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Abstract
Improvement of nutritional and organoleptic quality of fruits is a key goal in current strawberry breeding programs.
The ratio of sugars to acids is a determinant factor contributing to fruit liking, although different sugars and acids
contribute in varying degrees to this complex trait. A segregating F1 population of 95 individuals, previously
characterized for several fruit quality characters, was used to map during 2 years quantitative trait loci (QTL) for 50
primary metabolites, L-ascorbic acid (L-AA) and other related traits such as soluble solid content (SSC), titratable acidity
(TA), and pH. A total of 133 mQTL were detected above the established thresholds for 44 traits. Only 12.9% of QTL
were detected in the 2 years, suggesting a large environmental influence on primary metabolite content. An objective
of this study was the identification of key metabolites that were associated to the overall variation in SSC and acidity.
As it was observed in previous studies, a number of QTL controlling several metabolites and traits were co-located in
homoeology group V (HG V). mQTL controlling a large variance in raffinose, sucrose, succinic acid, and L-AA were
detected in approximate the same chromosomal regions of different homoeologous linkage groups belonging to HG
V. Candidate genes for selected mQTL are proposed based on their co-localization, on the predicted function, and
their differential gene expression among contrasting F1 progeny lines. RNA-seq analysis from progeny lines contrasting
in L-AA content detected 826 differentially expressed genes and identified Mannose-6-phosphate isomerase, FaM6PI1,
as a candidate gene contributing to natural variation in ascorbic acid in strawberry fruit.

Introduction
Strawberry is one of the most important soft fruit crops

in the world and its quality is largely tied to the ripening
process. During fruit development, the receptacle
experiences auxin-dependent phases of division, expan-
sion and ripening, and consequently sugars, organic acids,

and volatiles accumulate. Ripe strawberries are therefore
highly valued for their delicate flavor, and also as an
important source of sugars, minerals, vitamins and anti-
oxidant compounds1. Strawberry (Fragaria × ananassa) is
also an important fruit from an agronomic perspective: its
global production in 2016 was over 9.1 million tons
(FAOSTAT database; accessed 28 Feb. 2018). Tradition-
ally, both fresh market and the processed food industry
have demanded strawberry varieties with improved
agronomic characteristics such as increased production,
fruit size, firmness, and resistance to stresses. This strict
focus has indirectly resulted in an erosion of the genetic
and biochemical complexity essential for fruit quality2.
Over the last decade, consumer preferences have driven
breeding efforts to improve fruit flavor, mainly through
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increasing soluble solids content (SSC) as an approx-
imation of total sugar content and the SSC:titratable
acidity (TA) ratio3. More recently, breeding has aimed to
maintain, or increase, the content of nutraceutical com-
pounds4. Indeed, if elevated content of nutritional com-
ponents is combined with a high flavor standard,
consumer fruit consumption could be encouraged5,6.
Breeding more nutritious and better tasting cultivars can
be achieved by introgressing natural trait variation, which
requires understanding the heritability of those traits. In
this regard, QTL analysis not only provides information
on the genetic control of traits useful for breeding new
varieties through marker-assisted selection, but also on
the relationships among genes influencing the traits.
Metabolite profiling has been successfully used to

identify key compounds involved in development, stress
tolerance, and nutritional value in many important
crops7,8. This approach was likewise applied to discover
enzyme functions, reconstruct important pathways, and
even define their regulation9,10. It was also used to explore
natural variability in wild species in order to identify
valuable germplasm, that could be eventually used for the
improvement of agriculturally important crops11–13.
Additionally, considerable biological insight was obtained
from metabolic profiling coupled with genome-wide
association studies (GWAS) in important crops includ-
ing tomato, maize, and rice14–19. While its argued that
whole-genome regression may be more practical for
artificial selection, it is of little help in understanding
molecular function. Recent work in tomato strengthened
the role of the cell wall invertase Lin5 as a major deter-
minant of soluble solid content, as well as the gene E8 as
underlying quantitative variance in volatile organic com-
pounds20. Quality phenotypic data are necessary
requirement for metabolite QTL studies to characterize
the gene to metabolite association21,22. Elucidation of
gene/phenotype associations requires integration of high-
quality metabolic data with genomic and genetic stu-
dies21,22. Metabolic analysis has been increasingly used to
assist elite germplasm selection23,24. In tomato, the first
study using metabolite profiling showed that metabolic
traits correlated with phenotypic traits such as yield or
harvest index, exposing the challenge to use metabolites
as biomarkers22. In cultivated strawberry, metabolic traits
have been studied using this approach, including the
identification of QTL for volatile organic compounds,
glucose, fructose, sucrose, malic, citric, and L-ascorbic
acids25–27. Strawberry fruits are considered a rich source
of vitamin C, or L-ascorbic acid (L-AA), a water-soluble
vitamin that is an essential dietary component for
humans28. However, L-AA concentration varies widely
between strawberry cultivars and also among wild Fra-
garia species, ranging from less than 10 to more than
80mg/100 g FW4,28–30. Natural variation in L-AA content

has been used for the detection of QTL controlling this
important trait26. In tomato, studies have also identified
QTL controlling pigments, cell wall components, sesqui-
terpenoids, acyl-sugars, and cuticle composition in
fruits31–35. Furthermore, these studies were helpful in
elucidating the biosynthetic pathways of different volatiles
such as phenylethanol, phenylacetaldehyde, mesifurane,
g-decalactone, and methyl anthranilate27,32,36–38, as well
as specific glycoalkaloids39,40. Such research contributed
to enhancement of our understanding of fruit specialized
metabolism41.
The major aim of this work was to characterize the

variation and genetic control of metabolic traits related
to primary metabolism in strawberry fruit using an F1
mapping population. The population was derived from
the cross between two contrasting lines, ‘232’ and ‘1392’
that differed, among other traits, in overall sweetness
scores, TA and L-AA content26. In a previous report, QTL
for agronomical and fruit quality traits were identified in
the ‘232’ × ‘1392’ population26. Using the same population
for analysis of QTL controlling the variation in primary
metabolites may allow the identification of common loci
affecting mQTL and key fruit quality traits such as SSC,
acidity, and volatile organic compounds. To achieve this
goal, we firstly applied a well-established gas chromato-
graphy coupled to mass spectrometry (GC-MS) plat-
form42, examining primary fruit metabolite levels in ripe
fruit. Secondly, we evaluated metabolite correlations using
clustering methods. Thirdly, we searched for mQTL
controlling primary metabolites, and compared them to
previously identified QTL for SSC and TA, and finally, we
identified candidate genes located in the confidence
interval of selected QTL. For the last goal, we took
advantage of the high synteny of the genomes of culti-
vated strawberry (F. × ananassa) and the diploid Fragaria
vesca, an ancestor of the cultivated species with a recently
updated genome sequence available (Fragaria vesca v4.0.
a1 genome)43–46.

Results
Variation in the metabolic fruit composition in
‘232’ × ‘1392’ mapping population
This study was based on the evaluation of strawberry

fruits harvested from two independent years (2013 and
2014). As an initial approach to assess the variation
in primary metabolism in fruits, we investigated which
metabolites were present in ripe fruit extracts from par-
ents and F1 progeny lines from the cross of selection
lines ‘232’ and ‘1392’. This population has been shown
to segregate for a wide range of traits, including yield,
fruit size, and important fruit quality traits such as SSC,
acidity, and volatile organic compounds26,27. Metabolites
were detected and semi-quantified by gas chromato-
graphy-(TOF) mass spectrometry (GC-TOF-MS) using
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Table 1 Relative content of primary metabolites in ‘232’, ‘1392’, and their F1 progeny in two consecutive years

Parental Lines F1 progeny

2013 2014 2013 2014

Metabolite 232 1392 232 1392 Mean ± SD Range Mean ± SD Range

Alanine 0.63 1.00 1.23 1.00 0.91 ± 0.36 0.35–2.33 1.52 ± 0.65 0.29–3.90

Asparagine 0.71 1.00 0.75 1.00 0.86 ± 0.26 0.49–1.92 1.19 ± 0.45 0.48–2.84

Aspartic acid 0.59 1.00 0.69 1.00 2.66 ± 10.19 0.55–98.27 2.41 ± 3.42 0.40–28.75

Glutamic acid 0.81 1.00 0.80 1.00 1.00 ± 0.35 0.43–2.63 1.76 ± 0.78 0.40–3.60

Glutamine 0.33 1.00 0.71 1.00 1.04 ± 0.31 0.45–2.28 1.44 ± 0.37 0.69–3.06

Glycine 0.55 1.00 1.05 1.00 1.81 ± 0.68 0.58–4.29 1.50 ± 0.57 0.53–2.77

Isoleucine 1.11 1.00 0.67 1.00 0.86 ± 0.63 0.15–2.80 1.22 ± 0.84 0.16–4.33

Leucine 0.92 1.00 0.72 1.00 0.78 ± 0.18 0.43–1.25 1.04 ± 0.27 0.54–2.05

Methionine 0.98 1.00 0.85 1.00 1.42 ± 0.69 0.48–4.78 1.17 ± 0.50 0.37–2.98

Phenylalanine 0.88 1.00 0.49 1.00 1.03 ± 0.23 0.63–2.27 1.11 ± 0.25 0.71–2.42

Proline 0.95 1.00 1.69 1.00 0.89 ± 0.42 0.00–1.98 0.79 ± 0.44 0.00–2.65

Pyroglutamic acid 0.41 1.00 0.39 1.00 0.78 ± 0.41 0.18–2.15 0.91 ± 0.57 0.23–3.03

