatory activity evolves over approximately 30 trials before plateauing near a slope of 

0.7, signifying a 30% decrease in the slow- versus fast-context (Figure 3a, solid black 

symbols). The effect of context on eye speed also evolves over 30 trials before plateauing 

around a 30% or 20% difference for low-contrast targets (Figure 3a, open black symbols) or 

high-contrast targets (Figure 3a, open red symbols). The smaller effect on behavior for high-

contrast targets is expected because the prior has a smaller influence over behavior when 

sensory information is reliable. We observed similar agreement in measures of preparatory 

activity and eye speed for the slow- and fast-contexts, separately (Supplementary Figure 2).

The effects of the fast- and slow-contexts on both preparatory activity and eye speed linger 

with similar amplitude into the subsequent control blocks. Preparatory activity is 13% 

smaller in the control blocks that follow the slow- versus fast-context (Figure 3b). Eye speed 

showed similar effects (Figure 3d). Eye speed decays gradually across the 20-trial control 

blocks and reflects the previous context more strongly for low-contrast (black) versus high-

contrast (red) targets.

We also found that a single trial adapts the preparatory activity in FEFSEM and the pursuit 

behavior. In Figure 3c, we measured the preparatory activity separately for trials in the slow-

context that were preceded by target motion at 2 versus 10 deg/s. The average preparatory 
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activity was 21% smaller in trials preceded by target motion at 2 deg/s (slope = 0.79). Eye 

speed in pursuit initiation was 16.9% smaller for target motion at 2 deg/s preceded by target 

motion at 2 versus 10 deg/s (Figure 3e, paired t-test, t189 = 6.53, p=5.95×10−10, n = 190, 

Cohen’s d = 0.64). We did not find a similar effect on preparatory activity in the fast-context 

for previous target speeds of 10 versus 20 deg/s, probably because previous target motion at 

10 versus 20 deg/s creates effects that are too small to measure on the time scale of a single 

trial.

FEFSEM firing rates during pursuit initiation encode a Bayesian-like estimate of target 
speed

The same population of FEFSEM neurons responded strongly to the visual motion that drives 

pursuit during the first 100 ms of movement initiation. We call this “pursuit-related” activity.

Context has a larger effect on pursuit-related activity for less-reliable visual motion. For the 

motion of a high-contrast target at 10 deg/s, the example neuron in Figure 4a shows very 

similar trajectories of average firing rate during the initiation of pursuit in the fast- and slow-

contexts (green versus blue traces). For the same neuron, the pattern was different for low-

contrast targets (Figure 4b). The response was smaller and delayed in the slow-context (blue 

trace) compared to the fast-context (green trace), even though target contrast and speed were 

the same so that eye movement was not delayed (data not shown).

We quantified the effect of context on pursuit-related responses in FEFSEM by computing the 

percentage change in firing rate between the fast- and slow-context (100*(fast-slow)/slow) 

for a target of a given contrast moving at 10 deg/s. The effect of context on FEFSEM pursuit 

activity varies across neurons, but for the population the effect is significantly larger for low- 

versus high-contrast targets (Figure 4c, paired t-test, t163 = 3.09, p = 0.0024, n = 164, 

Cohen’s d = 0.24). Therefore, in good agreement with pursuit behavior, activity in FEFSEM 

during initiation of pursuit is affected more by context when sensory evidence is weak.

The effect of context on pursuit-related activity is quite variable across neurons, leading to 

the question of whether it is possible to decode the behavioral effects of context and stimulus 

contrast from the neural population. The answer is yes. Choice of a suitable linear decoder 

provided a close match of the decoded FEFSEM population response to the effects on smooth 

pursuit behavior for motion of high- and low-contrast targets at 10 deg/s in the slow- and 

fast-contexts (Figure 4d). We conclude that FEFSEM output during pursuit initiation 

combines prior and current sensory information in a way that is qualitatively similar to a 

maximum a posteriori (MAP) estimate of target speed, and that this estimate is appropriate 

to control the initiation of pursuit. Because pursuit’s prior for target speed is much slower 

than 10 deg/s (Supplementary Figure 1), preparatory activity is usually smaller than pursuit-

related activity and the estimate of target speed provided by the pursuit-related activity is 

slower for low-contrast versus high-contrast targets.

To create the successful linear decoder, we first combined the pursuit-related firing rates for 

high- and low-contrast targets moving at 10 deg/s in the fast- and slow-context for each 

neuron. We then ranked the full sample of FEFSEM neurons according to the effect of 

context on pursuit-related firing rate and fitted an exponential distribution (a Gaussian 
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distribution gave similar results) of weights (Figure 4e) for the firing rates of the ranked 

neurons. Thus, the decoder had only one free parameter. Also, it is important that neurons 

were ranked only according to overall effect of context; the effect of contrast emerges 

seamlessly, providing cross-validation of the decoder. When we used an alternative decoder 

that weighted the population response uniformly, the effects were in the right direction, but 

the magnitudes were small compared to the behavior (compare Figure 4f with Figure 1b).

Some of the data in Figures 1–4 were collected with high-contrast patches of dots and low-

contrast gratings as stimuli, while others used high- and low-contrast dots. Supplementary 

Figure 3 verifies that the stimulus form did not have any effect on the results.

FEFSEM estimates target speed during pursuit initiation via a reliability-weighted average 
of the speed prior and sensory evidence

We show next that the relationship between preparatory activity and FEFSEM output during 

pursuit initiation has the two features we would expect in a Bayesian-like computation. First, 

preparatory activity contributes to the subsequent pursuit-related response. Higher 

preparatory activity pushes the absolute pursuit-related activity to higher levels, leading to a 

faster estimate of target speed and higher eye speeds in the initiation of pursuit. Second, 

preparatory activity interacts with visual motion input to control the sensory-driven 

increment in firing rate during the pursuit-related response, instantiating the reliability-

weighted combination of prior and sensory evidence that occurs in pursuit behavior.

Our approach takes advantage of the fact that the firing rate at the end of the preparatory 

period varies from trial-to-trial even when the context and the stimulus are the same. First, 

we evaluated trial-by-trial correlation between (1) the preparatory firing rate in the last 100 

ms before the moving target appeared (Figure 5a, “prep”), and (2) the absolute firing rate in 

the interval 50–150 ms after target motion onset (Figure 5a, “absolute”). For an example 

neuron (Figure 5b), the trial-by-trial correlation between the preparatory and absolute 

pursuit-related firing rate was 0.46. Strong positive correlations appeared for the entire 

population (Figure 5c), with statistically larger positive correlations for responses to low- 

versus high-contrast targets (mean Pearson’s r = 0.234 versus 0.187, paired t-test, t320 = 

5.95, p = 6.87×10−9, n = 321, Cohen’s d = 0.33).

