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Abstract

Background: Population ascertainment of postoperative urinary tract infections (UTI) is time-

consuming and expensive, as it often requires manual chart review. Using the American College of 

Surgeons National Surgical Quality Improvement Program (NSQIP) UTI status of patients who 

underwent an operation at the University of Colorado Hospital, we sought to develop an algorithm 

for identifying UTIs using data from the electronic health record (EHR).

Methods: Data were split into training (operations occurring between 2013–2015) and test 

(operations in 2016) sets. A binomial generalized linear model with an elastic-net penalty was 

used to fit the model and carry out variables selection. International classification of disease codes, 

common procedural terminology (CPT) codes, antibiotics, catheterization, and CPT-specific UTI 

event rate were included as predictors. The Youden’s J statistic was used to determine the optimal 

classification threshold.

Results: Of 6,840 patients, 134 (2.0%) had a UTI. The model achieved 92% specificity, 80% 

sensitivity, 100% negative predictive value, 16% positive predictive value, and an area under the 

curve of 0.94 using a decision threshold of 0.03.

Conclusions: A model with 14 predictors from the EHR identifies UTIs well, and it could be 

used to scale up UTI surveillance or to estimate the impact of large-scale interventions on UTI 

rates.
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Introduction

Surveillance of postoperative complications has been conducted at participating hospitals 

through the National Surgical Quality Improvement Program (NSQIP), developed and 

implemented in the U.S. Department of Veterans Affairs since 1991 and subsequently in the 

private sector through the American College of Surgeons (ACS) since 2005. At participating 

hospitals, trained surgical clinical nurse reviewers collect preoperative through 30-day 

postoperative data on a representative sample of patients who underwent surgery to 

determine which patients experienced one or more of the 22 complications tracked by 

NSQIP. The NSQIP data provide high quality outcomes data on these 22 complications for 

more than 5.4 million patients. Unfortunately, manual chart review is time-consuming and 

expensive, so at larger institutions only ~15% of operated patients are typically evaluated. 

Urinary tract infections (UTI) are one type of infectious complication tracked. According to 

the NSQIP database, 1.6% of patients developed a UTI within 30 days of their initial 

operation between 2005–2012.1

It is desirable to develop electronic methods for identifying UTIs for several reasons. First, it 

would augment NSQIP surveillance by permitting assessment of a larger number of patients 

from each institution. Second, it would allow researchers to evaluate the impact of large-

scale interventions to prevent postoperative UTIs without the need for manual chart review. 

Some effort has been made over the past decade to identify UTIs and catheter-associated-

UTIs (CAUTIs). Zhan et al. were specifically interested in identifying CAUTIs in Medicare 

claims data but found that codes for urinary catheter placement and CAUTI are rarely 

recorded.2 To improve sensitivity, they created an approximate catheterization variable based 

on the patients’ surgical procedure, and their deterministic method consisting of 

international classification of disease version 9 (ICD-9) codes achieved 65% sensitivity with 

CAUTI identification.2 Landers et al. developed seven sets of decision rules for classifying 

patients with a UTI that included symptom codes, diagnosis codes, and procedural codes. 

All seven rules averaged about 56% sensitivity.3 They also reported issues with low rates of 

recording of catheter placement and symptoms, which they attributed to the low sensitivities 

achieved.3 In response to various articles reporting low rates of reporting of codes for 

catheters, CAUTIs and CAUTI symptoms,2–6 Gundlappali et al. and Branch-Elliman et al. 

implemented natural language processing (NLP) on the notes of patients’ medical charts.7,8 

Although both studies reported the ability to detect catheters in the notes using NLP, they 

both found that standard methods (i.e., the use of diagnosis codes) performed better.7,8

Considering the success with identifying surgical site infections (SSIs) using electronic 

health record (EHR) data and supervised learning with penalized regression reported by 

Colborn et. al,9 we sought to develop a model for identifying UTIs using similar 

methodology.
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Methods

Data:

Using the same data set described by Colborn et al.,9 we identified 6,840 patients who 

underwent surgery at University of Colorado Hospital (UCH) from July 1, 2013 to 

November 1, 2016 in the local NSQIP database. After receiving IRB approval for this study, 

we sent patient health identifiers (PHI) for these patients to the University of Colorado 

Health Data Compass (HDC), a University-sponsored data warehouse that contains EHR 

data on all UCH patients. HDC linked relevant available data to our patients from the local 

NSQIP database for up to 30 days after their date of surgery. These data included 

demographic characteristics, ICD-9 codes, current procedural terminology codes (CPT), and 

drug codes and names. Outcome status, i.e., presence or absence of a UTI, came from the 

UCH ACS NSQIP database.

