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Abstract

Alcohol dependence (AD) affects individuals from all racial/ethnic groups and previous research 

suggests that there is considerable variation in AD among ethnic minority groups in the United 

States. Although the reasons for these differences are likely due, in part, to contributions of 

complex sociocultural factors, limited research has attempted to examine whether similar genetic 

variation plays a role within both ancestral groups. Using a pooled sample of individuals of 

African and European ancestry (AA/EA) obtained through data shared within the Database for 

Genotypes and Phenotypes (dbGAP), we estimated the extent of additive genetic similarity for AD 

between AA and EAs using common single nucleotide polymorphisms (SNPs) that overlapped 

across the two populations. AD was represented as a factor score using Diagnostic and Statistical 

Manual (DSM-IV) dependence criteria and genetic data was imputed using the 1000 Genomes 

Reference Panel. Analyses revealed a significant SNP-based heritability of 22% (SE=5%) in EAs 

and 27% (SE=13%) in AAs. Further, a significant genetic correlation of 0.77 (SE=0.46) suggests 

that the allelic architecture influencing the AD factor for EAs and AAs is largely similar across the 

two populations. Follow-up analysis indicated that investigating the genetic underpinnings of 

alcohol dependence in different ethnic groups may serve to highlight etiological influences that are 

otherwise missed.
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Introduction

Alcohol dependence (AD) is a global problem that affects individuals from all racial/ethnic 

groups and all levels of socioeconomic standing. Previous studies suggest that there is 

considerable variation in patterns of drinking and alcohol use disorders among U.S. ethnic 

minority groups (Caetano et al., 1998). For example, among college-aged students (i.e., ages 

18–24), higher rates of alcohol use and disorders are observed amongst individuals of 

European and Native American ancestry compared to citizens of African or Asian ancestry. 

While there is evidence to suggest the risk for AD may be greater, in part, for some 

individuals as a function of their economic standing and familial background, there have 

been a limited number of studies that have attempted to examine whether genetic variation 

might also play a role in observed individual differences among African Americans. A 

review of the published literature using a combination of search terms (see appendix) in 

PubMed (in October 2016) revealed 14 of genomewide association studies that have 

examined genetic variants related to alcohol consumption and/or dependence with some 

combination of analyses in ancestrally mixed samples or ancestry-specific (i.e., identified 

using samples(Bierut et al., 2010; Gelernter et al., 2014; Johnson et al., 2011; Panhuysen et 

al., 2010; Ulloa et al., 2014; Xu et al., 2015; Yang et al., 2014a; Zuo et al., 2012a; Zuo et al., 

2014; Zuo et al., 2013a; Zuo et al., 2015; Zuo et al., 2012b; Zuo et al., 2013b). Of these, 

none have empirically compared/contrasted the genome-wide effects in subjects of African 

ancestry (AA) and European ancestry (EA), at least as best defined by the International 

HAPMAP (2003) or 1000 Genomes Projects.

Whole genome association studies across mixed populations are limited by small sample 

sizes across groups and the methodological limitations that arise from differences in linkage 

disequilibrium across ancestral groups, as well as variation in minor allele frequencies 

(MAFs) between groups, all of which affects statistical power. At the same time, these 

differences highlight the strengths of conducting candidate gene and genome-wide types of 

association studies within each of these ancestrally defined groups, to the extent that 

sufficient statistical power is achieved. This has largely been seen in studies of candidate 

biological systems, some of which have shown that increased power can be gained by 

studying other ethnic groups where certain alleles are more commonly observed in 

comparison to subjects of European ancestry. For example, the most reproduced effect on 

AD in GWAS center around variation in and around the chromosome 4 ADH cluster. Genes 

that play a role in the alcohol metabolizing system and its associated genes on chromosomes 

4 (ADH1B, ADH1C, ALDH2, and ADH4) have been observed in individuals of Korean, 

Chinese, African, and European ancestry (Frank et al., 2012; Park et al., 2013; Quillen et al., 

2014). Among the studies including AAs, the recent Gelernter et al. (2014) genome-wide 

study of a pooled sample of 16,087 individuals of European and African ancestry was the 

only one to explore convergence of genomewide significant findings across the sub 

populations. Notably, ADH1B was identified along with several other novel loci. The 

Gelernter study supports the hypothesis that genetic variation across similar regions index 

common biological systems that are susceptible to long-term exposure to alcohol. The report 

by Gelernter et al., (2014) was the first to provide some indication of shared genetic effects 

around a nominal GWAS finding. The current study expands upon the Gelernter et al. (2014) 
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paper by using pooled samples of EAs and AAs (respectively) to estimate the extent of 

genomewide additive genetic similarity for AD between AA and EAs. The data for this 

project are the result of sharing agreements imposed by the National Institutes of Health and 

principal investigators that support collaborative work by submitting their data to the 

Database for Genotypes and Phenotypes (dbGAP). This is, to our knowledge, the first study 

of its kind to estimate these genomewide effects using molecular data.

Methods

Sample

All study data was accessed as part of the National Human Genome Research Institute’s 

Gene Environment Association Study Initiative [Database for Genotypes and Phenotypes 

(dbGaP)]. For all analyses, data from four dbGaP datasets were pooled, including: The 

Study of Addiction: Genetics and Environment (SAGE; study accession phs000092.v1.p1), 

the Alcohol Dependence GWAS in European- and African Americans (Yale Study; study 

accession phs000425.v1.p1), the Australian twin-family study of alcohol use disorder (OZ-

ALC; study accession phs000181.v1.p1), the Genome-Wide Association Study of Heroin 

Dependence (Heroin GWAS study; study accession phs000277.v1.p1). Table 1 describes the 

set of samples.