Next, we correlated the preparatory firing rate in the last 100 ms before the moving target 

appeared (Figure 5a, “prep”) with the change in firing rate during the initiation of pursuit 

(Figure 5a, “incremental” = absolute minus prep). We find strong negative trial-by-trial 

correlations between the firing rate in the preparatory period and the increment in firing rate 

between the preparatory and pursuit periods (Figure 5d). The negative correlations cannot 

represent a ceiling effect on FEFSEM firing because they were just as strong for the smaller 

pursuit-related responses evoked by target motion at 2 deg/s. Again, trial-by-trial 

preparatory-pursuit correlations were statistically more positive for low-contrast targets 

compared to high-contrast targets (mean Pearson’s r = -0.592 versus −0.631, paired t-test, 

t320 = 5.86, p = 1.17×10−8, n = 321, Cohen’s d = 0.33).

The strength and signs of the trial-by-trial correlations between Figures 5c and d suggests 

causal links from preparatory activity to pursuit-related activity, possibly within individual 
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neurons. We suggest that the positive correlation between preparatory activity and absolute 

pursuit-related firing rate occurs because the preparatory firing pushes the eventual pursuit-

related response toward a level that is commensurate with the prior represented by the 

preparatory activity. The negative correlation between incremental pursuit-related firing rate 

and preparatory activity means that the neural representation of the prior doesn’t simply 

provide a platform for the addition of sensory inputs. Instead, the preparatory activity 

modulates the increment in firing caused by the sensory input: higher preparatory activity 

leads to a smaller increment due to sensory input.

A theory-based explanation for trial-by-trial correlations

To make our interpretations more precise, we start from the principles of Bayesian inference 

and derive an equation that describes multiple features of our recordings from FEFSEM, 

including the positive and negative trial-by-trial correlations described in Figure 5. If the 

prior and likelihood are represented as Gaussians, then a MAP estimate is a precision-

weighted combination of the mean of the prior for target speed (S p) and the maximum 

likelihood (ML) estimate of target speed from sensory evidence (SML) :

SMAP =
aML × SML + aP × SP

aML + aP
(1)

where aML = 1
σML

2  is the precision of the likelihood and is assumed to be a function of 

contrast, and aP = 1
σP

2  is the precision of the prior and is assumed to be constant across 

contexts. With the appropriate substitutions and some algebra:

SMAP = f contrast × SML + 1 − f contrast × SP context (2)

where f contrast =
aML

aML + aP
 and always assumes a value between 0 and 1.

Equation (2) maps nicely onto the measurements we made in FEFSEM. The decoding 

analysis (Figure 4d and e) suggests that neural activity in FEFSEM during the initiation of 

pursuit (FRpurs) is qualitatively consistent with a MAP estimate of target speed that is used 

to drive pursuit behavior. The preparatory activity (FRprep) is related to the prior created by 

speed context. Therefore, we can rewrite Equation (2) as:

FRpurs = f contrast × FRML + 1 − f contrast × FRprep context (3)

where F R ML represents visual motion input to FEFSEM related to the maximum likelihood 

estimate of target speed. Equation (3) accurately predicts the nature of trial-by-trial 
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correlations between preparatory firing rate (F Rprep) and the firing rate of FEFSEM during 

pursuit initiation (F Rpurs). The second term on the right side of Equation (3) predicts the 

positive correlations between preparatory activity and the absolute pursuit-related firing rate 

(Figure 5c). Rearranging Equation (3) yields:

FRincremental = FRpurs − FRprep = f contrast × FRML − FRprep context (4)

Equation (4) describes the relationship between preparatory activity and the increment in 

firing driven by sensory inputs during pursuit initiation (FRincremental), and qualitatively 

predicts the negative trial-by-trial correlations between preparatory activity and the 

increment in FEFSEM firing rate (Figure 5d).

Equations (1)–(4) explain how the data in Figures 4 and 5 would result from a Bayesian-like 

computation in FEFSEM. The preparatory activity (prior) pushes the output of FEFSEM 

towards the expectation it represents and combines with sensory evidence (likelihood) in a 

manner that depends on the reliability of visual motion. Also, Equation (3) can be 

generalized to explain the activity in FEFSEM as a MAP estimate of target speed across a 

pursuit trial, starting with activity driven entirely by expectation during fixation and ending 

with a reliability-weighted average between prior and likelihood during pursuit initiation.

Evidence for local updating in FEFSEM of the neural representation of the speed prior

Our final goal is to understand how a sensory-motor neural circuit could generate and store 

prior expectations based on experience.

Here, we use a model that maintains the prior as an explicit state variable, to ask whether 

adaptation of the neural representation of the prior could occur locally within FEFSEM. The 

prior is updated after each trial according to the pursuit-related responses of our population 

of neurons in FEFSEM (Figure 6a). We used two components of prior adaptation that we 

weighted separately to update the prior for the next trial.

FRprepn + 1
= FRprepn

+ w1×(FRpursn
− FRprepn

) + w2×(FRpursn
− ∑i = n − 30

n − 1
FRprepi

30 )

(5)

FRprepn and FRpursn are the preparatory and pursuit-related firing rate on the nth trial. The 

“w1” term allows for single trial adaptation of the preparatory activity (Figures 3c and e); the 

“w2” term supports adaptation of the preparatory activity over a slower time course (Figures 

3a, b, and d). Both components of adaptation compute prediction errors based on the 

difference between the actual level of pursuit activity in the most recent trial and predictions 

based on preparatory activity.
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To test the model, we simulated blocks of trials with the same statistics of target speed used 

in the slow- and fast-contexts as well as the control blocks in our experiments (Figure 1a). 

We drew a pursuit-related response for each simulated trial from the distribution of 

normalized responses of real FEFSEM neurons for the target speed in that trial: 2, 10, or 20 

deg/s (Figure 6b). To fit the model, we adjusted the two weights, w1 and w2, to account for: 

(1) the size of the single-trial effect on preparatory firing rate during the slow-context 

(Figure 3c) and (2) the magnitude of the difference between preparatory activity in the post-

fast and post-slow control blocks (Figure 3b).