Statistical methods:

We designed our analysis to follow the recommendations of the Transparent Reporting of a 

multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) statement.
10 The dataset was split into training and test datasets, with a temporal split, where the 

models were trained on the older observations and tested on the more recent observations. 

Using a non-random technique (i.e., using a temporal split rather than resampling 

techniques, such as bootstrap or cross-validation) to divide the dataset is recommended by 

TRIPOD, and the prevalence of UTI did not change considerably over time (Table 1), 

therefore the temporal split allowed us to test whether the model fit to the training set was 

valid on a future held-out sample. The training data consisted of operations performed 

between 2013–15 (N=5,194; no UTI=5,090 [98.0%], UTI=104 [2.0%]) and the test set 

consisted of operations performed in 2016 (N=1,646; no UTI=1,616 [98.2%], UTI=30 

[1.8%]). We formulated a comprehensive model consisting of all variables flagged by two 

separate clinicians (KH, RM) as potentially important for identifying and/or treating a UTI. 

This list consisted of ICD-9 codes, CPT codes, and antibiotics. We also included the CPT-

specific UTI event rate, defined as the rate of UTIs experienced by NSQIP patients for each 

particular surgical procedure estimated from data across all 800+ NSQIP-participating 

hospitals, and a variable indicating whether or not the patient had been catheterized. A 

binomial generalized linear model (GLM) with an elastic-net penalty was used to estimate 

coefficients and to carry out variables selection. The elastic-net penalty is a combination of 

the least absolute shrinkage and selection operator (lasso) and ridge penalties, and it tends to 

handle correlated covariates better than the lasso.11 Penalized regression was used primarily 

because the number of covariates greatly outnumbered the number of individuals who had a 

UTI in this dataset. Furthermore, penalized regression methods, as opposed to variable 

selection methods, such as stepwise or best subset selection, achieve the goals of 1) reducing 

the chance of overfitting to the training data, and 2) conducting variable selection in a 

continuous manner by allowing some coefficients to be zero (as opposed to just throwing 

variables out based on a p-value). Ten-fold cross-validation was performed to determine the 

optimal value for the lasso penalty (i.e., lambda) using the glmnet package12 in R (R 

Foundation for Statistical Computing, Vienna, Austria). The elastic-net tuning parameter 

(i.e., alpha) was set at 0.5. We estimated the predicted probabilities of UTI in the test set 
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using the fitted model and performed classification using the Youden’s J statistic13 estimated 

in the training data set. Models were compared with respect to sensitivity, specificity, area 

under the curve (AUC), accuracy, negative predictive value (NPV), positive predictive value 

(PPV), false negatives and false positives when classifying UTIs in the test data. Youden’s J 
and all other performance statistics were estimated using the pROC package in R.14 All 

ICD-9, CPT, and antibiotic independent variables were coded as positive only if the codes 

were observed between 3 and 30 days after the initial operation. This interval was chosen for 

several reasons. First, a UTI is unlikely to be attributed to the operation if it is found within 

two days of the operation. Second, it excludes most antibiotics administered for 

perioperative prophylaxis, and, finally, any UTIs identified beyond 30 days of the operation 

were unlikely to be caused by the operation. The only exception to this range was for the 

catheter variable, which was included if a record of placement of an indwelling urinary 

catheter occurred between 0 and 30 days from the day of operation.

Sensitivity analysis was performed using random forest15 and the same variables, training 

and test sets, and thresholds. Analyses were performed using the random Forest package in 

R.16

Results

Table 1 demonstrates the relationship between individual characteristics and UTI status. 

Patients who experienced UTIs tended to be older (57.1 years vs. 53.5 years, UTI versus no 

UTI, respectively, p<0.001). Patients undergoing gynecologic and urologic procedures had 

higher rates of UTIs than patients undergoing other types of operations (gynecology 5.3% 

[p<0.001], urology 3.6% [p=0.003]). Females had twice the rate of UTIs as males (2.5% 

females vs. 1.2% males, p<0.001). There were no significant differences by race/ethnicity or 

year of operation.