Serine 0.56 1.00 0.96 1.00 0.80 ± 0.48 0.19–2.34 0.80 ± 0.53 0.14–2.74

Threonine 0.72 1.00 0.94 1.00 1.13 ± 0.28 0.66–1.99 1.28 ± 0.38 0.58–2.22

Tryptophan 0.99 1.00 0.80 1.00 0.89 ± 0.41 0.28–2.18 2.27 ± 2.41 0.32–13.72

Tyrosine 0.40 1.00 0.41 1.00 0.78 ± 0.36 0.11–1.78 0.91 ± 0.34 0.27–1.67

Valine 0.66 1.00 0.72 1.00 0.85 ± 0.21 0.53–1.71 0.99 ± 0.61 0.00–4.32

β-Alanine 0.41 1.00 0.65 1.00 0.78 ± 0.31 0.26–2.03 1.27 ± 0.40 0.55–2.30

GABA 0.69 1.00 0.86 1.00 0.89 ± 0.31 0.40–2.16 1.08 ± 0.40 0.26–2.32

2-Oxoglutaric acid 0.12 1.00 0.23 1.00 0.94 ± 0.61 0.31–3.42 1.75 ± 1.00 0.46–5.12

Citric acid 0.82 1.00 1.18 1.00 0.84 ± 0.30 0.33–1.80 1.27 ± 0.68 0.24–4.28

Dehydroascorbic acid 0.76 1.00 0.99 1.00 0.90 ± 0.34 0.32–1.82 1.19 ± 0.60 0.30–3.14

Fumaric acid 0.52 1.00 0.84 1.00 0.68 ± 0.28 0.18–1.63 0.83 ± 0.33 0.22–1.86

Glucuronic acid 0.83 1.00 0.73 1.00 1.17 ± 0.69 0.29–4.47 1.58 ± 0.77 0.57–5.19

Glyceric acid 1.06 1.00 1.13 1.00 0.69 ± 0.23 0.17–1.32 0.71 ± 0.25 0.28–1.13

Malic acid 0.66 1.00 0.85 1.00 1.50 ± 0.63 0.59–3.47 1.11 ± 0.46 0.32–2.42

Phosphoric acid 0.80 1.00 1.26 1.00 0.70 ± 0.12 0.48–1.02 0.76 ± 0.18 0.46–1.24

Pyruvic acid 0.46 1.00 0.47 1.00 0.49 ± 0.21 0.12–1.04 1.13 ± 0.60 0.28–3.15

Quinic acid 0.56 1.00 0.62 1.00 1.23 ± 0.28 0.68–2.58 1.19 ± 0.38 0.61–2.71

Succinic acid 0.18 1.00 0.66 1.00 0.85 ± 0.53 0.10–3.23 1.11 ± 0.85 0.23–6.00

Threonic acid 0.91 1.00 1.05 1.00 1.11 ± 0.17 0.75–1.70 1.30 ± 0.25 0.82–2.25

1-Kestose 0.30 1.00 0.50 1.00 0.82 ± 0.45 0.30–2.76 1.37 ± 0.74 0.24.–3.71

Erythritol 0.95 1.00 1.09 1.00 0.76 ± 0.34 0.27–1.94 0.85 ± 0.48 0.24–2.5

Fructose 1.03 1.00 1.18 1.00 0.82 ± 0.24 0.32–1.65 0.88 ± 0.27 0.25–1.70

Fructose-6-phosphate 0.72 1.00 0.77 1.00 1.29 ± 0.69 0.40–3.85 1.40 ± 0.72 0.45–3.63

Fucose 0.52 1.00 0.54 1.00 0.64 ± 0.36 0.11–1.87 1.06 ± 0.59 0.23–3.17
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the same protocol as previously described42. A total of
50 metabolites were identified, including amino (19) and
organic acids (11), soluble sugars (13), sugar alcohols (3),
phosphorylated intermediates (2), and other compounds
(2) (Supplementary Table 1). The relative content of
these 50 primary metabolites in fruits of the parents,
and the means and ranges in the F1 progeny in the 2 years,
are shown in Table 1. A high level of divergence in terms
of primary metabolism was evident when comparing
metabolite contents between the parental lines. The levels
of five of the measured amino acids (valine, β-alanine,
tyrosine, aspartic acid, and pyroglutamic acid), two tri-
carboxylic acid (TCA) cycle intermediates (succinic acid,
and 2-oxoglutaric acid), six sugars (raffinose, sucrose,
maltose, fucose, rhamnose, 1-kestose), and pyruvic
acid were significantly lower in fruits of ‘232’ than in
‘1392’ in the 2 years. By contrast, only the content of
xylose was significantly higher in fruits of ‘232’ than
in ‘1392’ in both years (Table 1). Interestingly, consider-
able variation in most of the metabolites was found in
the progeny, even for metabolites where no significant
differences were found between the parents (Table 1).
The amino acids glutamic acid, methionine and trypto-
phan are examples of metabolites with similar levels in
the parental lines but a wide range of variation in the
progeny. All identified metabolites displayed continuous

variation in the progeny, supporting the quantitative
nature of these traits, although they were not normally
distributed according to the Shapiro–Wilk test (p ≤ 0.05).
Only pyruvic acid fitted a normal distribution for both
years, while leucine, fucose, and glucose fit a normal
distribution only in 2013, and aspartic and glutamic
acids and myo-inositol only in 2014. In general,
primary metabolite distributions were generally skewed
toward low values although transgressive segregation
was frequently found in both directions (Table 1).
Thus, the observed variation in the metabolite levels
indicated the suitability of the population for the
search of mQTL controlling strawberry fruit composition.
However, in order to achieve normality for statistical
analyses, relative metabolite content was transformed
to logarithm for the majority of them (see statistical
methods).
Hierarchical cluster analysis (HCA) using relative

metabolite content in fruits of parental lines and the F1
progeny, harvested in 2013 and 2014, was used to further
investigate the relationship between compounds and lines
within the population (Fig. 1). The analysis highlighted
that the range in variation found for the majority of
metabolites among the progeny was much larger than that
seen between the two parental lines. Identified metabo-
lites were grouped into three clusters (A–C) of similar size

Table 1 continued

Parental Lines F1 progeny

2013 2014 2013 2014

Metabolite 232 1392 232 1392 Mean ± SD Range Mean ± SD Range

Galactinol 0.62 1.00 1.94 1.00 0.92 ± 1.11 0.00–7.98 1.36 ± 1.14 0.18–5.48

Glucose 1.00 1.00 1.26 1.00 0.66 ± 0.23 0.18–1.66 1.50 ± 0.70 0.46–3.38

Glucose-6-phosphate 0.75 1.00 1.15 1.00 0.75 ± 0.59 0.00–2.66 1.03 ± 0.68 0.00–3.57

Isomaltose 0.74 1.00 0.98 1.00 1.05 ± 0.38 0.42–2.61 1.17 ± 0.50 0.37–3.38

Maltose 0.42 1.00 0.49 1.00 0.46 ± 0.37 0.11–1.79 0.85 ± 0.66 0.00–3.27

Maltotriose 0.54 1.00 1.04 1.00 0.81 ± 0.35 0.29–2.20 1.04 ± 0.35 0.35–1.83

Myo-inositol 0.28 1.00 0.67 1.00 0.68 ± 0.17 0.27–1.30 1.04 ± 0.38 0.51–2.82

Raffinose 0.35 1.00 0.39 1.00 1.18 ± 0.21 0.68–1.82 1.25 ± 0.41 0.57–2.58

Rhamnose 0.79 1.00 0.70 1.00 0.81 ± 0.26 0.36–1.84 0.80 ± 0.32 0.19–2.04

Sucrose 0.54 1.00 0.53 1.00 0.91 ± 0.18 0.51–1.61 1.07 ± 0.26 0.62–2.08

Xylose 1.34 1.00 1.65 1.00 0.92 ± 0.35 0.56–2.46 0.93 ± 0.39 0.42–3.41

α,α-Trehalose 0.26 1.00 0.74 1.00 0.99 ± 0.41 0.41–2.18 0.75 ± 0.25 0.40–1.83

1-O-methyl-α-D-glucopyranoside 0.64 1.00 0.83 1.00 0.93 ± 0.10 0.61–1.13 1.08 ± 0.33 0.47–3.00

Putrescine 1.59 1.00 0.75 1.00 1.90 ± 1.95 0.00–9.67 0.95 ± 0.70 0.19–4.48

Metabolite levels which are significantly different between ‘232’ and ‘1392’ lines are indicated in bold in the ‘232’ columns and metabolites with normal distributions
are labeled in bold in the corresponding F1 columns (P < 0.05; Shapiro–Wilks test)
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(30–34% of metabolites), each of them containing differ-
ent classes of metabolites. Interestingly, cluster A was
enriched in sugar and sugar-derivatives, namely raffinose,
1-kestose, trehalose, fucose, myo-inositol, sucrose, mal-
tose, maltotriose, glucose-6P, and fructose-6P. Cluster B
included mainly amino acids such as aspartate, glutamine,
phenylalanine, threonine, serine, alanine, glycine, glu-
tamic acid, isoleucine, valine, asparagine, and tyrosine.
Cluster C contained more diverse compounds including
those from the sugars, amino acids, and organic acids
categories (Fig. 1).