The choice of a history of 30 trials in Equation (3) optimizes the performance of the model 

(Figure 6c) and allows it to reproduce the time course of acquisition of preparatory activity 

(Figure 6d). A memory of 30 trials models the decay in preparatory activity in control blocks 

that follow fast- or slow-context blocks of trials (Figure 6e). Also, the model predicts an 

important feature of our data that was not explicitly built into it. The state variable in the 

model plateaus at the same slow-fast difference of −30% as the experimentally-observed 

preparatory activity in FEFSEM (Figure 6d). We explain this feature in Supplementary Figure 

4.

We take the success of the model as evidence in favor of our suggestion that adaptation of 

the behavioral prior could occur locally in FEFSEM and be driven by the pursuit-related 

firing rate, which itself is an estimate of target speed that depends on the interaction between 

preparatory-related firing rate and sensory evidence.

Biologically-plausible recurrent neural network captures features of Bayesian-like 
computations in FEFSEM

Here, we demonstrate one kind of biologically-plausible model that can account for the 

qualitative pattern of results from our data. This is a “proof of concept” style of model and 

the actual implementation in the brain could look quite different. Our network model (Figure 

7f) comprises a fully-recurrent network of excitatory and inhibitory rate model neurons, 

where the prior is stored in the weights of the recurrent excitatory connections. As inputs, 

the recurrent circuit receives a small step in activity during fixation in advance of impending 

target motion and a realistic population response from extrastriate area MT (Supplementary 

Figure 5).

The network model reproduces all of the main features of our recordings from FEFSEM. 

Model neurons show ramps of preparatory activity during fixation reaching a level that 

depends on whether the recurrent weights are set for the fast- or slow-context (Figure 7a). 

Pursuit-related activity depends on target speed, target contrast, and speed context in a way 

that closely follows the data (Figures 7a and b). For each model neuron in the network, the 

trial-by-trial variation in pursuit-related activity is positively correlated with preparatory 

activity (mean slope 0.54) and the incremental pursuit activity is negatively correlated with 

preparatory activity (mean slope −0.46) (Figure 7c), reproducing the data in Figures 5c and 

d. The pursuit-related activity of the 66 model neurons is tightly related to the modulation of 

the preparatory activity and falls close to the regression line for the actual data (Figure 7d). 

Under conditions that mimic the control-, slow-, and fast-contexts, the network adapts 
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autonomously and produces changes in preparatory activity that have realistic amplitudes 

and time courses (Figure 7e).

The network model is detailed in the Methods. Briefly: (1) we used the recurrent excitatory-

inhibitory network structure of Lim and Goldman38 to achieve a stable integrating circuit 

that was not overly sensitive to its internal weights; (2) we provided visual motion drive as 

the weighted sum of the activity of a realistic population of model MT neurons, each 

weighted by its preferred speed (Supplementary Figure 5); (3) we instantiated shunting 

inhibition to allow larger preparatory activity to modulate negatively the increment in firing 

caused by sensory evidence; and (4) we used a plasticity rule that increased or decreased the 

weight of excitatory inputs. Changes in the weights depended on a comparison of plasticity 

signals in the fixation interval before the onset of target motion versus during the initiation 

of pursuit. In effect, this comparison increases (or decreases) synaptic weights and increases 

(or decreases) future preparatory activity if the pursuit-related activity is larger (or smaller) 

than the expectation embedded in the preparatory activity. The plasticity signals were 

computed as by integrating the product of pre- and post-synaptic activity in each of the two 

intervals: the preparatory period and the initiation of pursuit.

In the network model, we used shunting inhibition to create the precision-weighted 

combination of preparatory and visual motion signals. Shunting inhibition is a form of 

divisive normalization and is predicted by a network that generates MAP estimates from 

sensory information encoded in the form of a linear probabilistic population code39. In a 

linear PPC, the natural parameters of the prior and likelihood are encoded linearly by neural 

activity. For a Gaussian-distributed posterior this means:

SMAP

σMAP
2   = b ML × FRMT + bP (6)

1
σMAP

2 = a ML × FRMT + ap (7)

where FRMT is a vector of firing rates in area MT, bp is the ratio of prior mean and variance, 

ap is the precision of the prior, and a ML and b ML are constants determined from the first- 

and second-order statistics of MT activity. For example, if MT activity was associated with a 

population of independent Poisson neurons with Gaussian tuning curves with uniform width, 

then b ML would be a vector of preferred speeds in MT neurons and a ML would be a vector 

of ones. If FEFSEM activity linearly encodes the MAP estimate, then a divisive 

normalization is necessary to compute FEFSEM activity from MT activity:
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FRFEFSEM
= α

β × SMAP  = α
β ×

b ML ⋅ FRMT + bP

a ML ⋅ FRMT + aP

(8)

A straightforward way to accomplish this would be for FEFSEM activity to evolve over time 

via the differential equation:

dFRFEFsem
dt = α × b ML × FRMT + bP − β × a ML × FRMT + aP × FRFEFsem (9)

The second term on the right-hand side of Equation (9) implements the divisive 

normalization required to produce the MAP estimate via shunting inhibition. Equation (9) 

also has the property that the time constant of integration is related to the strength of the 

likelihood: more spikes coming from the sensory likelihood (FRMT) cause faster dynamics. 

Thus, Equation (9) correctly predicts the faster dynamics for pursuit-related responses to 

high-contrast visual motion (see Figure 4a versus b). Moreover, Equation (9) models an 

increase in the prior mean by increasing bp, leading to higher preparatory activity during 

fixation before visual motion onset.

Discussion

Bayesian inference has been a useful metaphor for understanding a wide range of sensory-

motor behaviors1,2,3,10,11,16 in terms of a reliability-weighted combination of sensory 

evidence and adaptable priors. Our recordings from FEFSEM use pursuit eye movements as a 

behavioral system to provide, to our knowledge, the first account of a complete set of neural 

components that implement Bayesian inference in a sensory-motor system. We supported 

the completeness of that account through a theoretical analysis that takes us from a 

normative description of Bayesian inference to an equation that maps onto the responses of 

neurons in FEFSEM.

Interaction of experience and sensory information to estimate target speed in FEFSEM

The activity of neurons in FEFSEM provides neural representations of the key elements of 

Bayesian inference to estimate target speed: the output of FEFSEM is qualitatively similar to 

a MAP estimate of target speed. During fixation, the estimate of target speed is based solely 

on the preparatory activity that represents the prior for target speed. During pursuit 

initiation, the estimate of target speed is based on a reliability-weighted average of the prior 

and the sensory evidence.