Table 2 summarizes a subset of the predictors by UTI status. Presence of an indwelling 

urinary catheter during surgery was associated with a higher rate of UTI (2.9% with catheter 

vs. 0.6% no catheter, p<0.001). ICD-9 code 599, “UTI, site unspecified”, was a clear 

indicator of UTI in these EHR data (33.8% UTI vs. 1.3% no UTI, p<0.001), as well as 

ICD-9 code 595.9, “cystitis” (40% UTI vs. 1.9% no UTI, p<0.001). Of patients with a UTI, 

8.5% had an antibiotic prescription vs. 0.3% of those who did not have a UTI (p<0.001). 

Urine culture was also commonly coded among patients with a UTI (11.9% UTI vs. 0.4% no 

UTI, p<0.001). CPT-specific UTI event-rate was more than three times higher in those with 

a UTI compared to those who did not have a UTI (Table 2, p<0.001).

Table 3 summarizes the variables with non-zero coefficient values estimated from the model. 

Recall, the penalty terms applied allow for some coefficient values to be exactly equal to 

zero, which results in these variables being removed from the model. Of 44 variables, 14 

were selected (i.e., not equal to zero); seven were antibiotics, four were CPT codes, and two 

were ICD-9 codes. CPT-specific UTI-event-rate was also selected. The variables were sorted 

by descending odds ratios (OR). All variables were dichotomous, except for CPT-specific 

UTI-event rate which was continuous; that is one reason why the OR is lower for UTI-event 

rate compared to the ORs of the other variables. The relationship between CPT-specific UTI-
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event-rate and UTI was almost perfectly linear when plotted using a cubic smoothing spline 

with 4 degrees of freedom (plot not shown). The selected predictors all make clinical sense 

and are not surprising.

Table 4 summarizes the classification performance of the model in the test set. The results in 

Table 4 suggest that this is a very good model for classification of UTIs in these data. The 

AUC was 0.94, sensitivity 0.80, specificity 0.92, and accuracy 0.92 when using the Youden’s 

J threshold estimated in the training set.

Figure 1 is a discrimination plot, which has been described by Steyerberg et al.17 It displays 

the predicted probabilities from the model fit to the test set by the NSQIP-identified UTIs 

(i.e., observed outcomes). There is fairly good discrimination, as the predicted probabilities 

for those with a UTI are much higher than those without. The discrimination slope is 0.22 

(i.e., the difference in mean predicted probabilities between the two classes), which suggests 

good discrimination by the model.

Sensitivity analysis:

We also used random forest15 and the same variables to obtain predicted probabilities 

(which were just the proportion of the trees that classified patients as having had a UTI; each 

individual tree’s classification being a majority vote in the terminal node). Random forest 

performed similarly to the elastic-net when fit to the test set (AUC 0.91; threshold 0.04; 

specificity 0.95; sensitivity 0.80; accuracy 0.95; NPV 1.00; PPV 0.24; false negatives 6; 

false positives 74).

Discussion

In this study, we developed a model for identifying UTIs in patients who underwent major 

surgery at the University of Colorado Hospital using EHR data, NSQIP outcomes data, and a 

GLM with an elastic-net penalty. This model was tested on a temporal hold-out set and 

achieved an AUC of 0.94. It correctly classified 80% of those with a UTI and 92% of those 

who did not experience a UTI. This model could be useful for ascertaining UTI status of 

patients after large-scale interventions for preventing UTIs. It could also be useful for 

supplementing NSQIP surveillance activities so that a complete patient dataset can be 

developed instead of a limited sample.

Using the methodology described by Colborn et al. for identifying SSIs, slightly better 

results were achieved by a model for identifying UTIs with fewer required variables.9 This is 

likely due to the greater strength of association between specific variables and UTI. 