Metabolite correlation analysis
Next, the coordinated metabolic changes were identified

by performing a pair-wise correlation analysis using

Pearson’s correlation at a permissive stringency threshold
(P < 0.05; values in Supplementary Table 2). This analysis
reflects the degree of coordination of the metabolic
changes in the population and facilitates the detection of
possible co-regulations among different metabolites. In
order to identify strong correlations between the two
seasons, the analysis was performed for years 2013 and
2014 separately. A total of 690 significant correlations
(P < 0.05) were found for the first year (Fig. 2a). Of these,
665 were positive and 50 negative. As expected, the same
analysis performed using data from the 2014 year resulted
in a similar number of significant correlations (Fig. 2b).
Indeed, a total of 705 correlations, of which 697 were
positive and only eight were negative in 2014 (Fig. 2b).
Interestingly, two groups of metabolites displayed strong

Fig. 1 Hierarchical cluster analysis (HCA) and heatmap visualization of averaged metabolite profiles in the ‘232’ × ‘1392’ population over
two successive years (2013–2014). F1 lines with a relative content for a given compound similar, lower, or higher than that of the reference parent
‘1392’ are shown in white, blue, or red, respectively
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Fig. 2 Visualization of metabolite-metabolite correlations. Heat map representation of pair-wise correlations between metabolites identified
in ‘232’ × ‘1392’ for years 2013 (a) and 2014 (b). Each square indicates a given r value resulting from Pearson correlation analysis in a false color scale
(red and blue indicate positive and negative correlations, respectively). The self-comparisons are indicated in white
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correlations in both years. One group (group 1; Fig. 2)
included all metabolites grouped in cluster B from Fig. 1
while the second group (group 2; Fig. 2) included sugars
and sugar-alcohols from cluster A (Fig. 1). Metabolites in
the second group including maltose, sucrose, myo-inosi-
tol, trehalose, kestose, and raffinose displayed correlations
ranging from 0.61 to 0.90 in 2013 and from 0.41 to 0.94 in
2014 (Fig. 2). Fructose and glucose were also included in
this group and were highly correlated in both years (0.88
and 0.86, for 2013 and 2014, respectively). Also, strong
correlations were found both years for glucose- and
fructose-6-phosphate (0.93 and 0.62, respectively), succi-
nic and fumaric acids (0.76 and 0.84, respectively), sucrose
and raffinose (0.75 and 0.54, respectively), as well as for
raffinose and succinic acid (0.576, 0.819, respectively).

Identification of mQTL for primary metabolism in
strawberry fruits
mQTL analyses using the 50 identified primary meta-

bolites were performed using the integrated map pre-
viously generated for the ‘232’ × ‘1392’ population47. This
linkage map comprises 2089 SNP and SSR markers dis-
tributed into 33 linkage groups (LGs) corresponding to
the full complement of 28 chromosomes. The map spans
a total length of 2489 cM and the average distance
between markers is 1.34 cM47. mQTL were analyzed
using average metabolite values, from each year sepa-
rately, for each of the 50 compounds. Other previously
reported characters related to fruit quality, namely SSC,
TA, pH, and L-AA content quantified in 2007, 2008, and
2009 in the same population, were also used for QTL
analysis, since the current linkage map covers the straw-
berry genome with higher density of markers than pre-
vious maps used for these characters26. A total of
155 significant associations for a total of 47 traits were
found between markers and phenotypes using restricted
multiple QTL mapping (rMQM; Supplementary Table 3;
Fig. 3). The majority of marker-trait associations were also
detected by the Kruskal–Wallis test (P < 0.005). If more
than one QTL for a given trait was detected in different
years in approximately the same chromosomal regions,
they were considered to be the same. Thus, the 155 QTL
could be summarized into 133 unique QTL. From these,
113 QTL were detected 1 year and 20 (12.9%) QTL were
stable over the two or three assessed years (Supplemen-
tary Table 3). QTL were identified across the seven
homoeology groups (HGs) of the ‘232’ × ‘1392’ map,
except in the three short LGs (Fig. 3). The number of QTL
detected for each trait ranged from one (i.e., for glucose-
6P, maltose, tyrosine, threonine, leucine, methyl-gluco-
pyranoside, putrescine, pyruvic acid, quinic acid) to seven
(for proline). The phenotypic variation (R2 in %) explained
by each QTL ranged from 9.6% (for qMtr-IV-2 in 2014) to
46.1% (for qImal-IV-4 in 2014). Interestingly, clusters of

QTL were detected in all HGs suggesting linkage or
pleiotropic effects of loci. The largest clusters of QTL
were found in HG V: One cluster on LG V-2 involved
QTL for TA, pH, and citric, succinic, fumaric, glyceric,
and threonic acids, with four of them stable over 2 years.
Another cluster of QTL was detected on LG V-4 and
comprised 10 QTL for three sugars (raffinose, kestose,
and sucrose), two organic acids (succinic and glucuronic
acids), and five amino acids (GABA, alanine, β-alanine,
glutamine, and phenylalanine), with 50% of them being
detected over 2 years. Surprisingly, several clusters of
QTL involved primary metabolites that were significantly
correlated (Supplementary Table 2; Fig. 2), i.e., QTL for
organic acids and sugars in LG V-4 (glucuronic and
succinic acids; raffinose and sucrose). Similarly, QTL
for the coupled amino acids, alanine and glutamine,
methionine and β-alanine, asparagine and glutamic acid,
which were highly correlated (Fig. 2), co-located on LG V-
4, LG VI-1, and LG VII-2, respectively. Other examples of
QTL for correlated metabolites were detected for malic
and glyceric acid in LG II-5, for sugars erythritol and
sucrose on LG II-2, and for fucose and sucrose in LG II-3
(Supplementary Table 3; Fig. 3).
Putative homoeo-QTL, defined as QTL positioned in

overlapping regions of different LGs belonging to the
same HG, were identified for a number of sugars, acids
and amino acids. The putative homoeo-QTL was detected
the same year, such as one for fucose in 2014 on LG II-3
and II-4, or in different years such as for proline on LG
VI-4 and VI-5. The highest number of homoeo-QTLs
were detected in HG IV and V. QTL for isomaltose were
detected in the four LGs of HG IV, with one QTL in 2013
and three in 2014. On HG V, three putative homoeo-QTL
were detected during the first year for succinic acid in LG
V-1, V-2, and V-4.

Association of QTL, mQTL, and genic-markers controlling
the variation in acids and sugars
Reanalysis of data obtained for SSC in 2007, 2008, and

200926 in combination with the primary metabolites,
identified a co-localization of mQTL for fructose and a
QTL for SSC on LG II-1, with homoeo-QTL for related
sugars such as sucrose, erythritol, and fucose on LG II-2,
II-3, and II-4 in different years (Fig. 3). Different homoeo-
QTL were detected for SSC on LG VI-2, VI-4, and VI-7,
while an mQTL was detected in both years for maltotriose
on LG VI-1 and in 2013 for erythritol on VI-3.
A major mQTL for sucrose (qSuc-V-4) and for raffinose

(qRaf-V-4), controlling 22–30% of the variation, was
detected in 2013 and 2014 in approximately the same
position on LG V-4. The 2-LOD confidence interval
for these mQTL expands a region of about 13 cM,
from DArTseq marker 10028585 at position 13 cM to
DArTseq marker 10016831 at 26 cM (Supplementary
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Fig. 3 Positions of mQTL controlling primary metabolites and QTL for SSC, TA, and pH detected in the ‘232’ × ‘1392’ F1 population. 2-LOD
QTL intervals are drawn at the right of each linkage group. Names of mQTL as described in Supplementary Table 3. Stable QTL, detected in different
years, are highlighted with asterisks. Putative homoeo-QTL are joined by discontinued lines
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Table 4a). The orthologous region flanked by these mar-
kers in the F. vesca reference genome spans the interval
1,822,882–7,927,246 bp on chromosome 5 and includes a
total of 1097 genes (Supplementary Table 4b). Among
them, we found twelve candidate genes based on their
annotated function related to sugar biosynthesis, meta-
bolism, or transport (Supplementary Table 5). Seven
of these genes, based on their putative function and
their expression in red fruits (achenes and receptacle) of
F. × ananassa cv. Camarosa48, were selected for qRT-PCR
analysis, and are indicated in bold in Supplementary
Table 5. To propose putative candidate genes in this
region, we focused on those with functions related to
sugar metabolism and showing expression in fruit
according to the data previously published48. This
reduced the gene list to seven genes (FvH4_5g03890,
glucose-6-P 1-epimerase; FvH4_5g04740, UDP-glucose 4-
epimerase; FvH4_5g05100, threhalose-phosphate synthase;
FvH4_5g05430, triose phosphate translocator; FvH4_5g
11560, bidirectional sugar transporter sweet4; FvH4_5g1
1460, probable trehalase; FvH4_5g11560, bidirectional
sugar transporter sweet4). Using quantitative RT-PCR, we
analyzed the basal expression of these candidate genes in
ripe fruits from F1 lines showing contrasting sucrose and
raffinose levels, including the parental lines and ten pro-
geny lines. This analysis showed higher expression (~35%)
of gene FvH4_5g03890, glucose-6-P 1-epimerase in those
lines containing about fourfold lower sucrose and raffi-
nose levels compared to lines with high levels of these
sugars (Fig. 4a). In agreement, the percentage of variation
explained by the QTL for raffinose and sucrose on LG V-4
ranged from 22.3 to 30.7% depending on the year.
Regarding TA, pH and acids, co-locations of QTL for