Preparatory activity in FEFSEM builds up during fixation before the onset of target 

motion35,36. It encodes the mean of a Bayesian-like prior based on speed context and 

influences subsequent visual motion processing in FEFSEM. Because our behavioral 

paradigm does not provide explicit cues about the upcoming visual motion during fixation, 

the preparatory activity must represent the pursuit system’s expectation, or prior. 
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Importantly, it need not be the case that the prior was expressed in preparatory activity: it 

could have been entirely hidden away in synaptic weights or the activity of inputs from other 

areas, only to reveal its effects during pursuit-related responses.

FEFSEM output during pursuit initiation is the result of a Bayesian-like computation that 

estimates target speed through a reliability-weighted combination of sensory evidence 

(visual motion input from area MT) with expectation or a prior (preparatory activity). Target 

speed is represented in a “place code” in area MT, where cells have a wide range of 

preferred speeds40,41. In contrast, FEFSEM represents speed as a “rate code”: pursuit-related 

responses increase monotonically with visual motion speed in all neurons22,23. We take 

advantage of the fact that contrast (and therefore reliability) is reflected in the amplitude of 

area MT’s population response20. By using the sum of MT responses weighted by their 

preferred speed as its input, our model received a total sensory synaptic input that is larger 

for high-contrast versus low-contrast visual motion at any given target speed. This choice 

reproduced the measured responses of FEFSEM neurons, with faster estimates of visual 

motion for both higher target speeds and higher contrast targets. The model uses shunting 

inhibition, one potential neural implementation of the reliability-weighted combination of 

sensory evidence and priors. In effect, the ratio of the magnitudes of preparatory activity to 

visual motion input determines the weighting: as this ratio increases, preparatory activity 

(prior) is weighted higher and visual motion (sensory evidence) is weighted lower.

Our models show that a representation of the prior could be generated by a recurrently 

connected neural network and that synaptic plasticity could update the prior on the basis of 

the pursuit-related activity of FEFSEM neurons by altering the strength of recurrent 

excitatory connections. The state-variable model presented shows that the measured 

distributions of pursuit-related firing rates for target motion at 2, 10, and 20 deg/s can 

account fully for local adaptation of preparatory activity. Feedback of the posterior from a 

Bayesian computation to adapt the prior also is a feature of a hierarchical recurrent Bayesian 

model that accounts for some features of pursuit45. While the result from Figure 6 suggests 

that all of the information needed to update the prior is present in FEFSEM activity, it does 

not rule out the possibility that preparatory activity is adapted and originates upstream from 

FEFSEM.

Causal effect of FEFSEM on pursuit eye movement

We have shown that FEFSEM emits pursuit-related firing that is qualitatively similar to a 

MAP estimate of target speed, and we have revealed much about how the reliability-

weighted combination of preparatory activity (the prior) and sensory evidence (the 

likelihood) sets the output during pursuit initiation. We have not quantitatively proven that 

FEFSEM output is exactly a MAP estimate. But, our ability to decode the behavior from 

FEFSEM output and the reliability-weighted nature of the interaction between prior and 

current evidence in FEFSEM support our conclusions and establish FEFSEM output as a 

reliability-weighted estimate of target speed that can be used to guide eye speed.

The output of FEFSEM provides an estimate of target speed that causally controls the 

strength, or gain, of visual-motor transmission. Subthreshold microstimulation demonstrates 

the role of FEFSEM in gain control by enhancing the strength of pursuit initiation for a given 
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target motion25, as well as eye speed responses to visual motion perturbations24,26. Previous 

reports have highlighted the link between gain control, estimates of target speed, and 

Bayesian-like behavior in pursuit. Behavioral experiments showed that the setting of the 

gain of visual-motor transmission depends on target speed46, validating the use of a 

Bayesian-like estimate of target speed for gain control. Computational models suggest that 

Bayesian inference in pursuit is implemented by direction-selective visual-motor gain 

control10,11,33. The present paper links FEFSEM to gain control and its use to implement 

Bayesian inference.

Neural representations of Bayesian inference

We have identified all the components of Bayesian inference in FEFSEM, a part of the brain 

that plays a causal role in smooth pursuit eye movements. Bayes rule is based on a complete 

representation of prior and posterior distributions, but in FEFSEM we find neural 

representations of only the means of these components of Bayesian inference. We show that 

the neural representation of the posterior results from a non-linear combination of the prior 

and a complex population code representation of target speed and contrast in area MT. The 

non-linearity can be implemented with shunting inhibition. Computer simulations suggest 

that the entire Bayesian computation could reside in FEFSEM, with the prior represented by 

the adaptable weights of excitatory recurrent synaptic connections. We propose that the 

circuity in FEFSEM uses the principles of Bayesian inference to perform a reliability-

weighted combination of previous experience and sensory evidence, yielding a statistically-

optimal linear estimate of target speed that is in appropriate coordinates to guide motor 

output.

Methods

Please refer to our “Life Sciences Reporting Summary”.

Contact for reagent and resource sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Stephen Lisberger (lisberger@neuro.duke.edu).

Experimental model and subject details

We conducted experiments on two male rhesus monkeys that weighed between 12 and 14 kg 

and were 8 and 10 years of age. Monkeys underwent several surgeries in preparation for the 

experiments. First, monkeys were surgically implanted with hardware onto the skull to 

restrain head movement and a scleral search coil to track eye movements47,48. Once the 

monkeys recovered from these surgeries, they were trained to fixate and smoothly track 

moving visual targets. The horizontal and vertical components of eye position were recorded 

through the analog signals produced by the scleral search system. These signals were passed 

through an analog circuit to obtain signals proportional to eye velocity. The circuit 

differentiated signals from DC to 25 Hz and rejected signals at higher frequencies (−20 dB/

decade). Eye position and velocity signals were sampled at 1 kHz and stored for offline data 

analysis. Second, a craniotomy was performed in an area centered on the smooth eye 

movement region of the frontal eye fields (FEFSEM). A sealable, titanium recording cylinder 
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was placed over this craniotomy to allow access to FEFSEM for electrophysiological 

recordings. All procedures received prior approval by Duke’s Institutional Animal Care and 
Use Committee and were in compliance with the National Institutes of Health’s Guide for 
the Care and Use of Laboratory Animals.

Method details

Our experimental paradigm had two key manipulations11.

