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Abstract

Microorganisms can be found almost anywhere, including in and on the human body. The collection of microorganisms 
associated with a certain location is called a microbiota, with its collective genetic material referred to as the microbiome. 
The largest population of microorganisms on the human body resides in the gastrointestinal tract; thus, it is not surprising 
that the most investigated human microbiome is the human gut microbiome. On average, the gut hosts microbes from more 
than 60 genera and contains more cells than the human body. The human gut microbiome has been shown to influence many 
aspects of host health, including more recently the brain.
Several modes of interaction between the gut and the brain have been discovered, including via the synthesis of metabolites 
and neurotransmitters, activation of the vagus nerve, and activation of the immune system. A  growing body of work is 
implicating the microbiome in a variety of psychological processes and neuropsychiatric disorders. These include mood 
and anxiety disorders, neurodevelopmental disorders such as autism spectrum disorder and schizophrenia, and even 
neurodegenerative disorders such as Alzheimer’s and Parkinson’s diseases. Moreover, it is probable that most psychotropic 
medications have an impact on the microbiome.
Here, an overview will be provided for the bidirectional role of the microbiome in brain health, age-associated cognitive 
decline, and neurological and psychiatric disorders. Furthermore, a primer on the common microbiological and bioinformatics 
techniques used to interrogate the microbiome will be provided. This review is meant to equip the reader with a primer to this 
exciting research area that is permeating all areas of biological psychiatry research.
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Introduction
When the Dutchman Antonie van Leeuwenhoek peered through 
his homemade microscope in the seventeenth century, he 
dubbed the kleine diertjens (tiny animals) he found there animal-
cules (Lane, 2015). The discovery that microorganisms are resid-
ing practically everywhere, including in and on humans, had a 
profound impact on medical knowledge. A short time later, the 
link between these small, bloodless animals and a diarrhea epi-
demic was suggested by Valk (Valk, 1745). In 1890, Robert Koch 

published his famous postulates in an attempt to formulate 
criteria that would establish whether a given microbe causes 
a given disease (Koch, 1876). Up until recently in medicine, we 
have regarded microorganisms as undesirable germs to be kept 
at bay. They were thought to range from pathogenic to harmless 
to humans and relevant to almost all areas of medicine.

Nonetheless, the disciplines of microbiology and psychia-
try evolved along distinct trajectories with only a few notable 
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exceptions. Infamously, the psychiatrist Henry Cotton had the 
teeth of psychiatric patients in his care removed, believing 
microbes on their teeth to be the source of their illness 
(Anderson et al., 2017). There is also a report in the British Journal 
of Psychiatry in 1910 of the successful treatment of melancho-
lia with Lactic acid bacillus (Phillips, 1910). An early adopter of 
the idea of microorganisms as beneficial was the 1908 winner 
of the Nobel Prize in Physiology and Medicine, Metchnikoff. He 
was convinced of the beneficial effects of fermented milk for 
“autointoxication” (a rather broad term encompassing a range 
of negative health outcomes, including fatigue and melancholia; 
Bested et al., 2013), so much so that it has been reported that he 
drank fermented milk daily. Despite Metchnikoff’s early hypoth-
eses regarding the potential health benefits of certain bacterial 
strains, these ideas were largely ignored for the better part of a 
century.

However, in the last decade, developments in sequencing 
technology and bioinformatics have allowed in-depth investi-
gations into the composition of complex microbial ecosystems 
as well as the metabolic and metagenomic potential of such 
systems. Ventures like MetaHIT (Qin et  al., 2010), the Human 
Microbiome Project (Methé et  al., 2012), the ELDERMET study 
(Claesson et  al., 2012), the Belgian Flemish Gut Flora Project 
(Falony et  al., 2016), and the Dutch LifeLines-DEEP (Tigchelaar 
et  al., 2015) have shed light on the bidirectional relationship 
between microorganisms and their hosts. This marks a pivotal 
change in our view of microbes. Not only do we now view micro-
organisms as a cause of disease, they are also increasingly seen 
as a cause of health (Bloomfield et al., 2016).

The largest population of microorganisms on the human 
body resides in the gastrointestinal tract. Known as the gut 
microbiota, this complex ecosystem is comprised of micro-
organisms including bacteria, fungi, and archaea from over 
60 genera (Falony et al., 2016). Recent estimates put the total 
bacterial count on an average human at around 3.0  ×  1013, 
which is just more than the estimates of human cells in the 
body (Sender et  al., 2016). In a 70-kg individual, the human 
gut microbiota would weigh in at an impressive 0.2 kg (Sender 
et al., 2016). The total genetic material of this mass is known 
as the microbiome. In terms of genes we are more than 99% 
microbial, meaning the vast majority of both genes and DNA 
found in a human originates from microbes (Qin et al., 2010). 
Perhaps the most surprising development to arise from this 
field has been the realization that the microbiome plays a key 
role in the programming of all major body systems, including 
the brain (Round and Mazmanian, 2009; Diaz Heijtz et al., 2011; 
Collins et al., 2012; Cryan and Dinan, 2012; Foster et al., 2016; 
Kundu et al., 2017).