Assessments

Each study collected DSM-IV symptoms (coded as present or absent) for AD using the 

Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA; SAGE study), the 

adapted SSAGA-OZ (OZ-ALC study), or the Semi Structured Assessment for Drug 

Dependence and Alcoholism (Yale Study, Heroin GWAS) (Bucholz et al., 1994; 

Hesselbrock et al., 1999; Pierucci-Lagha et al., 2005). All responses were limited to 

individuals who had previously been exposed to alcohol (and possibly other drugs).

Genotyping, Quality Control, and Genetic Imputation

GWAS data were obtained through the National Center for Biotechnology Information’s 

(NCBI) Database for Genotypes and Phenotypes (dbGAP), where more detailed protocols 

are available. For each sample set, quality control (QC) and imputation of autosomal SNPs 

were conducted separately by study and are explained below. Genotyping in SAGE was 

conducted using the Illumina Human 1M BeadChip. Genotyping in the Yale Study was 

conducted on the Illumina HumanOmni1-Quad v1.0 microarray. Genotyping for the OZ-

ALC study was conducted on Illumina HumanCNV370-Duov1 BeadChip. Finally, 

participants from the Heroin GWAS were genotyped on three separate platforms: Illumina 

Human610 Quad v1, Illumina Human660W Quad v1, and HumanCNV370 Quad v3.0.

Genomic data across all samples were imputed (within sample [by ethnic group]) up to 

Phase III of the 1000 Genomes Project (1KG) in order to maximize similar genetic coverage 

across samples. Data management was conducted using SNP & Variation Suite v8.x (Golden 

Helix, Inc., Bozeman, MT, www.goldenhelix.com)(SNP & Variation Suite (Version 8.4.4)), 

PLINK version 1.9 (Purcell et al., 2007), and R version 3.1.1. Genetic imputation was 

conducted using Minimac (version 3) via the Michigan Imputation Server (https://
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imputationserver.sph.umich.edu/index.html#!pages/home). Ancestry determination of 

sample data and imputation of genotypes utilized data from Phase III of the 1,000 Genomes 

Project (1KGP) reference sample (Auton et al., 2015).

A series of steps across three phases was conducted to prepare data for imputation, impute 

data, and prepare data for analyses. A flow chart of this procedure is presented in Figure 1.

Phase 1: Imputation preparation.

Step 1: Identify major ancestral populations within sample data using the 1KGP 
reference sample.: Subject ancestry was determined using the Phase 3 reference panel from 

the 1KGP, which is comprised of 2,504 individuals across 26 populations and contains 

genotyping data for 84.4 million markers. The major ancestral groups captured in this data 

are East Asian, South Asian, African, European, and Americas. For ancestry determination, 

we restricted the number of markers in the 1KGP to include only the union of markers 

present in each of our sample data sets (2,240,710). We then removed any markers with a 

minor allele frequency (MAF) less than 5% and a call rate (CR) less than 99%. Finally, we 

used a subset of the resulting set of 1KGP data based on linkage disequilibrium (LD, r2 < 

0.5), resulting in a final set of 423,738 markers to be used for ancestry determination.

Quality control (QC) was conducted in each of the study samples separately prior to being 

combined with the reference panel. Each study sample set was subset to include autosomal 

SNPs with MAF greater than 10% and a CR of 95%. Using allele information compiled 

from the marker map of the reference panel data, we compared the allele frequencies (across 

all populations) and strand orientation of our data to the reference panel. Markers that had 

minor allele frequency differences of greater than 20% when compared to the reference 

panel were removed. Markers whose stand orientation could not be resolved (e.g. flipped) 

were also removed.

After QC of the sample data and preparation of the reference panel data were complete, the 

study samples were combined with the reference data (separately) to determine ancestry 

within each study. Principal components analysis (PCA) was conducted within each study to 

examine population stratification. Plots of genetic components were examined visually and 

statistically to determine ancestral groups. First, scatterplots comparing the first, second, and 

third components, which largely distinguish between African, East Asian, South Asian, and 

European groups, were plotted to determine ancestry of the sample data compared to the 

reference data. For example, Figure 2 presents scatterplots of principal components of the 

SAGE data with the 1KG reference data. In panel a, the first principal component is plotted 

against the second principal component. The first component in each of the data sets 

separated African and European ancestral groups, which represented the larges two 

subgroups in each of samples examined in this study.Subsequently, we calculated the mean 

and standard deviations of the first principal component in the reference panel and retained 

individuals in the sample data whose eigenvector value fell within two standard deviations 

(i.e., 98% of the 1KG ansestral distributions) of the African and European reference panel 

component means. As such, the current study clusters individuals into two groups, African 

Ancestry (AA) or European Ancestry (EA), based on their proximity to established ancestral 

groups within the 1KG reference panel data. To reduce further population stratification, we 
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conducted multidimensional outlier detection within the identified AAEA groups in the 

sample data using a multiplier value of 1.5. This procedure computed a distance score based 

on the median centroid vector calcutated using the first three principal components. Any 

individuals determined to be outliers from the AA and EA samples were removed from the 

sample data. The resulting set of AA and EA individuals in the sample data were selected 

for imputation.

Step 2: Subset original data based on identifed population groups and prepare data 
for imputation..: After the AA and EA individuals were identified in Step 1, the original 

sample data were subset into the two respective groups identified by PCA to be imputed 

separately. QC was conducted in each group and markers with CR < 95% or MAF < 1% 

were removed. Using allele information compiled from the marker map of the reference 

panel data, we compared the allele frequencies (specific to expected allele frequencies based 

on the 1KG African or European populations) and strand orientation of our data to the 

reference panel. Markers that had minor allele frequency differences of greater than 10% 

when compared to the reference panel population were removed. Markers whose stand 

orientation could not be resolved (e.g. flipped) were also removed. Individuals who had 

greater than 95% missingness were also removed. The final set of data for AA/EA 

individuals within each study was separated into autosomal chromosome files for 

submission to the Michigan Imputation Server.