First, we controlled the distribution of target speeds that the monkey experienced 

(Figure 1). During the fast-context, 80% of trials provided target motion at 20 deg/s 

and 20% of trials provided target motion at 10 deg/s. During the slow context, 80% 

of the trials provided target motion of 2 deg/s and 20% of the trials provided target 

motion of 10 deg/s. During a control block, all trials delivered target motion of 10 

deg/s. The fast and slow contexts consisted of 50-trial blocks and the control blocks 

consisted of 20-trial blocks. These three types of blocks alternated during the 

experiment with control blocks falling between every fast and slow block.

Second, we controlled the strength of visual motion that the monkey experienced 

on each trial by using targets of different contrast and form. Targets comprised a 

100% contrast patch of dots or Gabor for the “reliable visual motion target” and a 

12% contrast patch of dots or a 6% contrast Gabor for the “unreliable visual motion 

target”. The patch of dots consisted of 72 dots within a 4-degree aperture. Half of 

the dots were bright and half were dark to render the average luminance the same as 

the background. The Gabor had a spatial frequency of 0.5 cycles/degree and was 

vignetted by a two-dimensional Gaussian function with a standard deviation of 1 

degree. Visual targets were displayed on a 24-inch gamma-corrected CRT monitor 

with a refresh rate of 80 Hz placed 40 centimeters from the monkeys’ eyes, creating 

a field of view spanning 62 (horizontal) by 42 (vertical) degrees. It is important to 

note that contrast and motion adaptation are unlikely to have any effect in our 

paradigm given the short duration of our trials and the fact that high- and low-

contrast trials were randomly interleaved.

Experiments were divided into discreet trials. Each trial started the same way, with the 

monkey fixating a small black dot at the center of the screen. After a period of 800–1600 ms, 

the black dot was replaced with a pursuit target that underwent 100 ms of coherent local 

pattern motion (of the patch of dots or Gabor) at a defined speed and direction within a 

stationary but invisible aperture. We used 100 ms of local motion to jump-start the pursuit 

system and avoid a large initial position error. The target and aperture subsequently moved 

en bloc with the parameters of the previous local motion. Monkeys were rewarded with juice 

for successfully tracking the position of the center of the target within a 4×4 degree window. 

This strategy allows us to study the visual-motor transformation occurring during the open-

loop interval in the initiation of pursuit without confounding effects of saccades. It has the 

same advantages as the Rashbass “step-ramp” used in pursuit of spot-targets49. Previous 

publications have shown that pursuit to local followed by global motion is indistinguishable 

from that to targets that start with local and global motion simultaneously50.
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Some of our data were obtained using a high-contrast patch of 100% correlated dots and a 

low-contrast Gabor (“mixed-form”), and some were obtained with matched forms of 

different contrasts. We started with targets that differed in both contrast and form, based on 

the strategy used in our first behavioral paper on Bayesian inference in pursuit10. However, 

we realized partway through data collection that the use of different stimulus forms was a 

potentially contaminating variable. Therefore, we switched to paradigms that held target 

form constant and varied only stimulus contrast. Form-matched neural data were collected in 

Monkey Xt and form-matched behavioral data were collected in both monkeys. Separating 

the data into form-matched and form-mixed versions of the experiment did not affect any of 

our conclusions (Supplementary Figure 3).

During a typical experiment, three Thomas Recording tetrodes were introduced into FEFSEM 

for isolation of single units. To allow us to customize the direction of target motion in a daily 

experiment, we first determined the direction of pursuit that elicited the maximal firing rate 

in the units that we isolated. The speed-context experiment was run in a fixed direction that 

represented a good compromise between the preferred directions of the neurons we were 

recording in a given session. When possible, we ran multiple speed-context experiments in 

different directions while recording from the same neurons. Our data set includes recordings 

from 164 FEFSEM neurons (83 in monkey Re and 81 in monkey Xt) with an average of two 

speed-context experiments (in different directions) per neuron.

Quantification

Data analysis.—We analyzed firing rate in two different time periods within our task: 

preparatory-related and pursuit-related epochs. For the analysis of preparatory-related 

activity, firing rate across the fixation period was computed in 100 ms bins and averaged 

across all trials in a specific context. Because the duration of the fixation interval varied 

from 800–1600 ms, each trial contributed data only from the onset of fixation to the onset of 

target motion, aligned on the onset of fixation. Thus, fewer trials contributed to the estimate 

of preparatory firing rate as fixation time grew closer to 1600 ms. We computed the average 

modulation of firing rate across the fixation period by subtracting the firing rate in the period 

200–500 ms after fixation onset from the firing rate during the interval from 1200 to 1500 

ms after fixation onset (Figure 1b, gray shading). To compare the modulation of preparatory 

activity in different conditions, we performed principal component regression. The slope of 

the regression gives an estimate for the relative difference in preparatory modulation 

between different conditions.

For pursuit-related activity, we analyzed the period 50–150 ms after target motion onset. We 

chose this window because it is centered on the time of pursuit onset and ends before the 

time when eye movement related visual feedback would be arriving at FEFSEM. To compare 

the effects of speed context on pursuit-related firing rate, we used the data for target motion 

at 10 deg/s and computed the percentage change in the average pursuit-related firing rate in 

the slow- versus the fast-context. The temporal profiles of the firing rate for our example 

neuron in Figure 3 were obtained by smoothing the trial-averaged firing rate with a Gaussian 

filter (standard deviation of 12 ms). Trials where the monkey made a saccade during the 

window 200 ms following the onset of target motion were excluded from analysis in Figure 
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3. Only neurons that had an increase in firing rate of at least 5 spikes/s during pursuit 

initiation in response to target motion at 10 deg/s were used in the analyses of Figure 4.

We used trial-averaged eye speed to analyze the behavioral effects of speed context. We 

determined the average onset of pursuit initiation for high- and low-contrast stimuli by eye. 

The analysis period for behavior was 50–100 ms after pursuit onset. This time period was 

chosen to avoid the effects of eye movement related visual feedback on behavior51. Trials 

with saccades in the first 200 ms following visual motion onset were excluded in Figure 1b. 

The splitting of data into 10-trial bins for the time course analysis greatly reduced the 

amount of data. Thus, we chose to detect saccades using acceleration and velocity thresholds 

and treat the times during saccades as missing data in the analysis of the time course of 

behavioral effects (Figure 3).