fruit acidity traits with mQTL for glyceric, succinic,
fumaric, citric, and threonic acids were detected on LG V-
2 (Fig. 3). This result suggests the presence of a common
QTL controlling the accumulation of these different acids
and, as a consequence increasing TA and lowering the pH
of fruits. Variation in these traits is provided by the male
parent, with one allele increasing fruit acidity and the
other reducing it (Supplementary Table 3). A homoeo-
QTL for succinic acid was detected in 2013 and 2014 on
LG V-4, but in this case the alleles affecting the variation
in succinic acid are derived from the female parent ‘232’
(Supplementary Table 3). This stable mQTL, qSa-V-4,
controls 19–28% of the phenotypic variation in succinic
acid content depending of the year, and the 2-LOD con-
fidence interval (18.18–25.6 cM) overlapped with that of
qSuc-V-4 and qRaf-V-4 for sucrose and raffinose content
(Fig. 3). Furthermore, the allelic effects increasing and
decreasing the content of the three metabolites are
inherited from the ‘232’ line, and in the same phase (i.e.,
QTL alleles modify all three metabolites in the same

direction; Supplementary Table 4). This opens the pos-
sibility that a common gene with pleiotropic effects on
sucrose, raffinose and succinic acid could be responsible
for these changes. Alternatively, another gene related to
succinic acid metabolism, FvH4_5g09730, a mitochondrial
succinate dehydrogenase assembly factor, was found
within the confidence interval of the QTL qSa-V-4.
However, no significant differences in the expression of
this candidate gene, encoding an enzyme catalyzing a
TCA intermediate, was observed between lines with low
and high content of succinic acid (Fig. 4b). Similar to the
other candidate genes for sugars that were not differen-
tially expressed, this result highlight the limitation asso-
ciated with the fact that expression differences are not the
only impactful genetic variation. Also, amino acid changes
affecting enzymatic activity can contribute to the observed
variation in metabolites.

Mannose-6-P-isomerase is a candidate gene for variation in
L-AA content
Ripe fruit of ‘232’ and ‘1392’ lines contain an average of

37.1 and 48.1 mg/100 g FW, respectively26. Using natural
variation in L-AA content in the derived F1 progeny, three
QTL explaining a total of 45% variation were previously
identified26. Here, re-analysis of these stored data using
the high density integrated map resulted in similar results
(Fig. 3; Supplementary Table 3). The most important QTL
for L-AA, qLAA-V-1, was detected in a narrower chro-
mosomal interval than when using the previous maps and
co-located with an mQTL for dehydroascorbic acid,
qDHA-V-1, detected 1 year just below the threshold. The
QTL qLAA-IV-2, previously detected in 2 years was now
detected just 1 year and the third QTL, qLAA-VII-4, was
detected the same year at the same position (although
previously the LG was only 11.1 cM and was named LG
VII-M126). Candidate genes for the three QTL were
previously identified based on orthologous positions in
the F. vesca reference genome26. However, the confidence
interval for the major QTL qLAA-V-1 spanned a larger
chromosomal region and varied among the three assessed
years in the previous map. In this study, the phenotypic
variation explained by qLAA-V-1 varied from 27.7 to
35.5% depending on the year and the overlapping 2-LOD
confidence interval was reduced to a region of 10 cM from
DArTseq marker 10010698 at 38.6 cM to marker
10002629 at 48.8 cM (Supplementary Table 4a). The
region flanked by these two markers in the F. vesca
reference genome spans an interval of chromosome 5
from 8,160,286 to 13,129,181 bp and includes a total of
732 genes (Supplementary Table 4b). A search for genes
involved in L-AA biosynthesis and recycling identified
two candidate genes in the interval: (1) gene
FvH4_5g20650 with similarity to the myo-inositol
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Fig. 4 (See legend on next page.)
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oxygenase (FaMIOX) gene previously described28 and (2)
gene FvH4_5g21090 with similarity to a mannose-6-
phosphate isomerase (M6PI) from Arabidopsis49.
To validate these genes and/or identify additional can-

didate genes underlying the three mQTL affecting L-AA
content in strawberry, we identified differentially expres-
sed genes (DEG) between two bulked RNA samples from
F1 lines contrasting in L-AA content (Supplementary
Figure 1). First, transcriptomes were obtained by Illumina
sequencing using three biological replicates of each pool.
An average of 33.97 million reads was generated for each
sample, ranging from 30.83 to 36.75M. An average of
32.79M read-pairs passed the filter cutoff and 79.49%
were mapped to the reference F. vesca v4.0.a1 genome
assembly and annotation43. Analysis of differential
expression detected 826 DEGs between contrasting
lines, with 244 and 582 transcripts upregulated and
downregulated in the high L-AA pool, respectively (DEG
significance threshold fixed at q-value= 0.005; Supple-
mentary Table 6). Eight and seven transcripts were not
expressed in the low and high L-AA pool, respectively.
The majority of these transcripts were shorter than 500 bp
and with unknown function. For the rest of the DEGs, the
ratios (log2 fold change) of differential expression ranged
from −3.45 to 2.76, with negative and positive values
indicating upregulation and downregulation in the high
L-AA pool, respectively. The transcript with the highest
difference in expression between the pools corresponds
to the F. vesca gene FvH4_5g21090, with homology to
the M6PI49. This locus lies within the confidence interval
of qLAA-V-1 and was therefore identified above as a
candidate gene (FaM6PI1 from now on). The expression
of FaM6PI1 in the high L-AA pool was 2.89 FPKM
and ~11-fold higher (3.45 log2-fold change) than in
the pool of fruits with low L-AA content (0.26 FPKM;
Supplementary Table 6). The other candidate gene pre-
viously identified in the chromosomal interval, gene
FvH4_5g20650 with similarity to the myo-inositol oxyge-
nase (FaMIOX), was not differentially expressed between
the pools. Among the 582 transcripts with lower expres-
sion in the high L-AA pool, three strawberry transcripts
with homology to ascorbate oxidase (AO) were identified,

although none of them were within the confidence
interval of any of the mQTL for L-AA. An increase in L-
AA content has been reported in tomato after reducing
AO expression using RNAi50. In addition, the expression
of two transcripts with high similarity to Arabidopsis
genes encoding enzymes catalyzing two consecutive
reactions in the L-AA biosynthetic pathway in animals
was lower in the high L-AA pool. These genes correspond
to FvH4_5g14230, with high homology to the UDP-
glucose-dehydrogenase AT5G15490 and FvH4_2g28000,
with the highest similarity to the UDP-sugar pyropho-
sphorylase (AT5G52560). Both enzymes belong to the
KEGG ascorbic acid and aldarate metabolism pathway in
Arabidopsis.
There are two M6PI genes in Arabidopsis, phospho-

mannose isomerase 1 and 2 (AtPMI1 and AtPMI2) and the
deduced proteins contained 432 and 441 amino acids,
respectively, and showed 64% identity49. Similarly, a
BLAST search in the F. vesca reference genome identified
two genes with similarity to Arabidopsis AtPMI genes,
the previously identified FvM6PI1 (FvH4_5g21090) and
FvM6PI2 (FvH4_4g27070). A phylogenetic analysis of
Arabidopsis proteins and FvM6PI1 and FvM6PI2,
which contained 434 and 437 amino acid residues,
respectively, is shown in Fig. 5a. The similarity of the
deduced protein encoded by the locus identified in the
confidence interval of QTL qLAA-V-I (FvH4_5g21090;
FvM6PI1) was higher than that of FvM6PI2 to both PMI1
and PMI2. Furthermore, the consensus sequence
YXDXNHKPE, typical of eukaryotic type I M6PI was
present in both F. vesca protein sequences, and it was
identical in PMI1 and FvM6PI1 (YKDDNHKPE), while
PMI2 and FvM6PI2 possessed the consensus sequence
YRDNNHKPE.
We next validated the differential expression of

FaM6PI1 observed by RNA-seq using qRT-PCR which
resulted in the same ~11-fold higher expression in F1
lines with high L-AA (Fig. 5b). Quantitative RT-PCR
also validated the RNA-seq data for five other genes (data
not shown) resulting in a high correlation between RNA-
seq and qPCR results (R2= 0.928). Analysis of the
expression of FaM6PI genes in the available

(see figure on previous page)
Fig. 4 Expression analysis of candidate genes for sucrose, raffinose, and succinic acid content. Expression by quantitative real-time PCR (qRT-
PCR) of candidate genes for the major mQTL detected in LG V-4 for sucrose and raffinose (a), and succinic acid (b). a The first graph depicts average
metabolite content in two pools of selected F1 lines contrasting in raffinose and sucrose content in the 2 years. Subsequent graphs show expression
levels by qRT-PCR in selected pools for FvH4_5g03890: glucose-6-P 1-epimerase, FvH4_5g04740: UDP-glucose 4-epimerase, FvH4_5g05100: probable
threhalose-phosphate synthase, FvH4_5g05430: triose phosphate translocator, FvH4_5g05860: galactinol-sucrose galactosyl-transferase-like, FvH4_5g11460:
probable trehalase, FvH4_5g11560: bidirectional sugar transporter sweet4. b Average content of succinic acid in two pools of selected F1 lines
contrasting in this metabolite in the 2 years and expression level of candidate gene FvH4_5g09730, succinate dehydrogenase assembly factor in
selected pools. The bars represent the mean expression value of five lines with low (L-Suc/Raffinose; L-succinic acid) and five lines with high (H-Suc/
Raffinose; H-succinic acid) content of sucrose/raffinose and succinic acid, respectively. Error bars indicate ± SE. Different letters indicate significant
differences between pool of lines using t-Student significant difference test adjusted to 95% significance
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transcriptome of the cultivar Camarosa48 indicated that
both genes are expressed in all studied tissues (achenes
and receptacle during ripening, leaves, and roots) with
higher expression in green tissues. The expression of both

genes was downregulated during ripening of achenes and
receptacle and the expression of FaM6PI1 was 10-fold
lower than that of FaM6PI2 in the majority of studied
tissues (Supplementary Table 7). The expression profile of
FaM6PI1 in leaf, root, and during fruit ripening was very
similar to the RNA-seq data when analyzed by qRT-PCR
(Fig. 5c). Thus, expression of FaM6PI1 was higher in
green tissues.