Phase 2: Imputation of genotypes in identified EAs and AAs (separately).

Step 3: Submit data for imputation.: Ancestral groups within each study were imputed 

separately on the Michigan Imputation Server (https://imputationserver.sph.umich.edu/

index.html) using Minimac3 with the 1KG Phase 3 reference panel and SHAPEIT phasing.

Step 4: Retrieve, compile, and reduce imputed data.: After imputation was completed, 

each file totalled over 50 million markers. Files were subset based on the union of the 

aforementioned 2,057,200 million markers present across all the studies and markers that did 

not represent biallelic SNPs were removed. Finally. markers with an imputation quality 

score (r2) < 0.3 were removed.

Phase 3: Data preaparation for analysis.

Step 5: Merge all study data together within each population and conduct 
QC.: Following imputation, all study data for EAs across each study were merged. 

Likewise, data for AAs across each study were merged. QC was conducted within each 

ancestry group separately to select individuals with missingness < 10% and markers with 

CR > 99%, MAF > 1%, and that passed HWE test (p < 0.0001) (see Supplementary Table 

S1 for summary of the number of markers across EAs/AAs that drop out at each step).

Step 6: Identify unique and overlapping SNPs across ancestral groups and construct 
genetic-relatedness matrices of unrelated individuals.: Following QC, we identified a 

common set of SNPs across both populations (1,656,106 in EAs and AAs) and a set of SNPs 

that survived QCs in in one group but not the other (N=288,181 unique to AAs; N=59,693 

unique to EAs) . Each set of SNPs were then used to contruct genetic relationship matrices 
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(GRMs). The GRMs were computed using the Genomewide Complex Trait Analysis 

(GCTA) software tool [version 1.25.3] to maximally select one of any pair of individuals 

who were more related than second cousins (Yang et al., 2011) . Subsetting the data for 

unrelated individuals was done to control for cryptic relatedness, which could artificially 

inflate SNP heritability estimates (see below). The ancestry specific GRMs used in 

univariate genetic analyses were comprised of 2,257 unrelated AA individuals and 8,722 

unrelated EA individuals. Joint analyses for each ancestry group using the GRM constructed 

from overlapping markers as well as the GRM constructed from sample-specific markers 

provided the total amount of variation in AD attributable to genetic variants. In addition, 

bivariate genetic models described below used a combined GRM of 11,314 individuals who 

had overlapping SNPs to provide an estimate of genetic correlation between populations.

Derivation of Phenotypes and Sample Characteristics

Data for the seven DSM-IV AD symptoms were pooled to determine and confirm the factor 

structure of the AD latent variable in EAs and AAs. Data for participants in each study was 

subset to include only those participants who were unrelated and were genetically 

determined to be EA or AA; consequently, data for 6,514 genetically determined EAs and 

2,196 genetically determined AAs who had phenotypic data were used for factor analysis. 

The final sample of EA individuals were 53.22% male and ranged in age from 16 to 82 

(mean age = 40.16, standard deviation = 10.42). Of these individuals, 34.35% came from the 

SAGE study, 8.26% came from the Yale study, 15.13% came from the OZ-ALC study, and 

42.26% came from the Heroin GWAS study The final sample of AA individuals were 

51.09% male and ranged in age from 16 to 79 (mean age = 40.48, standard deviation = 

8.84). Of these AA individuals, 37.93% came from the SAGE study and 62.07% came from 

the Yale study. The OZ-ALC and Heroin GWAS studies did not contain enough individuals 

of African ancestry to impute genetic data, and thus did not contribute to the final sample of 

AAs used in the current study.

The factor structure of AD symptoms within each ancestral group was determined by 

randomly splitting each subpopulation in half to create exploratory and confirmatory 

subsets. Exploratory and confirmatory factor analyses (EFA/CFA) were conducted in Mplus 

[version 7] (Muthén and Muthén, 1998–2015) using weighted least-squares mean variance 

estimation. Missing data was handled in Mplus with full information maximum likelihood 

estimation. The exploratory subsets consisted of 1,098 AA participants and 3,255 EA 

participants. The confirmatory subsets consisted of 1,098 AA participants and 3,260 EA 

participants. Scree plots, consistency with previous empirical research, and examination of 

fit indices [e.g. root mean square error of approximation (RMSEA), comparable fit index 

(CFI) and Tucker–Lewis index (TLI)] were used to determine the factor structure for each 

1KGP defined ancestral group (Hu and Bentler, 1999; Yu, 2002). EFA and CFA models 

indicated that a single latent factor represented AD symptoms (see Supplementary Figure S1 

for scree plot and Supplementary Table 2 for model fit for EFA/CFA across ancestral 

groups). Measurement invariance of the single latent factor across the two ancestral groups 

supported configural invariance, which established that the same factor structure, but 

different error variances and item thresholds, existed for each group.
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Based on consensus from EFA/CFA, separate factor scores (mean = 0, standard deviation = 

1) from a one-factor solution were extracted for EAs and AAs to be used in genetic analyses. 

Specifically, these analyses yielded factor scores derived within each 1KGP defined 

ancestral group that represent latent indicators of alcohol dependence based on the seven 

DSM-IV symptoms specific to that ancestral group. The factor model, with unstandardized 

factor loadings, are presented in Figure 2 along with fit indices for each CFA model. After 

extraction, each factor score was residualized to account for variation due to age, sex, and 

study of origin. The residualized factor scores were used for all subsequent genetic analyses.

