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INTRODUCTION

Urinary bladder is controlled by the central and peripheral ner-
vous system to store and void urine. The voiding dysfunction 
may develop due to internal or external trauma, diseases, or in-
juries and is treated through various approaches of behavioral 
modification, pharmacotherapy, intradetrusor injections of 
onabotulinum toxin A (Botox, Allergan Inc., Irvine, CA, USA), 
or reconstructive surgery [1-6]. For patients with poor out-

comes from the existing traditional treatment approaches, neu-
romodulation is well-established as an alternative, novel treat-
ment option for voiding dysfunction [7-10]. 
  Neuromodulation was introduced initially in the late 1870s 
to treat lower urinary tract dysfunction by directly applying 
electrical stimulation on the bladder using a transurethral elec-
trode. Later, the scope of stimulation research transitioned 
away, from directly targeting the organ of interest to targeting 
the peripheral and sacral nerves. An implantable sacral elec-
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Neuromodulation was introduced for patients with poor outcomes from the existing traditional treatment approaches. It is 
well-established as an alternative, novel treatment option for voiding dysfunction. The current system of neuromodulation uses 
an open-loop system that only delivers continuous stimulation without considering the patient’s state changes. Though the con-
ventional open-loop system has shown positive clinical results, it can cause problems such as decreased efficacy over time due 
to neural habituation, higher risk of tissue damage, and lower battery life. Therefore, there is a need for a closed-loop system to 
overcome the disadvantages of existing systems. The closed-loop neuromodulation includes a system to monitor and stimulate 
micturition reflex pathways from the lower urinary tract, as well as the central nervous system. In this paper, we reviewed the 
current technological status to measure biomarker for closed-loop neuromodulation systems for voiding dysfunction. 
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trode, which the development began in the early 1980s by Tan-
agho et al. [11], provided a basis for the concept of contempo-
rary sacral neuromodulation technology and the conventional 
device (Medtronic InterStim, Medtronic, Minneapolis, MN, 
USA) [12,13]. Additionally, around this time, McGuire et al. 
[14] discovered the inhibition of bladder overactivity by electri-
cal stimulation of the tibial nerve. This became a basis for the 
concept of posterior tibial nerve stimulation (PTNS), which is 
widely used for the treatment of overactive bladder [15]. 
  Such aforementioned neuromodulation systems can be cate-
gorized into either an open- or a closed-loop paradigm [16-18]. 
While the closed-loop system of neuromodulation uses a sen-
sor that detects and records various symptom-related signals, 
the open-loop system does not use a sensor and stimulates con-
tinuously. Accordingly, the relevant parameters, such as dura-
tion, amplitude and frequency of applied electric stimulation, 
remain constant in the open-loop system. In the closed-loop 
system, on the other hand, the signals recorded or detected are 
considered as biomarkers, which are relevant to the physiology, 
pathology, biochemistry, state of disease and many others. Be-
cause physicians need to track and monitor the clinical status of 
a patient attentively and acquire the optimal set of stimulation 
parameters for treatment via a trial-and-error approach, the 
open-loop system cannot flexibly adjust the preset parameters, 
in accordance with the pathophysiological changes of the disor-
der in real time. On the other hand, the closed-loop system can 
analyze the measured biomarkers, and automatically and dy-
namically adjust the stimulation, all in accordance with the 
changing state of the disease and patient. Although the existing 
open-loop neuromodulation system continues to be a success-
ful option for treatment, the closed-loop neuromodulation has 
profound potentials to treat and improve on voiding dysfunc-
tion in a more optimized sense. 
  Cardiac pacemaker was the first implantable electrical stimu-
lation devices and a long-standing and successful history in the 
field of closed-loop neuromodulation [19,20]. In 1958, Lillehei 
and Bakken first introduced a battery-powered external pace-
maker and reported it to be effective in 18 patients [21,22]. For 
20 years, the pacemaker was designed in an open-loop manner 
to deliver constant electric pulses for treatment. In 1981, Rick-
ards and Norman conceived the idea that pacing rate could be 
controlled by detection of the evoked response [22,23]. This be-
came the foundation of today’s closed-loop cardiac pacemaker. 
When technological advancements were made to enable the 
cardiac pacemaker to receive data from the heart in real time, 