Interestingly, despite the difference in proportions of patients with urinary catheters between 

those with a UTI and those who did not have a UTI, the elastic-net model did not select this 

variable. Therefore, it was excluded when fitting the final model, as 63 patients were 

missing these data (all of these patients did not have a UTI); and we did not want to exclude 

these patients from the analysis. We also chose not to perform imputation on this variable, as 

it was missing for less than 1% of patients. Although we did not include catheterization in 

our final model reported in Table 3, we suggest including it when applying similar 

methodology to different UTI data sets, especially given the continued high risk of CAUTIs 
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reported in the literature.5,18–20 However, as we pointed out in the introduction, catheter 

identification from EHR data can be difficult,2,5–8,21–23 and it was not clear whether the 

EHR data used in this study properly captured the catheter variable. It is also important to 

point out that we were not specifically looking for CAUTIs in this analysis. Our goal was to 

develop a model that identified NSQIP-defined UTIs using EHR data. A recent study by 

Sopirala et. al highlights the difficulty in conducting CAUTI surveillance.24 In that study, the 

authors reported very different rates of CAUTIs in the same population when using two 

different definitions. Furthermore, because we used NSQIP data to develop this model, it 

might not be generalizable to other definitions of UTIs. For example, Ju et. al. found that the 

NSQIP definition of SSI estimated 13.5% of patients had SSIs compared to only 5.7% found 

using the National Healthcare Safety Network (NHSN) definition in an analysis of 16 

hospitals.25 This might not be surprising, considering they use different definitions for the 

denominators (NSQIP uses CPT codes, whereas NHSN uses ICD-9 codes to determine 

operation performed) and numerators (NSQIP uses trained nurse reviewers who call the 

patients to ascertain additional information that is not seen in the chart). Furthermore, the 

authors found that collection methods for NHSN differed across hospitals and that outpatient 

cases were often missed under current NHSN practices. Therefore, we recommend fitting 

separate models using similar methodology to data that are generated from different 

definitions than NSQIP’s.

Another interesting finding in this study was that there were 98 (1.5%) patients with no UTI 

according to NSQIP who had an ICD-9 code of 599 (“urinary tract infection; site not 

specified”), which might be an indication that the ACS NSQIP definition for UTI is more 

rigorous than that used by providers documenting occurrence of a UTI or by coders 

assigning ICD-9 codes post hoc. Alternatively, it is possible that the surgical clinical 

reviewers misclassified these patients.

The findings from this study suggest that UTIs can be identified in the EHR using 14 

variables and a linear model. Future work should explore the effect of including claims data 

and perhaps symptoms and/or catheter data derived from NLP in clinical documentation.
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Figure 1. Discrimination plot.
Values on the x-axis are observed UTI status from the NSQIP test set and values on the y-

axis are predicted probabilities from the model fit to the test set.
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Table 1.

University of Colorado Hospital National Surgical Quality Improvement Program population by UTI status 

(N=6,840).

All UTI No UTI

6,840 134 (2.0) 6,706 (98.0) P value
‡

Age, years, mean (SD) 53.5 (16.4) 57.1 (15.6) 53.5 (16.4) <0.001

Gender

 Female 3,843 (56.2) 97 (2.5) 3,746 (97.5) <0.001

 Male 2,997 (43.8) 37 (1.2) 2,960 (98.8)