Estimation of variance/covariance explained by the SNPs—Genomic restricted 

maximum likelihood estimation (GREML) to was used to decompose phenotypic variance 

in the EA and AA AD factors into additive effects of genotyped and imputed SNPs (Yang et 

al., 2013). In this approach, genetic similarity captured in each GRM is modeled as a 

random effect to account for variance in the residualized AD factor score for each ancestry 

group. Two separate variance components were included in each ancestry-specific linear 

model: one component comprised of genetic variance due to markers that overlapped 

between ancestry groups and one that represented genetic variance due to sample-specific 

markers (i.e., markers that passed QC for one group but not the other). Total SNP-

heritability for each model represents the total variation across each component for EAs and 

AAs separately. In bivariate GREML models, the covariance between two groups can be 

described by a standard bivariate linear mixed model in which covariance is reflected by the 

covariance between the genetic and environmental/residual factors influencing each trait. 

Only genetic variance attributable to overlapping markers was used in the bivariate model. 

As such, with the current data, the additive genetic correlation (rG-SNP) reflects shared 

genetic variance tagged by the genotyped SNPs is interpreted as the extent to which the 

genetic variants influencing AD in EAs and AAs are correlated (ranging in value from −1 to 

1)(de Candia et al., 2013; Lee et al., 2012). Consequently, analyses were designed to 

determine the SNP heritability (h2
SNP) within each ancestral group as well as the genetic 

correlation across EAs and AAs (using the set of overlapping SNPs that survive QC across 

EAs’ and AAs). Given the lack of direct evolutionary pressures related to alcohol use, we 

hypothesized that SNP-heritability estimates would be similar across EAs and AAs and that 

the genetic correlation would be large (>0.60). Given, our observation of non-overlapping 

SNP sets following sample QC, we also explored the extent to which these SNPs might be 

an additional source of genetic variation for EAs and AAs.

Results

Prevalence of alcohol dependence items across ancestral groups

Demographics of sample data by ancestral group are presented in Table 3. Prevalence rates 

and correlations between AD symptoms are presented in Table 4. For AAs, “using longer 

than intended” (58% endorsed) and “great time spent” (57%) were the highest endorsed 

items, with all items being endorsed at rates between 33–58%. For EAs, “using longer than 

intended and “tolerance” (49%) were the highest endorsed items, with all items being 

endorsed at rates between 25–57%. Phenotypic tetrachoric correlations among all items 

were generally high (all greater than 0.58).
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Phenotypic variance attributable to AD among EAs and AAs

Total SNP-based heritability estimates of the AD factor were similar across EAs and AAs. 

See Table 5 for a summary of univariate results within EA and AA groups. Partitioning of 

the total genetic variance for EAs using multiple GRMs in a single linear model revealed a 

significant SNP heritability estimate of 0.17 (SE = 0.05, p < 0.001) for variation in AD 

attributable to SNPs that overlapped with AAs and a non-significant estimate of 0.10 (SE = 

0.04, p < 0.001) for variation in AD attributable to SNPs that were sample-specific to EAs 

(e.g. these markers include markers that passed QC for EAs but not for AAs).

Partitioning of the total genetic variance for AAs revealed a significant SNP heritability 

estimate of 0.24 (SE = 0.15, p = 0.028) for variation in AD attributable to SNPs that 

overlapped with EAs and a non-significant estimate of 0.07 (SE = 0.14, p = 0.313) for 

variation in AD attributable to SNPs that were sample-specific to AAs (e.g. these markers 

include markers that passed QC for AAs but not for EAs).

Further examination of the additive genetic effects (i.e., due to SNPs that survive QC across 

EAs and AAs) for AD in EAs and AAs partitioned by chromosomes (see Supplementary 

Figure S2) indicated that longer chromosomes did not account for significantly more 

phenotypic variation among overlapping markers than shorter ones (For EAs: R2=0.15, 

β=6.96×10−11, t(20)=1.87, p=0.076; For AAs: R2=0.01, β=1.98×10−11, t(20)=0.39, 

p=0.704).

Genetic correlation attributable to overlapping markers across EAs and AAs

Bivariate analyses revealed a significant genetic correlation between EAs and AAs (rG-SNP = 

0.77, SE = 0.46, p = 0.030) for SNPs that survived QC across both ancestral groups. Overall, 

this suggests that there is moderate evidence for convergence across EA and AAs for a 

subset of genomewide SNPs that contribute to the additive genetic variance of AD.

Discussion

Results from this study are, to our knowledge, the first to directly compare the SNP-based 

genetic liability for AD across individuals of African and European ancestry. The inclusion 

of racial and ethnic minority groups in genetic research (when used appropriately and 

ethically) is essential to progress in understanding the role that genetic and socio-cultural 

factors play in racial and ethnic health disparities. Large scale GWA studies have primarily 

concentrated on European populations, with very little representation of individuals of 

African ancestry (Need and Goldstein, 2009). Yet despite the tendency for genetically 

informed studies to focus on populations of European ancestry, psychological research has 

found that compared to their European American counterparts, African Americans initiate 

drinking at an older age and report overall lower rates and levels of use and higher levels of 

abstinence (Quality, 2016; Zapolski et al., 2014). Further, African American drinkers report 

significantly higher rates of social consequences and alcohol dependence symptoms 

compared to European Americans (Mulia et al., 2009).

Evidence from the current study supported a moderately shared genetic liability for AD 

across EA and AA groups, yet empirical research has identified social, cultural, health, 
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environmental, historical, economic and numerous other demographic factors that contribute 

to observed disparities in AD risk and consequences among African Americans (Zapolski et 

al., 2014). It is also possible that the intersectionality of multiple other risk factors (Mereish 

and Bradford, 2014), as well as specific individual and environmental influences, may 

impart an impact on risk for substance use above and beyond the observed genetic effects 

(McGue et al., 2000). Although the present study does not explore sociocultural factors, it 

lays the groundwork for beginning to explore these potential sources of variation in the 

context of genetic variation (i.e., Gene x Environment interaction) that likely have similar 

patterns of effects in European populations.