new methods of treatment, such as implantable cardiac defibril-
lation, came into use as well [24]. Deep brain stimulation 
(DBS), which is now widely used in the patients with severe 
neurological disorders, also was recognized for its excellent 
clinical efficacy. Initially, DBS was used in the form of an open-
loop system; however, the open-loop form is consistently stim-
ulated without consideration for the patient’s dynamic status, 
and again requires the physician to manually adjust the stimu-
lation parameters on a regular basis. Such could cause brain 
overstimulation or fewer benefits due to unnecessary stimula-
tions. Therefore, many researchers have been investigating to 
advance in developing a closed-loop DBS system using various 
biomarkers, and are optimistic as to provide the maximized 
positive effects to the patients in need of the DBS treatment so-
lution [25-29]. 
  Though many research studies have demonstrated that the 
sacral neuromodulation is effective for treating voiding dys-
function, these studies applied preset stimulation protocols, 
without considering the dynamic nature of patient status or 
monitoring the physiological data in real time. No devices to 
date have applied the neuromodulation technology for voiding 
dysfunction by integrating the closed-loop feedback control 
[13,30,31]. PTNS is an alternative neuromodulation modality. 
It was investigated for its efficacy in different patient groups, 
and was shown to be approximately 40%–70% effective in treat-
ing the overactive bladder and urinary retention in particular 
[32-38]. The treatment using the current PTNS is typically ad-
ministered once per week for 12 weeks, and is followed by the 
maintenance therapy if the patient shows any positive effect. 
This system, however, cannot function with the closed-loop 
control that can monitor the stimulation effect simultaneously 
and continuously, and has the disadvantage of relying solely on 
the physician’s experience to achieve the optimized effect on a 
patient. 
  The closed-loop neuromodulation includes a system to 
monitor and stimulate micturition reflex pathways from the 
lower urinary tract, as well as the central nervous system. In ad-
dition, it is a fully automated system for which the patient does 
not need to provide a trigger. Such closed-loop feedback con-
trol aims to mimic the normal function of voiding by neuro-
modulation of the micturition reflex pathways. It is important 
to identify and measure suitable biomarkers to implement the 
closed-loop neuromodulation system. Therefore, in order to 
acquire the closed-loop control, it is technologically necessary 
to develop ways to monitor bladder biomarkers accordingly. In 
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this paper, we will review the current technological status to 
measure the relevant biomarker for voiding dysfunction. 

WHAT ARE SOME CANDIDATE BIOMARKERS 
FOR A CLOSED-LOOP SYSTEM?

Stimulation for controlling voiding function can be conducted 
either in the open- or closed-loop. The continuous stimulation 
in the open-loop system is effective in the inhibition of detrusor 
contractions and the recovery of bladder capacity. It should be 
noted, however, that the long-term, persistent stimulation can 
cause problems, such as decreased efficacy due to neural habit-
uation, higher risk of tissue damage, and decreased battery life 
over time. Considering such issues, many researches underline 
the need to develop a novel approach of integrating the closed-
loop control. And, therefore, the search for and validation of 
appropriate feedback biomarkers are crucial.
  The urinary bladder has 2 important functions: storage of 
urine and emptying. Disturbances of the storage function may 
result in lower urinary tract symptoms, such as urgency, fre-
quency, and urge incontinence, as the components of the over-
active bladder syndrome. The overactive bladder syndrome, 
which may be due to involuntary contractions of the smooth 
muscle of the bladder (detrusor) during the storage phase, is 
caused by increased pressure due to involuntary contraction. 
Therefore, the bladder pressure and contraction not only give 
physicians valuable insights into the overall health of a patient’s 

bladder, but also important information in controlling micturi-
tion. Biomarkers that reliably reflect bladder events, such as 
bladder contraction or bladder pressure, can be one of candi-
dates in implementing the closed-loop system to control mictu-
rition function (Table 1).
 