Decoding of FEFSEM pursuit-related firing rates analysis.—We used a linear 

decoder constrained by the effect of speed context to predict the effects of both context and 

target contrast on visual-motor gain, inferred by eye speed responses to the same speed of 

visual motion. Effect of context was calculated as the percent change of FEFSEM pursuit-

related firing rate in response to 10 deg/s target motion during the slow- compared to the 

fast-context. Cells then were ranked by the effect of context. Importantly, data from high- 

and low-contrast trials were combined when calculating the effect of context. The weight of 

each neuron was determined by an exponential fit to rank within the population:

weighti = 1
μ × e

− i
μ

where μ is the sole free parameter, i denotes the rank of each neuron within the population, 

and the weights were normalized so that they summed to a value of one. Visual-motor gain 

was decoded from the population:

gain = ∑
i = 1

164
FRi × weighti

Here, FRi is the pursuit-related firing rate of the neuron with rank i normalized to its average 

response for all 10 deg/s conditions. The μ parameter was adjusted to minimize the root 

mean square error between the decoded gain of the fast- and slow-contexts and the visual-

motor gain inferred by the relative eye speed responses to the 10 deg/s motions during the 

fast- and slow-contexts. We also were able to decode the population response successfully 

by optimizing a simple linear decoder that had the weights of all neurons as free parameters. 

However, the large number of free parameters allowed the decoder to simply choose a few 

neurons that had exactly the correct pursuit-related responses to match the behavior, and to 

assign zero weight to the activity of all other neurons. Finally, responses could be 

successfully decoded by weighting responses proportionally to their reliability of encoding 

context (data not shown).
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State variable model of prior adaptation.—The model described by Equation 3 in the 

main text has three free parameters, the number of trials built into the memory term, w1, and 

w2. The parameters were optimized to minimize: (1) the root mean square error between the 

predicted and actual single trial effect on preparatory activity in the slow context; and (2) the 

root mean square error between the predicted and actual magnitude of the difference in 

preparatory activity in the post-fast versus post-slow controls blocks. The model was 

initialized with a random prior between 0 and 1 and run through 1000 iterations of the speed 

context paradigm. The prior then was averaged over these 1000 iterations for the results 

shown in Figure 6. We hypothesized that pursuit responses contained all of the information 

necessary to update preparatory activity. Therefore, only data from cells with meaningful 

pursuit responses were included in the population used for the state variable model, which 

we judged to be cells with modulations greater than 5 spikes/s. Because of the diversity of 

response magnitudes across neurons, we chose to normalize firing rates to the pursuit-related 

response to 20 deg/s target motions of high-contrast targets, responses that always were the 

largest in magnitude. This strategy allowed us to create clean distributions of firing rates for 

the different target speeds and provided a simple approach to keep the average value of the 

state-variable roughly between 0 and 1. The results are unchanged if we normalize in a 

different manner.

Recurrent network model.— After Lim and Goldman37, we created a recurrently-

connected model of 33 excitatory and 33 inhibitory model rate neurons according to the 

following equations:

τE
dEi
dt = − Ei + f ∑

j = 1

33
sEEi, jwEEi, j + ∑

j = 1

33
sEIi, jwEIi, j + k∑

j
sMT jPS j/SHi + F

τI
dIi
dt = − Ii + f ∑

j = 1

33
sIEi, jwIEi, j + ∑

j = 1

33
sIIi, jwIi, j + 0.12k∑

j
sMT jPS j/SHi + F

Here, sXYi,j and wXYi,j are the synaptic input variable and the weight for the connection 

from model neuron j to i, where X and Y indicate whether i and j refer to excitatory (Ei) or 

inhibitory (Ii) model neurons. F is a small “fixation” input that sets the network in motion 

and starts the preparatory activity by stepping from 0 to 5 spikes/s at t=200 ms. We set the 

value of k empirically so that pursuit-related activity would be twice preparatory activity for 

high-contrast target motion at 10 deg/s in the control-context. We created a set of simulated 

MT population responses (see Supplementary Figure 5) for high- and low-contrast target 

motion at 2, 10, and 20 deg/s based on data collected in our laboratory for patches of random 

dots of 100% or 12% contrast. MTj and PSj refer to the response and the preferred speed of 

the jth model MT neuron. We are happy to provide those population responses as text or 

matlab files. The effect of target contrast and speed on the pursuit related response (Figure 

7b) is an emergent property of the model that is created entirely by the details of the 

population responses. We take the agreement between real and model FEFSEM neurons in 
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Figure 7b as validation of the simulated MT population responses and the weighted 

summation decoding computation in the model.

All model synapses and neurons had time constants, so the state of the synaptic inputs from 

each neuron, si,j, were computed as:

τi, j
dsi, j

dt = − si, j + X j

where Xj denotes the firing rate of relevant pre-synaptic model neuron. The values of the 

shunting inhibition, SHi, for each model excitatory neuron was computed as:

SHi = 0.06 ∑
j = 1

33
sEIi, jI j − 1

The calculation was the same for inhibitory neurons, replacing sEI with sII. We applied the 

shunting inhibition only to the MT inputs to avoid disrupting the balance of excitatory and 

inhibitory neurons that makes the network operate as a stable integrator (Lim and Goldman, 

2013). Indeed, because inhibition and excitation are balanced in the inputs to each neuron in 

the model network, application of shunting inhibition to the recurrent excitation would yield 

a constant firing rate and obviate the integrating properties of the network. If the actual 

circuit architecture is related to the structure of our model network, then the excitatory and 

inhibitory synapses would have to be positioned so that the MT input is subject to shunting 

inhibition but the recurrent excitation is not.

The input-output function of the model neurons was:

f (x) =
0 if x ≤ 0

x if 0 < x < 200  
200 if x ≥ 200

Time constants, drawn heavily from Lim and Goldman37, were: excitatory synapses from 

model FEFSEM neurons, 25 ms; excitatory synapses conveying MT activity, 30 ms; 

inhibitory synapses, 10 ms; excitatory neurons, 20 ms; inhibitory neurons, 10 ms. We 

created trial-by-trial variation in preparatory activity by varying the weight of the fixation 

input for each model neuron between 0.75 and 1.25 randomly. Initial synaptic weights were 

set randomly on a uniform distribution between 0.04 and 0.16.