Discussion
In recent years, there is increasing interest in breeding

better tasting strawberries while maintaining current
yields. Key traits for improvement are sugar content and
fruit acidity, which are measured by breeding programs as
the aggregate parameters SSC and TA. These traits have
variable heritability, environmental effects and GxE
interactions in different fruit crops25,51,52, which compli-
cates breeding initiatives to improve taste. A better
understanding of the genetic control of individual meta-
bolites will provide knowledge of which particular meta-
bolite affect these traits, and what would be of help for the
selection of markers for breeding new high quality
strawberry cultivars. This study identified numerous
mQTL for primary metabolites accumulating in ripe
strawberry fruit. While several studies have used broad
genetic crosses to identify mQTL of primary metabolites
in other species such as tomato12,53–56, in strawberry
significant research has been focused on defining QTL
and genes controlling volatile organic compounds27,36–38.
In contrast, the levels of a reduced number of primary
metabolites were evaluated in different strawberry
breeding populations25,26,57,58. Here, we have quantified
the relative levels of 50 primary metabolites in a well
characterized F1 population, providing the first insights
into the genetic control of individual sugars, organic and
amino acid content in strawberry fruits. The majority of

Fig. 5 Molecular characterization of FaM6PI1, a candidate gene
for qLAA-V-1. a Unrooted neighbor-joining phylogenetic tree of
Arabidopsis AtPMI1 and AtPMI2 and F. vesca FvM6PI1 and 2 deduced
proteins. The tree is drawn to scale, with branch lengths in the same
units as those of the evolutionary distances used to infer the
phylogenetic tree. The evolutionary distances were computed using
the Poisson correction method in MEGA7 and are in the units of the
number of amino acid substitutions per site. b Expression of FaM6PI in
the high and low L-AA pools by qRT-PCR. Error bars indicate+ SD.
Different letters indicate significant differences between pool of lines
using t-Student significant difference test adjusted to 99.9%
significance level. c Expression level of FaM6PI in different tissues and
during fruit ripening by qRT-PCR. Error bars indicate standard
deviations from three biological replicates. Expression levels are
expressed as a ratio relative to one of the samples. Different letters
indicate significant differences between tissues using t-Student
significant difference test adjusted to 95% significance level
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mQTL for primary metabolites were detected in only one
of the assessed years, indicating that primary metabolite
content is affected to a large extent by the environment.
This result contrasts with that observed in the same
population and similar growing conditions, for volatile
compounds, where about 50% of the mQTL were detected
in at least two of three assessed years27. Other QTL stu-
dies for fruit quality traits in strawberry reported stability
across different years of 27 and 36.4%25,26. However,
previous studies considered a QTL stable when detected
in at least 2 of 3 years, in contrast to the present study in
which the majority of metabolites were only evaluated
during 2 years.
Analysis of mQTL for primary metabolites from the

perspective of their genomic location revealed that
they were spread across the genome. However, there
were a few hot spots for mQTL, particularly notable
loci include those on LG IV-2, V-2, and V-4. Clustering
of QTL have been often reported in several plant
species, including strawberry, where loci controlling
sugars and acids co-located on LGs belonging to HG
VI25,58. In our study, a QTL for SSC and one for threonic
acid co-located on LG VI-4. In addition, QTL for different
sugars and acids co-located in LG V-4 in this work.
In other studies, QTL for sugars and acids were also
identified at approximately the same chromosomal
interval on the same HG V, indicating that common loci
may be controlling the variation in multiple genetic
backgrounds25,57,58. In our study, QTL for sugar traits
were detected in the middle of LGs belonging to HG V as
previously described25,58. Similarly, other QTL for sugars
were detected in the upper half of LGs of HG VI in our
study and also in three other reports25,57,58. For acidity,
putative common QTL across the four studies were
detected on the lower part of LGs belonging to the HG IV.
Homoeo-QTL for acidity traits detected in our study
in three LGs of HG V could be common with QTL
detected in other studies for TA57 and TA, pH, citric acid,
and malic acid25. A major QTL for glyceric and malic
acids detected on the upper half of LG II-5 could overlap
with regions where QTL for TA and citric acid were
mapped in other studies25,57. These QTL common to
different backgrounds provide a higher chance of identi-
fying reliable markers for marker-assisted breeding in
key traits for fruit quality.
Sucrose levels increase dramatically during strawberry

fruit ripening1. This rise may be due to photosynthate
translocation from the leaf, where it is loaded into the
phloem in either an apoplastic or a symplastic man-
ner59,60. Here, mQTL for the sugars sucrose and raffinose
and for succinic acid co-located at the same chromosomal
region on LG V-4. We have to consider the possibility that
raffinose is one of the main oligosaccharides constituting
a significant component of phloem-transported sugars, as

reported in certain species such as cucurbit plants61. In
the fruit flesh of watermelon, raffinose levels are negli-
gible, due to its hydrolysis while being unloaded61. This
could be also the case in strawberry fruit. In other reports,
the accumulation of raffinose has been associated with
stressful environmental conditions62,63. In our study, the
three metabolites, sucrose, raffinose, and succinic acid,
were correlated in both years and the variation for them
was associated with positive and negative alleles provided
by the ‘232’ line, which presented lower amount of these
metabolites in fruits (Table 1) and also lower values of
total sugars (estimated as SSC) and TA26. However,
whether the variation of these metabolites is controlled by
a gene with pleiotropic effects, or two linked genes, will
need further investigations.
Two QTL on LG V-4, controlling sucrose and raffinose

content, shared a common interval that contained a gene
encoding glucose 6-P 1 epimerase (ortholog of
Solyc01g095470 in tomato). As aldose 1-epimerase is
catalyzing the interconversion of alpha-anomers and beta-
anomers of sugars such as glucose and galactose64, this
gene appears to be a strong candidate gene for this QTL
based in position and differential expression in contrast-
ing lines. However, it remains to be functionally validated.
Interestingly, in addition to the enzymatic activity, this
protein has been suggested to participate in stress signal
regulation by playing an important role in the early
development of tolerance under stressful conditions65. As
exciting as these results might seem, limitations in the
selection of candidates include (i) the assumption that the
causal mutation must affect transcript expression in a
gene already annotated for sugar metabolism, (ii) the
relatively small sample size for analysis of differential
expression and (iii) the moderate contribution of this
QTL to the total variance of the trait in selected con-
trasting lines with extreme phenotypes, which most
probably gather positive and negative alleles for different
QTL contributing to the variation in sucrose and
raffinose.
Succinate dehydrogenase (gene FvH4_5g09730) is a key

protein in the TCA cycle, and catalyzes the oxidation of
succinic acid to fumaric acid9,66. This gene, localized in
the confidence interval of mQTL qSa-V-4, appear to be a
strong candidate for the QTL controlling succinic acid
content. This must prompt future studies to determine
whether FvH4_5g09730 is the gene underlying this QTL.
In this study, the majority of sugars were positively

correlated with the majority of acids, and thus fruits with
higher content of acids also had higher content of sugars.
However, two previous studies26,67 reported no correla-
tion between SSC and TA and one of these studies found
a low but significant correlation between pH and SSC26.
According to Lerceteau-Köhler et al.25, positive and
negative correlations were observed between pH and SSC,