HOW BIOMARKERS ARE MEASSURED FOR 
THE CLOSED-LOOP SYSTEM?

The technology of measuring biomarkers has been developed 
because of the importance for the closed-loop feedback control 
system that can overcome the limits of conventional open-loop 
neuromodulation. In determining the methods of measuring 
biomarkers for the closed-loop system, it is important to focus 
on the feasibility of processing data, therapeutic purpose and 
considering pain. We will review the current technological sta-
tus to measure these biomarkers for the closed-loop system. 

Electromyography 
The bladder contracts as its smooth muscle undergoes mem-
brane depolarization to void urine. The electromyography 
(EMG) can be recorded from both the skin surface and subcu-
taneously, as well as intramuscularly. The signals simultaneously 
begin at the start of muscle contraction.The EMG from the 
bladder, the urethra, and the anal sphincter can be used to de-
tect and quantify bladder events [39,40]. Though it had been 
difficult to acquire such signals accurately, due to low signal-to-

Table 1. Detection method of biomarkers for closed loop feedback neuromodulation system		

Biomarker Group (yr) Detection method

Bladder contractions Rutter et al. (2018) [56] B�ladder contraction prediction model using sparse regression based on external urethral 
sphincter electromyographic activity

Majerus et al. (2017) [55] P�iezoelectric catheter-free pressure sensor to detect the bladder contraction in suburotheli-
al bladder location

Opisso et al. (2011) [53] E�lectromyography (EMG) was used to detect the bladder contractions in external urethral 
sphincter

Horvath et al. (2010) [40] E�MG algorithm provided to detection of bladder contractions in external anal sphincter for 
conditional stimulation

Wenzel et al. (2005) [42] Electroneurography activity for the bladder contraction detection in the pudendal nerve trunk

Bladder pressure Ross et al. (2018) [57] Multiunit recordings to decode the bladder pressure from sacral-level dorsal root ganglia 

Khurram et al. (2017) [61] Suprapubic bladder catheters were implanted for saline infusion and the bladder pressure

Kim et al. (2017) [62] Implantable sensor using the resistor ladder network to measure bladder volume

Majerus et al. (2017) [55] Implantable wireless bladder pressure sensor for closed-loop neuromodulation system

Young et al. (2015) [60] Implantable sensor for bladder pressure chronic monitoring by wireless recharging system 
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noise ratio in the past, the recent advancements in electrode 
and recording technology now allows data acquisition with 
high accuracy. 

Electroneurography 
Physiologically, the micturition activity involves coordination 
between the central, somatic and autonomic nervous systems. 
The electroneurography (ENG) recordings from the bladder af-
ferent nerves is the suitable method to measuring and monitor-
ing of the bladder volume. It is possible to measure the bladder 
volume recorded at specific spinal roots (i.e., dorsal root L6) 
that conduct signals from the bladder afferent nerves in animal 
models [41]. Furthermore, the bladder contraction can be de-
tected by measuring the electrical activity of the pudendal 
nerve trunk [39,42].

Near-Infrared Spectroscopy 
Near-infrared spectroscopy (NIRS) is a relatively new noninva-
sive technique designed to monitor hemodynamics and oxy-
genation of the bladder. It is known to be the method of provid-
ing critical information to evaluate voiding dysfunction in pa-
tients. NIRS is unique in 2 ways: firstly, it is the only method or 
tool that is able to investigate the effect of the bladder’s micro-
circulation on the maintenance of the bladder’s contraction and 
relaxation; secondly, it is able to determine the influence of the 
detrusor muscle’s hemodynamics and oxygenation on voiding 
function. Not only has NIRS been utilized in various studies of 
urological conditions for the voiding dysfunction, but it has 
been used to investigate testicular ischemic conditions, erectile 
dysfunction, and renal dysfunction as well [43-45]. In a num-
ber of human studies, NIRS can detect voiding changes with 
dynamic variation of oxygenated and deoxygenated hemoglo-