SNP-based heritability estimates found in this study are consisted with previous work using 

the GREML method using various parameterizations of the alcohol dependence phenotype. 

Our findings indicate that 27% of the phenotypic variation of the alcohol dependence factor 

in EAs and 30% of the phenotypic variation in AA was attributable to additive genetic 

effects when examining a set of the same genetic markers across the two populations. These 

estimates are similar to the 30% SNP-based heritability estimated by Palmer and colleagues 

(2015) using an alcohol dependence factor in a sample of EAs, within the margin of error. 

Recent studies that utilized alcohol dependence diagnosis, rather than the factor score, have 

estimated a heritability of 21% in a Caucasian sample (Vrieze et al., 2013) and 22% in an 

African American sample (Yang et al., 2014b). Kos and colleagues (2013) recently 

estimated that 38% and 35% of the variation in AD diagnosis risk is attributable to common 

SNPs in EAs and AAs, respectively; however, their study did not limit the SNPs used in the 

estimations of GRMs to be overlapping across populations and thus different markers for 

each ancestral groups could have contributed to the observed genetic variance in the 

heritability estimates. For example, the current data suggested that SNPs that differentially 

survive QC across our groups may contribute an additional 7% genetic variance to the AA 

AD factor and an additional 10% genetic variance to the EA AD factor. Though the 

statistical significance of the AA value is precluded by the large standard error, power 

simulations conducted by Visscher et al. (2014) indicate that with a larger sample, the 

standard error will decrease rendering the effect significant. As such, the additional sources 

of genetic variance for EAs or AAs beyond what is captured through overlapping markers 

may simply represent variance attributable to markers that are more easily detected in one 

group relative to the other.

The significant genetic correlation found in this study suggests that the allelic architecture 

influencing the AD factor for EAs and AAs is partly shared across the two populations. In a 

single population, genetic correlations arise from pleiotropy or co-segregations of causal 

variants among genes influencing multiple traits. In the current analysis, the significant 

genetic correlation represents these genetic contributions influencing a single trait (AD) 

measured across two populations. Consistent with the conclusion reached by de Candia et al. 

(2013) and given that it is unlikely that different causal variants across ancestral populations 

would be in LD with the same SNP, the common causal effects tagged by the SNPs that 

survive QC in both 1KGP-defined ancestral groups likely predate the European-African 

divergence. It should be noted that we assume, by design, that variation that postdates the 

European-African divergence would emerge as markers that differentially survive QC across 
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both ancestral groups. Future work should examine the AD factor in other populations to 

delineate whether these results apply broadly.

One important consideration for the results of this study, and for future studies, is the fact 

that genetic markers may have different allele frequencies and different effect sizes in 

relation to a given phenotype across different ancestral populations. Aside from removing 

rare variants (MAF < 0.01), the current study did not control for differences in allele 

frequencies across populations during the calculation of genetic correlation. It is possible 

that genetic influences on AD may be mitigated or exacerbated by differences in allele 

frequency across populations (e.g., variants that are more common in one population may 

contribute more to the overall effect), rendering our estimates to be slightly biased. However, 

one recent study concluded that when variants common in both populations are examined, 

differences in allele frequencies impart minimal effects on genetic correlation based solely 

on effect sizes (Brown et al., 2016). The GREML approach used in this study treats SNP 

effects as statistically random and therefore does not estimate individual effects, but future 

work could tease out individual SNP-effects to determine which markers contribute the 

largest effects. Another point of considerations is that the present study focused on common 

biallelic variants that were present across both ancestral populations, little is known about 

how rare variation (e.g., copy number variants, multiallelic makers, exome variation) 

contributes to AD. Kos et al. (2013) show support for modest effects of rare and uncommon 

loci on the susceptibility for AD that were captured from GWAS signals and then 

aggregated.

In summary, the demonstration that (1) approximately 60% of the genetic variation for AD 

that is tagged by measured and retained genome-wide SNPs is shared across EAs and AAs, 

and (2) additional sources of genetic variation may be captured by studying variants that 

differentially survive QC in one population but not the other. Overall, these observations 

underscore the reciprocal value of whole genome alcohol studies of ethnically divergent 

populations, such as such as Native Americans and Asians that have been well characterized 

phenotypically.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flow chart of data preparation and imputation.
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Figure 2. 
Scatterplots of genetic principal components of the SAGE sample data plotted with 1000 

Genomes Reference Panel ancestral groups data.

Note: EV = eigenvalue; 1000 Genomes Referance Panel ancestral groups included: AFR = 

African; AMR = Americas; DATA = SAGE sample data; EAS = East Asian; EUR = 

European; SAS = South Asian.
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Figure 3. 
Confirmatory factor analysis of DSM-IV Alcohol Dependence among individuals of African 

or European ancestry.

Note: AD = alcohol dependence; AA = African ancestry; EA = European ancestry; Sx1 = 

Tolerance, Sx2 = Withdrawal, Sx3 = Use longer than intended, Sx4 = Failure to quit, Sx5 = 

Great time spent using/recovering, Sx6 = Activities foregone, Sx7 = Continued use despite 

problems.

Brick et al. Page 16

Addict Biol. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Brick et al. Page 17

Ta
b

le
 1

.