Vallarino et al. Horticulture Research             (2019) 6:4 Page 13 of 17



and between TA and SSC, respectively. Taken together,
these results suggest that higher sugar content could be
improved in parallel with fruit acidity for loci in the same
chromosomal regions when positive alleles are in coupling
phase or independently when in different chromosomal
regions, particularly by targeting different sugar and acid
metabolites.
A total of four well characterized and proposed

alternative pathways for L-AA biosynthesis have been
described in plants: D-mannose/L-galactose, galactur-
onate, myo-inositol, and l-gulose pathways68,69 The pre-
valent pathway in plants uses D-glucose-6-P as the initial
precursor and GDP-D-mannose and GDP-L-galactose as
intermediates (mannose/galactose pathway)70. In Arabi-
dopsis, two M6PI isoenzymes, AtPMI1 and AtPMI2 have
been described, which catalyze the reversible isomeriza-
tion between D-fructose-6-P and D-mannose-6-P49.This
enzymatic step precedes the synthesis of the intermediate
GDP-D-mannose, thus connecting D-fructose-6-P to L-
AA biosynthesis. Both genes are constitutively expressed,
however PMI2 is expressed at a lower level, and RNAi and
analysis of mutant lines indicated that PMI1, but not
PMI2, is involved in L-AA biosynthesis in Arabidopsis49.
In this study, we have identified FaM6PI1 from strawberry
as the most similar gene to the Arabidopsis AtPMI1 and
as a candidate gene for the locus controlling L-AA con-
tent on LG V-1. The expression of the gene was about 11-
fold higher in ripe fruits of lines with higher L-AA con-
tent. L-AA content in strawberry fruits increases during
development and ripening, from <20mg/100 g FW to
reaching an average concentration of about 50mg/100 g
FW in ripe fruit28. Analysis of FaM6PI1 expression during
ripening has shown that the gene is predominantly
expressed in leaves, at a lower level in green fruits, and it
is downregulated during fruit ripening. Other genes
encoding enzymes of the mannose/galactose pathway are
also downregulated as the fruit ripens28. These expression
results support this pathway as responsible for L-AA
biosynthesis in green fruits. If FaM6PI1 is the underlying
gene for qLAA-V-I, our data indicate that biosynthesis
of L-AA, from D-fructose-6-P, at early stages of ripening
is also important for the final L-AA concentration at
the ripe stage.
In parallel, lines with higher L-AA content were char-

acterized by reduced expression of enzymes transforming
D-glucose-1-P to UDP-D-glucose and to UDP-D-glucur-
onate, enzymatic steps common to the animal L-AA
pathway68 and that drive D-glucose-6-P away from the
mannose/galactose biosynthetic pathway. Therefore, a
reduced expression of these enzymes may increase the
pool of D-glucose-6-P available for biosynthesis of L-AA
through the prevalent pathway in plants. In addition, the
expression of three genes with homology to AOs was
significantly lower in F1 lines with higher L-AA content,

contributing to maintaining the L-AA pool in a reduced
state (Supplementary Table 6).
In conclusion, the data presented here complement and

extend that previously documented for fruit quality and
volatile traits26,27. Our data highlighted metabolic net-
works of primary metabolites in strawberry fruits, sug-
gesting related biological pathways. In general, correlated
metabolites were controlled by mQTL in overlapping
chromosomal intervals. Furthermore, comparison to
other studies identified common genomic regions and,
presumably, common genes in different populations,
which may control the variation of these traits. In term of
directed metabolic engineering strategies, several major
mQTL were identified that could be used for designing
breeding strategies to improve the nutritional quality of
strawberry. In particular, we focused on QTL for raffi-
nose, sucrose, succinic, and ascorbic acids that explained a
large proportion of the phenotypic variation and were also
stable in all assessed years, being potential candidates for
future marker-assisted selection. In this regard, a number
of candidate genes have been identified and their
expression characterized; however, future functional stu-
dies using transgenic approaches will validate the invol-
vement of these candidate genes and help in enhancing
fruit metabolite content. Evaluation of global gene
expression levels on these F1 lines would likely both
deepen our understanding of the molecular basis of the
QTL described in this study, as well as would hasten the
improvement of fruit nutritional quality in strawberry.

Materials and methods
Plant material
The octoploid strawberry mapping population used in

this study consists of a full-sib family of 95 F1 individuals
derived from an intraspecific cross between the breeding
lines ‘232’ and ‘1392’26. The two parental lines were
chosen among the breeding lines from Instituto Andaluz
de Investigación y Formación Agraria y Pesquera (IFAPA)
because they differed in important agronomical and fruit
quality traits; ‘232’ is a very productive strawberry (Fra-
garia × ananassa) line, whereas ‘1392’ has firmer and
tastier fruits. Six plants of each F1 and parental lines were
vegetatively propagated and grown under commercial
conditions in Huelva (Spain) during two consecutive years
(2013–2014). For ascorbic acid (L-AA), SSC, TA, and pH
analysis, the data were obtained from years 2007, 2008,
and 200926. The mapping population was grown under
macro tunnels of polyethylene following conventional
practices with an inter-row distance of 30 cm and a dis-
tance between plants of 25 cm.

Metabolite profile analysis
Metabolite profiles were obtained by GC-time of flight-

(TOF)-MS (as described below) from fruits harvested the
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same day in the middle of the spring/winter season in the
consecutive years 2013 and 2014. For each line, 20–25
fully ripe fruits were harvested, pooled into three biolo-
gical replicates immediately frozen in liquid nitrogen, and
stored at −80 °C until analysis. After grinding fruit sam-
ples in liquid nitrogen, the relative levels of metabolites
were determined from frozen samples following the pro-
tocol previously established42.

Statistical analysis
Normality of trait distributions was evaluated by the

Shapiro–Wilk test. For most metabolites deviating
from normality (P < 0.05), a number of transformations
(Ln, square root, inverse of square root, square, cube,
reciprocal, and arcsine) were tested and the transforma-
tion that gave the least-skewed result was used to perform
QTL analysis. Correlation analysis based on Pearson
correlation was performed using R software.

Linkage mapping and QTL analysis
For mQTL detection we used the integrated map pre-

viously developed for the ‘232’ × ‘1392’ mapping popula-
tion47. The ‘232’ × ‘1392’map contains a total of 2089 SNP
and SSR markers spanning a total length of 2489 cM. QTL
analyses were performed using MapQTL 571. The popu-
lation was derived from two heterozygous parents with
linkage phases originally unknown and was coded under
the population type ‘cross pollinated’ (CP), thus four
genotypic classes were modeled (ac, ad, bc, and bd). The
raw relative data were analyzed first by the nonparametric
Kruskal–Wallis rank-sum test. A stringent significance
level of P ≤ 0.005 was used as a threshold to identify
markers linked to QTL. Second, the integrated genetic
linkage map and transformed data sets for non-normally
distributed traits were used to identify and locate mQTL
using interval mapping (IM) with a step size of 1 cM and a
maximum of five neighboring markers. Significance LOD
thresholds were estimated with a 1000-permutation test
for each trait. The most significant markers were then
used as co-factors for restricted multiple QTL mapping
(rMQM) analysis. mQTL with LOD scores greater than
the genome-wide threshold at P ≤ 0.05 were declared
significant. Significant mQTL location and 2-LOD con-
fidence intervals were drawn using MapChart 2.2.

In silico candidate gene search
Physical map positions of DArT-derived SNPs and

microsatellites used in this study were obtained by
aligning the DArT sequences (Supplementary Table 4)
and SSR primer sequences in the ‘232’ × ‘1392’ map47 to
the most updated F. vesca v4.0.a1 genome assembly43

using Bowtie 2.1.0 as previously reported47. Chromosomal
regions spanning the orthologous positions of markers
in the 2-LOD confidence interval were investigated

for candidate genes based on annotated biochemical
functions.

RNA extraction and qRT-PCR
Total RNA was extracted from strawberry fruits by

differential precipitation with 2-butoxyethanol, as pre-
viously reported72. Before reverse transcription, RNA was
treated with DNase I (Fermentas) to eliminate con-
taminating genomic DNA. First-strand cDNA synthesis
was performed using 750 ng of RNA in a final volume of
20 μL using the iScript cDNA synthesis kit (Bio-Rad),
according to the supplier’s protocol. Relative quantifica-
tion of transcripts was analyzed by qRT-PCR using the
SsoAdvance Universal SYBR Green Supermix (Bio-Rad).
Relative quantification of the target expression level was
performed using the comparative cycle threshold method.
Expression data were normalized to the reference gene
FaGAPDH273 and FaCHP174. Primers used are shown in
Supplementary Table 8.

RNA-seq from pooled samples and analysis of differential
expression
For identification of genes differentially expressed

between F1 lines contrasting in L-AA content, RNA was
extracted as described above from two pools of ripe fruit
from contrasting F1 lines. The high L-AA and low L-AA
bulked pools consisted of an equivalent amount of fruit
sample from 8 F1 lines each with high and low L-AA
content, respectively. Ripe fruit were harvested and divi-
ded into three biological replicates, ground using liquid
nitrogen, and stored at −80 °C until further analysis. RNA
quantity and quality were determined based on absor-
bance ratios at 260 nm/280 and 260 nm/230 nm using a
NanoDrop spectrophotometer (ND-1000 V3.5, Nano-
Drop Technologies, Inc.). The integrity of the RNA
samples was assessed by agarose gel electrophoresis and
further verified using a 2100 Bioanalyzer (Agilent, Folsom,
CA), and RIN values ranged between 7.3 and 8.1 for the
six samples.
Paired-end libraries with ~300 bp insert size were pre-

pared for each sample and sequenced in a HiSeq2000
lanes using 2 × 100 bp reads. An average of 33.97 million
reads was generated for each sample, ranging from 30.83
to 36.75M. Raw RNA-seq reads were processed to
remove low-quality nucleotides and aligned to the latest
Fragaria vesca v4.0.a1 genome assembly43 using the
program HISAT2 2.1.075. Default parameters of HISAT2
were used, allowing 40 multiple alignments per read and a
maximum of two mismatches when mapping reads to the
reference.
The aligned read files were processed by Cufflinks v2.2

essentially as previously described38. Reads were assem-
bled into transcripts, which were classified as known,
corresponding to annotated genes (Fragaria vesca v4.0.a1
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genome annotation43), or novel, their abundance was
estimated, and tests for differential expression between
the samples were performed. Normalized RNA-seq frag-
ment counts were used to measure the relative abun-
dances of transcripts measured as fragments per kilobase
of exon per million fragments mapped (FPKM). Bioin-
formatics processes were developed at Supercomputing
and Bioinnovation Center (SCBI) at Málaga (Spain).