Fig. 1. A new cystometry system using a microelectromechanical system (MEMS)-based in-target bladder pressure sensor. (A) Blad-
der pressures are usually measured from water-filled lines that are connected to externally located transducers. The conventional meth-
od uses a catheter through the urethra into the bladder with a transducer in the distal end. This method is implemented with nonphysi-
ological filling state and urethra obstructed by a catheter and produce artefacts by movements and measurement errors. (B) The 
MEMS-based system is developed in a suprapubic approach to resolve the several limitations of conventional method. It consists of a 
MEMS sensor (C), custom-made sensor data logger (SDL) (D), and reference sensor probe. This in-target organ pressure sensor is su-
perior in measuring minute pressure pulses. This method is improving the quality of measurements and the option of long-term im-
plantable devices. (E) The clinical trial. MMS, medical measurements systems. Reprinted from Clausen I, et al. Sensors (Basel) 2018 Jul 
3;18(7), according to Open Access [51].
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bin from the detrusor of the bladder [46]. Recently, a miniature 
wireless device was developed that uses light emitting diodes as 
a light source rather than lasers, and the device feasibility for 
wireless bladder monitoring was confirmed in the ambulant 
subjects [47-49]. In addition, Molavi et al. [50] developed a 
wireless, wearable sensor for measuring bladder fullness using 
NIRS, and confirmed its feasibility through both in vitro and in 
vivo tests.

Implantable Bladder Sensors 
Bladder pressure is measured by direct insertion into the blad-
der through the urethra using a catheter-based sensor. Howev-
er, this method is known to be inaccurate, because its measure-
ment is affected by various factors of disturbance and resistance 
in the catheter line and the inertia of urine inside the bladder. 
In addition, after surgical intervention, this method can reduce 
the quality of life of patient and cause infection upon persistent 
use. The catheterization method is only suitable and recom-
mended for short-term measurement. With the rapid develop-
ment in microfabrication and machining, the miniaturized and 
sophisticated sensors are can be implanted into the patient’s 
bladder for a long-term monitoring. Clausen et al. [51] adopted 
a MEMS (microelectromechanical system)-based system to de-
tect the bladder pressure. This system was developed with a su-
prapubic approach to resolve the limitations of conventional 
catheterization method (Fig. 1). The implantable sensors can be 
used to acquire information for a long time. Therefore, since 
the status of the bladder can be transmitted in real time by the 
wireless catheter-free, the system can have the neuromodula-
tion used for treating bladder dysfunction in a longer time [52]. 

STUDIES OF THE TECHNOLOGY TO MEASURE 
BIOMARKERS

Bladder Contractions
Though many researchers have attempted to identify bladder 
contractions with EMG measured from various areas, such as 
the detrusor, anal sphincter, and urethral sphincter, it is difficult 
to measure bladder EMG, for the recorded signal has very small 
amplitudes and the electrodes need to be implanted in the blad-
der. The patients with voiding dysfunction have either increased 
or decreased activities of the pelvic floor and anal sphincter 
when their bladder contracts. Changes in the anal sphincter 
EMG can be expected during the bladder contraction. A study 
by Horvath et al. [40] on the patients with spinal cord injury 