D
es

cr
ip

tio
n 

of
 s

am
pl

es
 a

gg
re

ga
te

d 
to

 id
en

tif
yi

ng
 g

en
et

ic
 f

ac
to

r 
re

la
te

d 
to

 a
lc

oh
ol

 d
ep

en
de

nc
e

St
ud

y
N

D
es

cr
ip

ti
on

St
ud

y 
of

 A
dd

ic
tio

n:
 

G
en

et
ic

s 
an

d 
E

nv
ir

on
m

en
t 

(S
A

G
E

)

4,
31

6
A

 m
ul

ti-
et

hn
ic

 s
am

pl
e 

of
 u

nr
el

at
ed

 in
di

vi
du

al
s 

fr
om

 th
re

e 
la

rg
e,

 c
om

pl
em

en
ta

ry
 d

at
a 

se
ts

 d
es

ig
ne

d 
to

 s
tu

dy
 d

ru
g 

ad
di

ct
io

n:
 th

e 
C

ol
la

bo
ra

tiv
e 

St
ud

y 
on

 th
e 

G
en

et
ic

s 
of

 A
lc

oh
ol

is
m

 (
C

O
G

A
),

 th
e 

Fa
m

ily
 S

tu
dy

 o
f 

C
oc

ai
ne

 D
ep

en
de

nc
e 

(F
SC

D
) 

an
d 

th
e 

C
ol

la
bo

ra
tiv

e 
G

en
et

ic
 S

tu
dy

 o
f 

N
ic

ot
in

e 
D

ep
en

de
nc

e 
(C

O
G

E
N

D
).

A
lc

oh
ol

 D
ep

en
de

nc
e 

G
W

A
S 

in
 E

ur
op

ea
n-

 a
nd

 
A

fr
ic

an
 A

m
er

ic
an

s 
(Y

al
e 

St
ud

y)

2,
90

9
A

 c
as

e-
co

nt
ro

l s
tu

dy
 f

oc
us

in
g 

on
 A

A
s 

an
d 

E
A

s 
w

ho
 m

ee
t D

SM
-I

V
 c

ri
te

ri
a 

fo
r 

A
D

. T
he

 s
am

pl
e 

w
as

 c
ol

le
ct

ed
 o

ve
r 

th
e 

co
ur

se
 o

f 
on

go
in

g 
pr

oj
ec

ts
 th

at
 f

oc
us

ed
 o

n 
ov

er
sa

m
pl

in
g 

of
 a

lc
oh

ol
 d

ep
en

de
nt

 A
A

s 
an

d 
al

so
 in

cl
ud

ed
 m

ea
su

re
s 

on
 c

oc
ai

ne
 a

nd
 o

pi
oi

d 
de

pe
nd

en
ce

. T
he

 s
am

pl
e 

w
as

 o
ri

gi
na

lly
 c

ol
le

ct
ed

 to
 id

en
tif

y 
si

bl
in

g 
pa

ir
s 

su
ita

bl
e 

fo
r 

lin
ka

ge
 a

na
ly

si
s.

A
us

tr
al

ia
n 

tw
in

-f
am

ily
 

st
ud

y 
of

 a
lc

oh
ol

 u
se

 
di

so
rd

er
 (

O
Z

-A
L

C
)

6,
70

1
A

 f
am

ily
 s

tu
dy

 d
er

iv
in

g 
fr

om
 tw

o 
ge

ne
ra

l p
op

ul
at

io
n 

vo
lu

nt
ee

r 
co

ho
rt

s 
of

 tw
in

s 
in

 A
us

tr
al

ia
 to

ta
lin

g 
ov

er
 1

1,
00

0 
fa

m
ili

es
. T

w
o 

co
ho

rt
s 

of
 tw

in
s 

bo
rn

 b
et

w
ee

n 
19

40
–1

96
1 

(c
oh

or
t 1

) 
or

 1
96

4–
19

71
 (

co
ho

rt
 2

) 
w

er
e 

as
se

ss
ed

 u
si

ng
 a

 s
ha

re
d 

pr
ot

oc
ol

 to
 d

is
co

ve
r 

ge
ne

s 
re

la
te

d 
to

 a
lc

oh
ol

 u
se

. D
at

a 
fr

om
 th

es
e 

st
ud

ie
s 

w
er

e 
co

m
pi

le
d 

in
to

 a
 c

as
e-

co
nt

ro
l f

am
ily

-b
as

ed
 G

W
A

S 
th

at
 f

oc
us

ed
 o

n 
al

co
ho

l u
se

 a
nd

 d
ep

en
de

nc
e

G
en

om
e-

W
id

e 
A

ss
oc

ia
tio

n 
St

ud
y 

of
 H

er
oi

n 
D

ep
en

de
nc

e 
(H

er
oi

n 
G

W
A

S)

6,
41

0
A

 c
ol

la
bo

ra
tio

n 
of

 in
ve

st
ig

at
or

s 
fr

om
 th

e 
U

ni
te

d 
St

at
es

 a
nd

 A
us

tr
al

ia
 to

 id
en

tif
y 

ge
ne

s 
as

so
ci

at
ed

 w
ith

 h
er

oi
n 

de
pe

nd
en

ce
 u

si
ng

 a
 c

as
e-

co
nt

ro
l s

tu
dy

. D
at

a 
on

 
pa

rt
ic

ip
an

ts
 f

ro
m

 th
e 

H
er

oi
n 

St
ud

y 
w

ho
 w

er
e 

as
se

ss
ed

 fo
r d

ep
en

de
nc

e 
on

 a
lc

oh
ol

 c
on

si
st

ed
 o

f 
th

e 
fo

llo
w

in
g 

fr
om

 o
ng

oi
ng

 g
en

et
ic

 s
tu

di
es

 o
f 

su
bs

ta
nc

e 
de

pe
nd

en
ce

 c
on

du
ct

ed
 b

y 
in

ve
st

ig
at

or
s 

at
 Y

al
e 

an
d 

co
lla

bo
ra

tin
g 

in
st

itu
tio

ns
:

1
C

as
es

 (
i.e

. i
nd

iv
id

ua
ls

 w
ho

 r
ep

or
te

d 
pa

rt
ic

ip
at

io
n 

in
 p

ha
rm

ac
ot

he
ra

py
 m

ai
nt

en
an

ce
 tr

ea
tm

en
t f

or
 o

pi
oi

d 
de

pe
nd

en
ce

 a
t s

om
e 

po
in

t i
n 

th
ei

r 
lif

e)
 a

nd
 

as
se

ss
ed

 c
on

tr
ol

s 
(i

.e
. i

nd
iv

id
ua

ls
 n

ot
 d

ep
en

de
nt

 o
n 

he
ro

in
) 

fr
om

 th
e 

T
he

 C
om

or
bi

di
ty

 a
nd

 T
ra

um
a 

St
ud

y;

2
C

as
es

 (
i.e

. i
nd

iv
id

ua
ls

 d
ep

en
de

nt
 o

n 
he

ro
in

) 
fr

om
 th

e 
H

er
oi

n 
D

ep
en

de
nc

e 
in

 W
es

te
rn

 A
us

tr
al

ia
;

3
C

on
tr

ol
s 

(i
.e

. i
nd

iv
id

ua
ls

 w
ho

 w
er

e 
di

d 
no

t m
ee

t c
ri

te
ri

a 
fo

r 
ill

ic
it 

dr
ug

 d
ep

en
de

nc
e,

 b
ut

 m
ay

 h
av

e 
be

en
 d

ep
en

de
nt

 o
n 

al
co

ho
l o

r 
ni

co
tin

e)
 f

ro
m

 th
e 

O
Z

-A
L

C
 S

tu
dy

;

4
A

ss
es

se
d 

co
nt

ro
ls

 (
i.e

. i
nd

iv
id

ua
ls

 w
ho

 d
id

 n
ot

 m
ee

t c
ri

te
ri

a 
fo

r 
su

bs
ta

nc
e 

us
e 

de
pe

nd
en

ce
) 

an
d 

ca
se

s 
(i

.e
. i

nd
iv

id
ua

ls
 d

ep
en

de
nt

 o
n 

op
io

id
s 

w
ith

 
he

ro
in

 li
st

ed
 a

s 
th

e 
m

os
t u

se
d 

op
io

id
).

Addict Biol. Author manuscript; available in PMC 2019 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Brick et al. Page 18

Ta
b

le
 2

.

M
od

el
 f

it 
fo

r 
A

lc
oh

ol
 D

ep
en

de
nc

e 
fa

ct
or

s 
am

on
g 

A
fr

ic
an

 A
nc

es
tr

y 
an

d 
E

ur
op

ea
n 

A
nc

es
tr

y 
gr

ou
ps

.

M
od

el
 F

it
 I

nf
or

m
at

io
n

A
D

A
A

A
D

E
A

χ
2 (

14
)

25
9.

80
0

30
2.

64
9

p-
va

lu
e

<
0.

00
1

<
0.

00
1

C
FI

0.
98

6
0.

99
5

R
M

SE
A

 [
90

%
 C

I]
0.

08
9 

[0
.0

80
, 0

.0
99

]
0.

05
6 

[0
.0

51
, 0

.0
62

]

N
ot

e:
 A

D
 =

 a
lc

oh
ol

 d
ep

en
de

nc
e;

 A
A

 =
 A

fr
ic

an
 a

nc
es

tr
y;

 E
A

 =
 E

ur
op

ea
n 

an
ce

st
ry

; C
FI

 =
 c

on
fi

rm
at

or
y 

fi
t i

nd
ex

; R
M

SE
A

 =
 r

oo
t m

ea
n 

sq
ua

re
 e

rr
or

 o
f 

ap
pr

ox
im

at
io

n.

Addict Biol. Author manuscript; available in PMC 2019 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Brick et al. Page 19

Ta
b

le
 3

.

D
em

og
ra

ph
ic

s 
of

 s
am

pl
e 

da
ta

 b
y 

an
ce

st
ra

l g
ro

up
.

E
A

A
A

N
%

N
%

Se
x M

al
e

34
67

53
.2

2%
11

22
51

.0
9%

F
em

al
e

30
48

46
.7

8%
10

74
48

.9
1%

St
ud

y SA
G

E
22

38
34

.3
5%

83
3

37
.9

3%

Y
A

L
E

53
8

8.
26

%
13

63
62

.0
7%

O
Z

-A
L

C
98

6
15

.1
3%

0
0.

00
%

H
er

oi
n

27
53

42
.2

6%
0

0.
00

%

M
SD

M
SD

A
ge

40
.1

6
10

.4
2

40
.4

8
8.

84

N
ot

e:
 E

A
 =

 E
ur

op
ea

n 
an

ce
st

ry
; A

A
 =

 A
fr

ic
an

 a
nc

es
tr

y;
 N

 =
 s

am
pl

e 
si

ze
; M

 =
 m

ea
n;

 S
D

 =
 s

ta
nd

ar
d 

de
vi

at
io

n.

Addict Biol. Author manuscript; available in PMC 2019 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Brick et al. Page 20

Ta
b

le
 4

.

It
em

 e
nd

or
se

m
en

t a
nd

 p
ol

yc
ho

ri
c 

co
rr

el
at

io
ns

 o
f 

D
SM

-I
V

 A
lc

oh
ol

 D
ep

en
de

nc
e 

fo
r 

ea
ch

 a
nc

es
tr

al
 g

ro
up

.

Sy
m

pt
om

%
N

C
or

re
la

ti
on

A
fr

ic
an

 A
nc

es
tr

y
1.