Data availability
Illumina RNA-seq reads from high and low L-AA pools have been deposited at
the European Nucleotide Archive (https://www.ebi.ac.uk/ena) under the study
reference PRJEB25718.

Acknowledgements
This work was supported by grants AGL2012–40066-C02-01 and -02 (MINECO
and FEDER), project EI.AVA.AVA201601.10 (IFAPA, FEDER funds), and the
European Union’s Horizon 2020 research and innovation programme
(GoodBerry; grant agreement number 679303). D.P. has received a predoctoral
grant from MINECO (grant BES-2013–062856). S.O. acknowledges the support
by Spanish Ministry of Science and Innovation (Ramón and Cajal contract,
RYC2011–09170) and Plan Propio from University of Malaga. I.A. acknowledge
funding by a Marie Curie International Outgoing Fellowship within the 7th
European Community Framework Programme (IOF Flavor 328052).

Author details
1Department of Molecular Biology and Biochemistry, Instituto de
Hortofruticultura Subtropical y Mediterránea “La Mayora”, University of Málaga
– Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus
de Teatinos, 29071 Málaga, Spain. 2Max-Planck-Institut für Molekulare
Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
3Genómica y Biotecnología, Centro de Málaga, Instituto Andaluz de
Investigación y Formación Agraria y Pesquera (IFAPA), 29140 Málaga, Spain.
4Ingeniería y Tecnología Agroalimentaria, Centro Las Torres-Tomejil, Instituto
Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA) Alcalá del
Río, Sevilla, Spain. 5Ingeniería y Tecnología Agroalimentaria, Centro de Huelva,
Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA),
Huelva, Spain

Authors’ contributions
S.O. and I.A. conceived the project. J.V., A.R.F, V.V, S.O. and I.A. planned,
designed, and supervised the research. J.G.V. and D.P. performed most of the
research and data analysis. E.C.-R., L.M., J.J.M.-M. and J.F.S.-S. cultivated the
mapping population, performed some experiments, and contributed in data
analysis. J.G.V., S.O. and I.A. wrote the article. All authors contributed to data
analysis and helped in editing the MS.

Conflict of interests
The authors declare that they have no conflict of interest.

Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Supplementary Information accompanies this paper at (https://doi.org/
10.1038/s41438-018-0077-3).

Received: 10 April 2018 Revised: 23 July 2018 Accepted: 31 July 2018

References
1. Fait, A. et al. Reconfiguration of the achene and receptacle metabolic

networks during strawberry fruit development. Plant Physiol. 148, 730–750
(2008).

2. Folta, K. M. & Klee, H. J. Sensory sacrifices when we mass-produce mass
produce. Hortic. Res. 3, 16032 (2016).

3. Jouquand, C., Chandler, C., Plotto, A., Goodner, K. & Goodner, K. A sensory and
chemical analysis of fresh strawberries over harvest dates and seasons reveals
factors that affect eating quality. Agriculture 133, 859–867 (2008).

4. Mezzetti, B. et al. Breeding strawberry for higher phytochemicals content and
claim it: is it possible? Int. J. Fruit Sci. 16, 194–206 (2016).

5. Proteggente, A. R. et al. The antioxidant activity of regularly consumed fruit
and vegetables reflects their phenolic and vitamin C composition. Free Radic.
Res. 36, 217–233 (2002).

6. Tulipani, S., Mezzetti, B. & Battino, M. Impact of strawberries on human health:
Insight into marginally discussed bioactive compounds for the Mediterranean
diet. Public Health Nutr. 12, 1656–1662 (2009).

7. Wen, W., Brotman, Y., Willmitzer, L., Yan, J. & Fernie, A. R. Broadening our
portfolio in the genetic improvement of maize chemical composition.
Trends Genet. 32, 459–469 (2016).

8. Fernie, A. R. & Tohge, T. The genetics of plant metabolism. Annu. Rev. Genet.
51, 287–310 (2017).

9. Araújo, W. L., Nunes-Nesi, A., Nikoloski, Z., Sweetlove, L. J. & Fernie, A. R.
Metabolic control and regulation of the tricarboxylic acid cycle in
photosynthetic and heterotrophic plant tissues. Plant Cell Environ. 35, 1–21
(2012).

10. Bermúdez, L. et al. Silencing of the tomato sugar partitioning affecting
protein (SPA) modifies sink strength through a shift in leaf sugar metabolism.
Plant J. 77, 676–687 (2014).

11. Schauer, N., Zamir, D. & Fernie, A. R. Metabolic profiling of leaves and fruit of
wild species tomato: a survey of the Solanum lycopersicum complex. J. Exp. Bot.
56, 297–307 (2005).

12. Schauer, N. et al. Mode of inheritance of primary metabolic traits in tomato.
Plant Cell 20, 509–523 (2008).

13. Rambla, J. L., Tikunov, Y. M., Monforte, A. J., Bovy, A. G. & Granell, A. The
expanded tomato fruit volatile landscape. J. Exp. Bot. 65, 4613–4623 (2014).

14. Harjes, C. E. et al. Natural genetic variation in lycopene epsilon cyclase tapped
for maize biofortification. Science 319, 330–333 (2010).

15. Riedelsheimer, C. et al. Genome-wide association mapping of leaf metabolic
pro fi les for dissecting complex traits in maize. Proc. Natl Acad. Sci. USA 109,
8872–8877 (2012).

16. Chen, W. et al. Genome-wide association analyses provide genetic and bio-
chemical insights into natural variation in rice metabolism. Nat. Genet. 46,
714–721 (2014).

17. Sauvage, C. et al. Genome-wide association in tomato reveals 44 candidate
loci for fruit metabolic traits. Plant Physiol. 165, 1120–1132 (2014).

18. Wen, W. et al. Metabolome-based genome-wide association study of
maize kernel leads to novel biochemical insights. Nat. Commun. 5, 1–10
(2014).

19. Matsuda, F. et al. Metabolome-genome-wide association study dissects
genetic architecture for generating natural variation in rice secondary meta-
bolism. Plant J. 81, 13–23 (2015).

20. Tieman, D. et al. A chemical genetic roadmap to improved tomato flavor.
Science 355, 391–394 (2017).

21. Carreno-Quintero, N., Bouwmeester, H. J. & Keurentjes, J. J. B. Genetic analysis
of metabolome-phenotype interactions: from model to crop species. Trends
Genet. 29, 41–50 (2013).

22. Hermann, A. & Schauer, N. (eds) The Handbook of Plant Metabolomics 245–254
(Wiley, New York, 2013).

23. Fernie, A. R. & Schauer, N. Metabolomics-assisted breeding: a viable option for
crop improvement? Trends Genet. 25, 39–48 (2009).

24. Rao, J. et al. Metabolic map of mature maize kernels. Metabolomics 10,
775–787 (2014).

25. Lerceteau-Köhler, E. et al. Genetic dissection of fruit quality traits in the
octoploid cultivated strawberry highlights the role of homoeo-QTL in their
control. Theor. Appl. Genet. 124, 1059–1077 (2012).

26. Zorrilla-Fontanesi, Y. et al. Quantitative trait loci and underlying candidate
genes controlling agronomical and fruit quality traits in octoploid strawberry
(Fragaria×ananassa). Theor. Appl. Genet. 123, 755–778 (2011).

27. Zorrilla-Fontanesi, Y. et al. Genetic analysis of strawberry fruit aroma and
identification of O-methyltransferase FaOMT as the locus controlling natural
variation in mesifurane content. Plant Physiol. 159, 851–870 (2012).

28. Cruz-Rus, E., Amaya, I., Sánchez-Sevilla, J. F., Botella, Ma & Valpuesta, V.
Regulation of L-ascorbic acid content in strawberry fruits. J. Exp. Bot. 62,
4191–4201 (2011).

Vallarino et al. Horticulture Research             (2019) 6:4 Page 16 of 17

https://www.ebi.ac.uk/ena
https://doi.org/10.1038/s41438-018-0077-3
https://doi.org/10.1038/s41438-018-0077-3


29. Tulipani, S. et al. Antioxidants, phenolic compounds, and nutritional quality of
different strawberry genotypes quality of different strawberry genotypes.
J. Agric. Food Chem. 56, 696–704 (2008).

30. Ariza, M. T. et al. Effects of harvest time on functional compounds and fruit
antioxidant capacity in ten strawberry cultivars. J. Berry Res. 5, 71–80 (2015).

31. Liu, Y.-S. et al. There is more to tomato fruit colour than candidate carotenoid
genes. Plant Biotechnol. J. 1, 195–207 (2003).

32. Tieman, D. M. et al. Identification of loci affecting flavour volatile emissions in
tomato fruits. J. Exp. Bot. 57, 887–896 (2006).

33. Schilmiller, A. L. et al. Studies of a biochemical factory: tomato trichome deep
expressed sequence tag sequencing and proteomics. Plant Physiol. 153,
1212–1223 (2010).