externally measured the anal sphincter EMG and used an adap-
tive threshold value as a trigger for simulation, and confirmed 
positive effects of the controlled stimulation from 2 patients in 
the study. In a different study by Opisso et al. [53], EMG from 
the external urethral sphincter was used to control the stimula-
tion, and the patients with neurogenic detrusor overactivity had 
an 84% increase in bladder capacity. Accordingly, the detection 
of bladder contractions can be effectively utilized, if EMG can 
be measured in a chronically stable manner from the anal 
sphincter and the urethral sphincter muscles.
  The pudendal nerve was used as a target to detect detrusor 
contractions via afferent nerve information. Wenzel and col-
leagues [39,42] showed that a cuff-type electrode surrounding 
the pudendal nerve of a cat can be used to detect the bladder 
pressure of an average of 7 cm H2O and bladder contraction in 
1.2 seconds. They simultaneously used a urodynamic pressure 
value to verify the pudendal ENG and showed successful results 
in identifying certain bladder events. It, however, was challeng-
ing to find signals of a desired quality, since the pudendal nerve 
delivers various information, including that regarding the blad-
der, and because there was a low signal-to-noise ratio. In a hu-
man study using an electrode on the S3, it also was difficult to 
detect an accurate signal due to low signal-to-noise ratio, and to 
distinguish bladder pressure information from other signals 
while the nerve bundle received diverse information. Bruns et al. 
[54] conducted a study on the extraction of bladder filling by in-
serting microelectrode arrays in S1 and S2 of sacral dorsal root 
ganglia. They confirmed that the firing rate increases as the blad-
der fills to 11 cm H2O in its pressure; furthermore, the firing rate 
decreases to nearly zero when the bladder is empty. This was 
possible to determine because of a higher signal-to-noise ratio 
due to the isolation of sensory afferents from motor fibers within 
both S1 and S2 dorsal root ganglia, unlike those in the S3. 
  Recently, promising results have been reported from studies 
using various implantable sensors to detect and monitor blad-
der contractions more conveniently. Majerus et al. [55] devel-
oped a novel piezoelectric catheter-free pressure sensor to de-
tect bladder contractions. In feline and canine studies, the blad-
der contraction was measured from suburothelial and intralu-
minal locations, and was compared to the simultaneously mea-
sured pressure from a catheter in the bladder. They confirmed 
the correlation between the suburothelial pressure readings and 
the intravesical bladder pressure, and suggested the use of a sin-
gle-channel submucosal pressure sensor to measure the bladder 
contractions reliably (Fig. 2).
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  Recently, not only is the bladder contraction being detect-
able, but also predictable methods are being studied. Rutter et 
al. [56] developed the method for predicting bladder contrac-
tion using a time-dependent spectrogram representation of ex-
ternal urethral sphincter EMG activity. This novel method en-
abled prediction of bladder contractions to the 91% specificity 
and 96% sensitivity. It is most suitable for implementing closed-
loop system to control micturition function.

Bladder Pressure 
It is known that bladder fullness can be predicted by the pelvic 
nerve’s reaction to changing bladder capacity, because the pelvic 
nerve afferent activity is a responsive action of nerve units to 
the bladder fullness. However, because the existing method of 
using pelvic nerve afferent activity requires laminectomy to dis-
sect the L6 filaments, the sacral nerve is used instead of the pel-
vic nerve in many studies due to its relatively ease of access. 
While existing studies have attempted to estimate bladder pres-
sure from single-unit recordings of the sacral dorsal root gan-
glia, Ross et al. [57] conducted a study attempting to decode 
bladder pressure from multiunit recordings of the dorsal root 
ganglia for seven anesthetized felines. They used feature selec-
tion methods and multivariate nonlinear time series models to 
analyze the detected signals, and suggested that the most accu-
rate bladder pressure can be estimated from the nonlinear au-
toregressive moving average model. This study was the first at-
tempt to decode bladder pressure using an algorithm based on 
signals detected from nerves. 