Race/Ethnicity

 White, not of Hispanic origin 4,981 (72.8) 99 (2.0) 4,882 (98.0) 0.8

 Hispanic origin 801 (11.7) 15 (1.9) 786 (98.1) 1.0

 Black, not of Hispanic origin 490 (7.2) 11 (2.2) 479 (97.8) 0.6

 Asian or Pacific Islander 143 (2.1) 3 (2.1) 140 (97.9) 0.8

 American Indian or Alaska native 20 (0.3) 0 (0.0) 20 (100.0) 1.0

 Null/unknown 405 (5.9) 6 (1.5) 399 (98.5) 0.6

Primary surgeon specialty

 Orthopedics 1,795 (26.2) 22 (1.2) 1,773 (98.8) 0.01

 General surgery 1,666 (24.4) 30 (1.8) 1,636 (98.2) 0.7

 Gynecology 664 (9.7) 35 (5.3) 629 (94.7) <0.001

 Urology 662 (9.7) 24 (3.6) 638 (96.4) 0.003

 Neurosurgery 640 (9.4) 12 (1.9) 628 (98.1) 1.0

 Otolaryngology 586 (8.6) 1 (0.2) 585 (99.8) <0.001

 Thoracic 345 (5.0) 7 (2.0) 338 (98.0) 0.8

 Vascular 250 (3.7) 2 (0.8) 248 (99.2) 0.2

 Plastics 232 (3.4) 1 (0.4) 231 (99.6) 0.09

Year of operation

 2013 984 (14.4) 25 (2.5) 959 (97.5) 0.2

 2014 2,136 (31.2) 48 (2.2) 2,088 (97.8) 0.3

 2015 2.074 (30.3) 31 (1.5) 2,043 (98.5) 0.07

 2016 1,646 (24.1) 30 (1.8) 1,616 (98.2) 0.7

Values are n (row percent) unless otherwise specified. Abbreviations: SD, standard deviation; UTI, urinary tract infection.

‡
Fisher’s exact or t-test. For multiple categories, p-value indicates comparison to all other categories.
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Table 2.

Electronic Health Record Predictors by National Surgical Quality Improvement Program UTI status.

All UTI No UTI

6,840 134 (2.0) 6,706 (98.0) P value
‡

Catheter

 Yes 4,020 (59.3) 117 (2.9) 3,903 (97.1) <0.001

 No 2,757 (40.7) 17 (0.6) 2,740 (99.4)

ICD-9 599: UTI, site unspecified

 Yes 148 (2.2) 50 (33.8) 98 (66.2) <0.001

 No 6,692 (97.8) 84 (1.3) 6,608 (98.7)

ICD-9 595.9: Cystitis, unspecified

 Yes 10 (0.1) 4 (40.0) 6 (60.0) <0.001

 No 6,830 (99.1) 130 (1.9) 6,700 (98.1)

Antibiotic (any)

 Yes 1,365 (20.0) 116 (8.5) 1,249 (91.5) <0.001

 No 5,475 (80.0) 18 (0.3) 5,457 (99.7)

CPT 87186, 87086, or 87088: Urine culture

 Yes 925 (13.5) 110 (11.9) 815 (88.1) <0.001

 No 5,915 (86.5) 24 (0.4) 5,891 (99.6)

CPT-specific UTI event rate, median (IQR) 0.91 (0.34, 2.23) 3.14 (1.59, 4.64) 0.89 (0.34, 2.20) <0.001

Values are n (row percent) unless otherwise specified; Abbreviations: CPT, common procedural terminology; ICD, international classification of 
disease; IQR, interquartile range; UTI, urinary tract infection.

‡
Fisher’s exact p-values for binary variables and Wilcoxon rank sum for CPT-specific UTI event rate;
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Table 3.

All non-zero coefficient estimates using a binomial generalized linear model with an elastic-net penalty for 

UTI fit to the training data.

Variable Coefficient OR

Cetirizine 1.54 4.66

CPT 87086: Culture, bacterial; quantitative, colony count, urine 1.32 3.74

ICD-9 599: Urinary tract infection, site not specified 1.32 3.76

CPT 87186: Aerobic Susceptibility: Gram Positive Minimum Inhibitory Concentration Panel Urine/Non-Urine 1.30 3.69

Nitrofurantoin 1.10 3.00

Ciprofloxacin 0.79 2.20

CPT 87088: Culture, bacterial; with isolation and presumptive identification of each isolates, urine 0.67 1.95

ICD-9 595.9: Cystitis, unspecified 0.61 1.83

Sulfamethoxazole 0.61 1.85

CPT 81001: Urinalysis, by dip stick or tablet reagent; automated, with microscopy 0.29 1.34

Amoxicillin 0.19 1.22

Ceftriaxone 0.13 1.14

Clindamycin 0.05 1.05

CPT-specific UTI-event-rate 0.01 1.01

Abbreviations: CPT, common procedural terminology; ICD, international classification of disease; OR, odds ratio, UTI, urinary tract infection.
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Table 4.

Performance of the model fit to the test data set using Youden’s J statistic as the decision threshold. (All values 

multiplied by 100 except the threshold).

Performance measure Value

Threshold 0.03

Specificity 92

Sensitivity 80

Accuracy 92

NPV 100

PPV 16

False negatives 6

False positives 127

AUC 94

AUC, area under the curve; NPV, negative predictive value;

PPV, positive predictive value.
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