34. Yeats, T. H. et al. Evolution of cuticle function. Plant J. 69, 655–666 (2013).
35. De Godoy, F. et al. Galacturonosyltransferase 4 silencing alters pectin com-

position and carbon partitioning in tomato. J. Exp. Bot. 64, 2449–2466 (2013).
36. Chambers, A. H. et al. Identification of a strawberry flavor gene candidate

using an integrated genetic-genomic-analytical chemistry approach. BMC
Genom. 15, 217 (2014).

37. Pillet, J. et al. Identification of a methyltransferase catalyzing the final step of
methyl anthranilate synthesis in cultivated strawberry. BMC Plant Biol. 17, 1–12
(2017).

38. Sánchez-Sevilla, J. F., Cruz-Rus, E., Valpuesta, V., Botella, Ma & Amaya, I. Deci-
phering gamma-decalactone biosynthesis in strawberry fruit using a combi-
nation of genetic mapping, RNA-Seq and eQTL analyses. BMC Genom. 15, 218
(2014).

39. Iijima, Y. et al. Steroidal glycoalkaloid profiling and structures of glycoalkaloids
in wild tomato fruit. Phytochemistry 95, 145–157 (2013).

40. Itkin, M. et al. Biosynthesis of antinutritional alkaloids in solanaceous crops is
mediated by clustered genes. Science 341, 175–179 (2013).

41. Tohge, T., Alseekh, S. & Fernie, A. R. On the regulation and function of sec-
ondary metabolism during fruit development and ripening. J. Exp. Bot. 65,
4599–4611 (2014).

42. Osorio, S., Do, P. T. & Fernie, A. R. Profiling primary metabolites of tomato fruit
with gas chromatography/mass spectrometry. Methods Mol. Biol. 860,
101–109 (2012).

43. Edger, P. P. et al. Single-molecule sequencing and optical mapping yields
an improved genome of woodland strawberry (Fragaria vesca) with
chromosome-scale contiguity. Gigascience 7, 1–7 (2018).

44. Rousseau-Gueutin, M. et al. Tracking the evolutionary history of polyploidy in
Fragaria L. (strawberry): new insights from phylogenetic analyses of low-copy
nuclear genes. Mol. Phylogenet. Evol. 51, 515–530 (2009).

45. Shulaev, V. et al. The genome of woodland strawberry (Fragaria vesca).
Nat. Genet. 43, 109–116 (2011).

46. Tennessen, J. A., Govindarajulu, R., Ashman, T. L. & Liston, A. Evolutionary
origins and dynamics of octoploid strawberry subgenomes revealed by dense
targeted capture linkage maps. Genome Biol. Evol. 6, 3295–3313 (2014).

47. Sánchez-Sevilla, J. F. et al. Diversity arrays technology (DArT) marker platforms
for diversity analysis and linkage mapping in a complex crop, the octoploid
cultivated strawberry (Fragaria×ananassa). PLoS ONE. 10, e0144960 (2015).

48. Sánchez-Sevilla, J. F. et al. Gene expression atlas of fruit ripening and tran-
scriptome assembly from RNA-seq data in octoploid strawberry (Fragar-
ia×ananassa). Sci. Rep. 7, 1–13 (2017).

49. Maruta, T. et al. Arabidopsis phosphomannose isomerase 1, but not phos-
phomannose isomerase 2, is essential for ascorbic acid biosynthesis. J. Biol.
Chem. 283, 28842–28851 (2008).

50. Zhang, Y. et al. Suppressed expression of ascorbate oxidase gene promotes
ascorbic acid accumulation in tomato fruit. Plant Mol. Biol. Rep. 29, 638–645
(2011).

51. Argyris, J. M. et al. QTL Analyses in multiple populations employed for the fine
mapping and identification of candidate genes at a locus affecting sugar
accumulation in melon (Cucumis melo L.). Front. Plant Sci. 8, 1679 (2017).

52. Fresnedo-Ramírez, J. et al. QTL mapping of pomological traits in peach and
related species breeding germplasm. Mol. Breed. 35, 1–19 (2015).

53. Schauer, N. et al. Comprehensive metabolic profiling and phenotyping of
interspecific introgression lines for tomato improvement. Nat. Biotechnol. 24,
447–454 (2006).

54. Zanor, M. I. et al. Metabolic characterization of loci affecting sensory attributes
in tomato allows an assessment of the influence of the levels of primary
metabolites and volatile organic contents. J. Exp. Bot. 60, 2139–2154
(2009).

55. López, M. G. et al. Metabolic analyses of interspecific tomato recombinant
inbred lines for fruit quality improvement. Metabolomics 11, 1416–1431
(2015).

56. Stevens, R. et al. Candidate genes and quantitative trait loci affecting fruit
ascorbic acid content in three tomato populations. Plant Physiol. 143,
1943–1953 (2007).

57. Verma, S. et al. Clarifying sub-genomic positions of QTLs for flowering habit
and fruit quality in U.S. strawberry (Fragariaananassa) breeding populations
using pedigree-based QTL analysis. Hortic. Res. 4, 1–9 (2017).

58. Castro, P. & Lewers, K. S. Identification of quantitative trait loci (QTL) for fruit-
quality traits and number of weeks of flowering in the cultivated strawberry.
Mol. Breed. 36, 1–19 (2016).

59. Moing, A., Carbonne, F., Zipperlin, B., Svanella, L. & Gaudillère, J. P. Phloem
loading in peach: symplastic or apoplastic? Physiol. Plant 101, 489–496 (1997).

60. Nadwodnik, J. & Lohaus, G. Subcellular concentrations of sugar alcohols and
sugars in relation to phloem translocation in Plantago major, Plantago mar-
itima, Prunus persica, and Apium graveolens. Planta 227, 1079–1089 (2008).

61. Yativ, M., Harary, I. & Wolf, S. Sucrose accumulation in watermelon fruits:
Genetic variation and biochemical analysis. J. Plant Physiol. 167, 589–596
(2010).

62. Taji, T. et al. Important roles of drought- and cold-inducible genes for galac-
tinol synthase in stress tolerance in Arabidopsis thaliana. Plant J. 29, 417–426
(2002).

63. Hochberg, U., Batushansky, A., Degu, A., Rachmilevitch, S. & Fait, A. Metabolic
and physiological responses of shiraz and cabernet sauvignon (Vitis vinifera L.)
to near optimal temperatures of 25 and 35 °C. Int. J. Mol. Sci. 16, 24276–24294
(2015).

64. Heese-Peck, A. & Raikhel, N. V. A glycoprotein modified with terminal N-
acetylglucosamine and localized at the nuclear rim shows sequence similarity
to aldose-1-epimerases. Plant Cell 10, 599–612 (1998).

65. Sanchez-Bel, P. et al. Proteome changes in tomato fruits prior to visible
symptoms of chilling injury are linked to defensive mechanisms, uncoupling
of photosynthetic processes and protein degradation machinery. Plant Cell
Physiol. 53, 470–484 (2012).

66. Hägerhäll, C. Succinate: quinone oxidoreductases. Variations on a conserved
theme. Biochim. Biophys. Acta 1320, 107–141 (1997).

67. Ulrich, D. & Olbricht, K. A search for the ideal flavor of strawberry—comparison
of consumer acceptance and metabolite patterns in Fragaria×ananassa Duch.
J. Appl. Bot. Food Qual. 89, 223 (2016).

68. Cruz-Rus, E., Amaya, I. & Valpuesta, V. The challenge of increasing vitamin C
content in plant foods. Biotechnol. J. 7, 1110–1121 (2012).

69. Zhang, Y. in Ascorbic Acid in Plants (ed. Zhang, Y.) 7–33 (Springer, New. York,
2013).

70. Wheeler, G. L., Jones, M. & Smirnoff, N. Vitamin C in higher plants. Nature 393,
365–369 (1998).

71. Ooijen, J. W. Van. MapQTL5, Software for the Mapping of Quantitative Trait Loci
in Experimental Populations (Kyazma BV, Wageningen, 2004).

72. Manning, K. Isolation of nucleic acids from plants by differential solvent
precipitation. Anal. Biochem. 195, 45–50 (1991).

73. Galli, V. et al. Validation of reference genes for accurate normalization of gene
expression for real time-quantitative PCR in strawberry fruits using different
cultivars and osmotic stresses. Gene 554, 205–214 (2015).

74. Clancy, M. A. et al. Validation of reference transcripts in strawberry (Fragaria
spp.). Mol. Genet. Genom. 288, 671–681 (2013).

75. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: A fast spliced aligner with low
memory requirements. Nat. Methods 12, 357–360 (2015).

Vallarino et al. Horticulture Research             (2019) 6:4 Page 17 of 17


	Identification of quantitative trait loci and candidate genes for primary metabolite content in strawberry fruit
	Introduction
	Results
	Variation in the metabolic fruit composition in ‘232’ × ‘1392’ mapping population
	Metabolite correlation analysis
	Identification of mQTL for primary metabolism in strawberry fruits
	Association of QTL, mQTL, and genic-markers controlling the variation in acids and sugars
	Mannose-6-P-isomerase is a candidate gene for variation in L-AA content

	Discussion
	Materials and methods
	Plant material
	Metabolite profile analysis
	Statistical analysis
	Linkage mapping and QTL analysis
	In silico candidate gene search
	RNA extraction and qRT-PCR
	RNA-seq from pooled samples and analysis of differential expression

	ACKNOWLEDGMENTS