We selected blends of target motions to simulate the slow-, control-, and fast-contexts in our 

experiments, and we ran simulated trials of duration 1200 ms, where the fixation input was 

applied from 200 to 1200 ms and the MT input consisted of a 100 ms pulse of input that 

started at time 1000 followed by a 100 ms ramp back to zero. We implemented the effect of 

the context on the activity of the model network using a plasticity rule based on calculation 

of a plasticity variable, Pi,j for each connection between model excitatory neurons:
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Pi, j =
∑

t = 1

1200
sEEi, j(t) × wEEi, j × ∑

t = 1

1200
Ei(t) when MT(t) > 0

∑
t = 1

1200
sEEi, j(t) × wEEi, j × ∑

t = 1

1200
Ei(t) when MT(t) = 0

Intuitively, the numerator and denominator compute the integrated product of pre- and post-

synaptic activity at the synapse from model neurons j to i when the model input from MT is 

either greater than or equal to zero. The notation is the same as in the equations that describe 

the structure of the network model. Ei(t) is the postsynaptic activity of the ith excitatory 

model neuron, sEEi,j(t) is the synaptic input variable as a function of time (t) and wEEi,j is 

the synaptic weight so that their product (in parenthesis in both the numerator and 

denominator) is the presynaptic activity from the jth excitatory model neuron. Plasticity was 

applied at the end of each simulated trial, only to the excitatory inputs to excitatory neurons. 

The learning rate was 0.1% and each weight decayed back towards its initial condition by 

9% after each trial. The strength of each model excitatory neuron’s excitatory inputs was 

increased or decreased if the value of Pi,j was >0.64 or <0.56, respectively.

wEEi, j =

1.001 × wEEi, j − 0.09 wEEi, j − wEEi, j(t = 0)  if Pi, j > 0.64

0.999 × wEEi, j − 0.09 wEEi, j − wEEi, j(t = 0)  if Pi, j < 0.56

wEEi, j − 0.09 wEEi, j − wEEi, j(t = 0)  if  0.56 ≤ Pi, j ≤ 0.64

Intuitively, the plasticity rule determines whether the actual pursuit-related firing rate is 

larger or smaller than the expectation defined by the preparatory activity. A comparison 

between pursuit and preparatory activity is necessary because any absolute rule based on 

overall pre- and post-synaptic activity would be unstable and would push the recurrent 

weights toward zero or infinity. That said, many other plasticity rules might work, as long as 

they are based on a comparison of pursuit-related and preparatory activity on a given trial.

We realize that some of the choices we have made for the structure and parameters of our 

model are less than 100% biologically realistic. Our goal was to show that the synaptic 

weights in a recurrent network could plausibly store the value of a prior, and that an 

autonomous plasticity rule could alter those weights in a way that simulated the results of 

our recordings. The next step of creating a model circuit with biologically realistic 

mechanisms and plasticity rules in conduction-based, spiking model neurons seems 

important, but would be a major next step that is beyond the scope defined by the goals of 

our study.

Statistics

No statistical methods were used to predetermine sample sizes, but our sample sizes are 

similar to those reported in previous studies. Data were collected from two Rhesus monkeys. 

A total of 164 single neurons were recorded across 95 speed context experiments: 83 

neurons across 54 experiments in monkey Re and 81 neurons across 41 experiments in 
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monkey Xt. Because the number of neurons was greater than the number of experiments, 

values of “n” are smaller for behavioral measures than for neural measures. On average, two 

speed context experiments (in two different directions) were run per neuron, yielding a total 

of 321 neural data points. An additional 16 behavioral speed context experiments were run 

in monkey Re with form-matched stimuli (Supplemental Figure 3). For the analysis of 

pursuit-related firing rate (Figure 4), we used only neurons with an increase in firing rate of 

at least 5 spikes/s for target motion at 10 deg/s: 164 data points from 118 neurons. Statistical 

comparisons of means were performed using 2-tailed t-tests. Paired t-tests were used for 

statistical analysis of contrast effects because high- and low- contrast targets were randomly 

interleaved throughout all experiments. Data distribution was assumed to be normal but this 

was not formally tested. Data collection and analysis were not performed blind to the 

conditions of the experiments.

Data availability

All data are available from the corresponding author upon reasonable request.

Software availability

All custom code is available from the corresponding author upon reasonable request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Effect of speed context on behavior.
a: Schematic shows the fraction of speeds of target motion in each speed context. b: 
Histograms compare eye speed for high-contrast (top) versus low-contrast (bottom) targets 

for the 10 deg/s target motion during the fast (green) and slow (blue) context. The x-axis 

shows eye speed as a percentage change from eye speed measured in control blocks for the 

same stimulus speed and contrast. Data are for 95 speed-context experiments during which 

neural responses were recorded. c: Eye movements during the initiation of pursuit for target 

motion showing position in the top graph and speed in the bottom graph. Dashed and 

continuous traces show target and eye movement, and the gray rectangle shows the analysis 

interval for the initiation of pursuit. Note that the first 100 ms of target motion comprises 

local motion within a stationary aperture, and the target position starts to ramp 100 ms after 

the target velocity steps to 10 deg/s. d: A simplified circuit diagram based on previous 
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knowledge of how signals emanating from FEFSEM control the gain of visual motion signals 

from area MT to the oculomotor machinery to drive pursuit eye movements.
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Figure 2. Effect of speed context on preparatory activity in FEFSEM.
a: Green and blue curves plot average firing rate as a function of time from fixation onset for 

one example neuron during the fast and slow contexts. The fixation target appeared at time 

zero, and the pursuit target appeared and started to move 800–1600 ms later. Averages are 

synchronized on the onset of fixation and each trial contributed data only up to the time of 

appearance of the tracking target. The shading indicates the intervals used to calculate the 

modulation of preparatory activity from the averages. b: Scatter plot compares the average 

change in preparatory firing rate across fixation during the fast- versus slow-context. Each 

symbol shows data from a different experiment with a single direction of target motion: 321 

data points, from 95 speed context experiments in 164 neurons. The solid and dashed lines 

are the regression fit and the unity line. c: Scatter plot compares the average change in 

preparatory firing rate during fixation versus the average pursuit-related modulation of firing 

rate. As in b, each symbol shows data for a different experiment: 321 data points, from 95 

speed context experiments in 164 neurons. The solid line is a regression fit.
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Figure 3. Agreement of time courses of contextual effects on eye speed and preparatory activity 
in FEFSEM.
a: Red and black open symbols plot the time course of the average relative difference in eye 

speed between fast and slow context in response to the 10 deg/s target motion of high- and 

low-contrast targets. Filled symbols plot the time course of the average relative difference in 