  Many researchers have reported that bladder pressure is more 
useful for extracting long-term bladder events. Therefore, they 
are now conducted to detect bladder pressure more directly us-
ing various sensors. In the mid-1980s, Brindley and Donaldson 
[58] adopted an implantable pressure sensor for the first time to 
stimulate pudendal nerves by muscular coat contraction every 
time bladder pressure increased. This was the first attempt at a 
device of closed-loop control using bladder pressure as a bio-
marker to treat severe urinary incontinence. The early stages of 
development for an implantable bladder pressure sensor were 
unsuccessful, due to problems with sensor drift, detachment, 
loss of accuracy over time, and infection. However, with the re-
cent progress in biocompatible materials and micro-electro-me-
chanical system technologies, the resulting studies on bladder 
pressure detection are promising. Kim et al. [59] developed on a 
generic packaging method, based on encapsulating the sensor 
in medical grad polyurethane balloon, to decrease the baseline 
drift for implantable bladder sensors. Young et al. [60] devel-
oped the optimized implantable wireless battery recharging sys-
tem. In a feline model, Khurram et al. [61] developed an inte-
grated interface that can chronically monitor afferent activity of 
lower urinary tract through dorsal root ganglia during stimula-
tion of a peripheral pathway. They were able to record the affer-
ent activity of lower urinary tract continuously using penetrat-
ing microelectrode arrays inserted into pudendal nerves. Addi-
tionally, this system could yield potential uses in estimating 
bladder pressure and developing stimulation patterns and 
closed-loop control algorithms. Majerus et al. [55] developed a 

Fig. 2. Piezoelectric catheter-free pressure sensor to detect bladder contractions. The pressure measured in the submucosa correlates 
with the pressure of the bladder lumen pressures. The correlation coefficient is sufficient enough to measure bladder events such as 
detrusor contractions or abdominal compressions. Implantable sensor offers the opportunity for chronic monitoring. (A) Illustration 
of the wired pressure monitor of catheter-free, as implanted within the bladder wall. (B) Photograph of the fabricated implantable 
pressure monitor prototype. Reprinted from Majerus SJ, et al. PLoS One 2017;12:e0168375, according to Open Access [55].
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system that can monitor contraction as well as pressure wire-
lessly through chronic implantation into bladder muscles. This 
system is composed of an ultra-low-power circuit, a miniature 
pressure sensor, radio frequency antennas, and a rechargeable 
battery. Additionally, the system has undergone feasibility test-
ing through large animal models, such as female Jersey calves. 
The researchers confirmed a correlation coefficient of 0.90 be-
tween bladder pressure acquired from their system and that 
from a vesical catheter, and the accuracy of pressure was related 
to the location of implantation. Kim et al. [62] recently tested an 
implantable sensor to monitor bladder volume that resolves ex-
isting problems like drift and device degradation. They devel-
oped and applied a 4-level resistor ladder in various lengths to 
monitor the gradual change of bladder volume. In addition, the 
adoption of a polypyrrole/agarose hydrogel composite enhanced 
this sensor in terms of biocompatibility and stability. It can be 
attached easily to the bladder, minimizing bladder tissue dam-
age. Ex vivo experiments with pig bladders confirmed that resis-
tor values of 1 kΩ, 0.5 kΩ, and 0.75 kΩ correlated with bladder 
volumes of 80 mL, 130 mL, and 220 mL, respectively, and 
showed that an implantable sensor using a resistor ladder net-
work can successfully measure bladder volume.
 

CONCLUSIONS

A better future for patients that need neuromodulation treat-
ment is projected through recent technological advancements 
in neuromodulation for voiding dysfunction. In particular, 
neuromodulation using the closed-loop feedback control is ex-
pected to provide longer battery life, more efficient control of 
voiding dysfunction, and more effective voiding efficiency. The 
closed-loop systems can use biomarkers that help monitor the 
status of the bladder to maximize therapeutic benefits and min-
imize adverse effects. This is done by dynamically controlling 
stimulation type and pattern, which is fully and automatically 
programmable in accordance with the changing status of the 
patient. Furthermore, the closed-loop neuromodulation can be 
much more robust in action and can minimize the chances of 
malfunction, if the closed-loop system adopts multiple bio-
markers. While the reliable methods of sensing bladder events 
as biomarkers for voiding dysfunction are still in their early 
stages, the most promising method currently is the direct mea-
surement of bladder pressure or exact detection of bladder 
events based on analysis of afferent nerve activity. In this paper, 
we reviewed the current technological status of various closed-

loop neuromodulation systems. The treatment for voiding dys-
function using neuromodulation is promising, if biomarkers of 
bladder events can be accurately detected and controlled 
through the closed-loop systems. 
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