2.
3.

4.
5.

6.

 
1.

 T
ol

er
an

ce
47

%
10

33

 
2.

 W
ith

dr
aw

al
53

%
11

70
0.

66

 
3.

 L
on

ge
r 

th
an

 in
te

nd
ed

58
%

12
79

0.
70

0.
63

 
4.

 A
tte

m
pt

 to
 q

ui
t

56
%

12
38

0.
76

0.
68

0.
69

 
5.

 T
im

e 
sp

en
t

57
%

12
51

0.
69

0.
89

0.
68

0.
74

 
6.

 A
ct

s 
fo

re
go

ne
33

%
72

4
0.

66
0.

59
0.

66
0.

68
0.

67

 
7.

 C
on

tin
ue

d 
us

e
46

%
99

8
0.

69
0.

66
0.

66
0.

71
0.

70
0.

72

E
ur

op
ea

n 
A

nc
es

tr
y

 
1.

 T
ol

er
an

ce
49

%
28

80

 
2.

 W
ith

dr
aw

al
26

%
16

60
0.

58

 
3.

 L
on

ge
r 

th
an

 in
te

nd
ed

57
%

32
78

0.
67

0.
71

 
4.

 A
tte

m
pt

 to
 q

ui
t

40
%

26
08

0.
65

0.
75

0.
74

 
5.

 T
im

e 
sp

en
t

30
%

16
56

0.
60

0.
86

0.
71

0.
72

 
6.

 A
ct

s 
fo

re
go

ne
25

%
14

21
0.

62
0.

82
0.

73
0.

75
0.

86

 
7.

 C
on

tin
ue

d 
us

e
41

%
22

92
0.

65
0.

78
0.

78
0.

75
0.

76
0.

85

Addict Biol. Author manuscript; available in PMC 2019 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Brick et al. Page 21

Ta
b

le
 5

.

U
ni

va
ri

at
e 

SN
P-

he
ri

ta
bi

lit
y 

[h
2 SN

P 
(S

E
)]

 o
f 

A
D

 f
ac

to
r 

fo
r 

E
A

s 
an

d 
A

A
s.

h2 SN
P
 G

en
e 

se
t 

A
h2 SN

P
 G

en
e 

se
t 

B
To

ta
l S

N
P

-H
er

it
ab

ili
ty

E
ur

op
ea

n 
A

nc
es

tr
y

0.
17

 (
0.

05
)*

**
0.

10
 (

0.
04

)*
*

0.
27

 (
0.

05
)a

A
fr

ic
an

 A
nc

es
tr

y
0.

24
 (

0.
15

)*
0.

07
 (

0.
14

)
0.

30
 (

0.
15

)a

N
ot

e:
 T

ab
le

 p
re

se
nt

in
g 

th
e 

un
iv

ar
ia

te
 S

N
P-

he
ri

ta
bi

lit
y 

of
 A

D
 f

ac
to

rs
 f

or
 E

A
s 

an
d 

A
A

s 
us

in
g 

su
bs

et
s 

of
 S

N
Ps

 (
G

en
e 

se
t A

 c
om

pr
is

es
 S

N
Ps

 th
at

 s
ur

vi
ve

 w
ith

in
-a

nc
es

tr
al

-g
ro

up
 q

ua
lit

y 
co

nt
ro

l p
ro

ce
du

re
s 

[Q
C

] 
ac

ro
ss

 b
ot

h 
po

pu
la

tio
ns

; G
en

e 
se

t B
 in

cl
ud

es
 S

N
Ps

 th
at

 d
if

fe
re

nt
ia

lly
 s

ur
vi

ve
 Q

C
 a

cr
os

s 
an

ce
st

ra
l g

ro
up

s;
 T

ot
al

 S
N

P-
he

ri
ta

bi
lit

y 
re

fl
ec

ts
 th

e 
ge

no
m

ew
id

e 
ef

fe
ct

s 
of

 G
en

e 
se

ts
 A

 &
 B

 w
ith

in
 e

ac
h 

an
ce

st
ra

l g
ro

up
).

 N
ot

at
io

ns
:

* p 
<

 0
.0

5,

**
p 

<
 0

.0
1,

**
* p 

<
 0

.0
01

;

a si
gn

if
ic

an
ce

 te
st

 n
ot

 a
va

ila
bl

e 
fo

r 
to

ta
l h

er
ita

bi
lit

y 
in

 m
od

el
, a

s 
th

e 
lik

el
ih

oo
d 

ra
tio

 te
st

 is
 c

on
du

ct
ed

 o
nl

y 
on

 th
e 

sp
ec

if
ic

 v
ar

ia
nc

e 
co

m
po

ne
nt

s 
w

ith
in

 th
e 

m
od

el
.

Addict Biol. Author manuscript; available in PMC 2019 February 01.


	Abstract
	Introduction
	Methods
	Sample
	Assessments
	Genotyping, Quality Control, and Genetic Imputation
	Imputation preparation.
	Identify major ancestral populations within sample data using the 1KGP reference sample.
	Subset original data based on identifed population groups and prepare data for imputation..

	Imputation of genotypes in identified EAs and AAs (separately).
	Submit data for imputation.
	Retrieve, compile, and reduce imputed data.

	Data preaparation for analysis.
	Merge all study data together within each population and conduct QC.
	Identify unique and overlapping SNPs across ancestral groups and construct genetic-relatedness matrices of unrelated individuals.


	Derivation of Phenotypes and Sample Characteristics
	Estimation of variance/covariance explained by the SNPs


	Results
	Prevalence of alcohol dependence items across ancestral groups
	Phenotypic variance attributable to AD among EAs and AAs
	Genetic correlation attributable to overlapping markers across EAs and AAs

	Discussion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.