FEFSEM preparatory firing rate between the fast and slow contexts. Data are averaged within 

successive bins of 10 trials. Error bars represent SEM (n = 95 speed context experiments). b: 
Scatter plot compares the average preparatory firing rate during control blocks that followed 

the fast-context versus control blocks that followed the slow context. c: Scatter plot 

compares the average preparatory firing rate when target speed on the previous trial was 10 

deg/s versus 2 deg/s. Each symbol shows data for a different experiment: 321 data points, 

from 95 experiments in 164 neurons. In b and c, each symbol shows data for target motion 

in one direction for one neuron, and solid and dashed lines show regression fits and unity 

line. d: Symbols plot the time course of average normalized eye speed in response to the 10 

deg/s target motion for the high- (red) and low-contrast (black) targets over the 20 trials in 

the control blocks. The symbols in the top portion of the plot represent normalized eye 

speeds in the post-fast control blocks and the symbols in the bottom portion of the plot 

represent normalized eye speeds in the post-slow control blocks. Error bars represent SEM 

(n = 95 speed context experiments). e: Distribution of single-trial effects on eye velocity 

when the target speed in the previous trial was 10 versus 2 deg/s. Each experiment 

contributes 2 entries: one each for the low- and high-contrast targets. Here and in all 

subsequent figures, “Trial number in block” takes all trials in the block into account.
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Figure 4. Effect of speed context on activity driven by target motion in FEFSEM during initiation 
of pursuit and successful decoding of FEFSEM activity to predict behavioral gain.
a, b: Curves plot average firing rate of an example FEFSEM neuron as a function of time 

from motion onset for target motion at 10 deg/s during the fast (green) and slow (blue) 

context for high- (a) and low-contrast (b) targets. Gray shading shows the interval used to 

analyze pursuit-related firing rate. c: Scatter plot compares the average percentage change in 

pursuit-related firing rate between the fast- and slow-contexts for the high- versus low-

contrast targets at speeds of 10 deg/s. Each symbol represents data for target motion in one 

direction for one neuron: 164 data points collected from 118 neurons. Dashed lines indicate 

the unity line and x- and y-axes. The red symbol denotes the example cell in panel a. We 

averaged the firing rate across the interval from 50–150 ms after the onset of target motion 

(gray shading in a and b) because this represents the time period when the discharge in 

FEFSEM can affect the initiation of pursuit. d: Open symbols plot average eye speed for low- 

and high- contrast targets moving at 10 deg/s during the fast- and slow-contexts normalized 

to eye speed averaged across to all 10 deg/s conditions (n = 95 behavioral experiments). 

Filled symbols plot the normalized eye speed predicted by constrained linear decoding of 

pursuit-related FEFSEM firing rates. e: The curve plots the weight of each ranked neuron 

used in the decoder that generated the data in panel d. f: Histograms compare FEFSEM firing 

rates for high- (top) versus low-contrast (bottom) targets for the 10 deg/s target motion 

during the fast (green) and slow (blue) context. The x-axis shows firing rate as a percentage 

change from that measured in control blocks for the same stimulus speed and contrast. This 
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way of plotting the data shows the result of using a uniform decoder to predict behavioral 

effects from the population response. There are 164 data points collected from 118 neurons. 

Green and blue arrows indicate the population average for the fast- and slow-contexts.
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Figure 5. Trial-by-trial correlation between preparatory and pursuit firing rate.
a: The curve replots (from Figure 4a) the average firing rate over time of one example 

neuron. Arrows indicate the three firing rate measurements used for the correlation analysis 

in b-d. b: Scatter plot showing trial-by-trial correlations between preparatory and absolute 

pursuit-related firing rate for an example neuron. Each symbol shows measurements for one 

trial. The dashed line represents the unity line. The Pearson correlation coefficient is 0.46. c: 
Histograms showing the distribution of trial-by-trial Pearson correlation coefficients 

between preparatory modulation of firing rate and absolute pursuit-related firing rate. Top 

and bottom histograms show data for the high- and low-contrast target motions, both at 10 

deg/s. d: as in c, except that correlation is between preparatory modulation of firing rate and 

the incremental firing rate from the preparatory level during pursuit initiation. Each neuron 

could have contributed more than one “observation” for target motion in different directions. 
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Data in c and d summarize results from 321 data points, from 95 speed context experiments 

in 164 neurons.
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Figure 6. Model for updating the representation of a Bayesian prior based on pursuit responses 
in FEFSEM.
a: A conceptual model for how FEFSEM combines the prior on one trial with the likelihood 

from sensory input to set the gain of visual-motor transmission and to update the prior for 

the next trial. b: Blue, red, and green curves show distributions across trials of normalized 

pursuit-related firing rates across the population of FEFSEM neurons for target motion at 2, 

10, and 20 deg/s. c: Symbols plot the root mean squared error between model and neural 

data as a function of the length of the trial history that influenced the model’s prior. d, e: 
Open and filled symbols plot the time course of the relative change in preparatory activity 

between fast and slow contexts for the data and the optimized model (d) and the relative 

change in preparatory activity between the fast-context and the post-fast, slow, and post-slow 

contexts (e).
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Figure 7. Performance of a network model that reproduces the key features of recordings from 
FEFSEM.
a: Average responses of full population of model neurons as a function of time. Dashed and 

continuous traces show results for fast- versus slow-context, red and black show high- versus 

low-contrast targets. b: Average pursuit response for full population of model neurons as a 

function of target speed. Red and black show results for high- and low-contrast targets. 

Filled and open symbols show results for real versus model FEFSEM neurons. Error bars on 

the filled symbols show the standard error of the mean across neurons (n = 164 data points 

collected from 118 neurons). c: Analysis of trial-by-trial variation showing competition 

between preparatory activity and sensory inputs (after Figure 5). Red and black symbols 

show analysis of incremental versus absolute pursuit-related firing rate. d: Plot of pursuit-

related activity versus preparatory activity. Each symbol shows measurements from a 

different model neuron. Line is the same line used to fit the data in Figure 2c. e: Trial 

courses of mean preparatory activity across the population of model neurons (black) and 

averaged across our population (red) of recorded neurons during simulations with 30 control 

trials, 50 trials in the simulated fast-context, 50 trials in the simulated slow context, and 50 

additional control trials. For both the neurons and the model, preparatory activity is about 

30% larger in the fast- versus the slow-context. f: A cartoon showing the architecture of the 

recurrent neural network model.
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