In this review, an overview of our knowledge on the micro-
biome in relation to the brain will be provided. First, the devel-
opment and function of the microbiome will be discussed in 
the context of health and well-being. Next, we will provide the 
reader with a summary of tools used to investigate the microbi-
ome. Finally, the focus is brought to evidence for the role of the 
microbiome in states of stress and disease, including psychiatric 
disorders, age-associated cognitive decline, and neurological 
disorders. To aid the reader, a glossary is included (see Box 1). 
The overall goal of this review is to highlight the need to further 
study and better understand the microbiome, particularly with 
respect to its role in psychiatric health and disease. Not only 
does the microbiome represent a tremendously valuable thera-
peutic target for numerous psychiatric illnesses, but it is also a 
promising target for the general improvement of physical, men-
tal, and cognitive states in healthy individuals.

The “Healthy” Microbiome

It is worth reminding ourselves that we are living in a microbial 
world; microbes were here first and there has never been a time 
when the brain existed without microbes (Stilling et al., 2014). 
It makes sense to consider the human host in the context of its 
environment. While scientific reductionism is a powerful tool, a 
more holistic systems biology approach has enabled us to more 
accurately understand complex interactions (Sugihara et  al., 
2012). In this spirit, the term holobiont, describing the totality 
of the host and its microorganisms, has gained increasing trac-
tion in the field (Bordenstein and Theis, 2015; Theis et al., 2016). 
By blurring the borders between otherwise clearly defined organ 
systems, the holobiont provides a useful concept for under-
standing the many levels of interaction between the host and 
its microbiome.

Where It Began

The composition of the microbiome is not only unique to each 
individual but is also known to differ drastically throughout the 
host’s lifespan. For the most part, colonization of the human gut 
microbiome is thought to begin at birth, although this notion 
has become subject to debate based on recent reports of micro-
bial DNA in the placenta and meconium (Stout et  al., 2013; 
Aagaard et al., 2014). While these reports remain controversial 
(Perez-Muñoz et al., 2017), what is clear is that the neonate is 
exposed to the vaginal microbiome of the mother during deliv-
ery through the birth canal. In contrast, when the newborn is 
delivered via Caesarean section (C-section), it is exposed to the 
skin microbiome rather than the vaginal microbiome (Chu et al., 
2017). Consequently, the microbiome of children delivered via 
C-section differs significantly from that of children delivered 
vaginally (Dominguez-Bello et al., 2010; Dominguez-Bello et al., 
2016). Other factors, such as prematurity, breastfeeding, the 
presence of pets, parental smoking, maternal age, weight (espe-
cially obesity), and race are also known to impact the developing 
microbiome (Borre et al., 2014; Bokulich et al., 2016; Levin et al., 
2016).

They Are What You Eat

As the infant develops, it seems that some of these early fac-
tors become less influential. For example, the microbiota of 
infants born by C-section or natural delivery converges over 
time, becoming indistinguishable by 6 weeks of age (Chu et al., 
2017; Hill et al., 2017). However, one factor that continues to have 
a significant impact on microbiota composition throughout the 
lifespan is the diet of the host (David et al., 2014; Sandhu et al., 
2017). In particular, the research shows a stark contrast between 
the Western diet, with its high sugar, animal fat, and carbohy-
drate content, in comparison to a Mediterranean diet, which 
is characterized by increased variety of foods and higher fiber 
content. The microbiota profile of individuals with these differ-
ent diets is drastically different (Wu et al., 2011; De Filippis et al., 
2016). Although previous studies have segregated different mam-
malian gut microbiomes based on their compositions, known as 
enterotypes, this concept has been challenged and is still in the 
process of being refined (Costea et al., 2018). While there is still 
debate over the canonical number of enterotypes in humans, 
there is a general consensus that a division can be made between 
an enterotype enriched at the genus level in Prevotella and one 
enriched in Bacteroides. Strikingly, this difference can be related 
to dietary intake. Specifically, fiber-rich diets are associated with 
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Term Definition

16S rRNA gene/transcript sequencing Bioinformatics technique where highly conserved regions of the 16S 
rRNA gene (DNA) or transcript (cDNA) are used to identify present or 
metabolically active microbes in a sample, respectively.

Alpha diversity, beta diversity, gamma diversity Statistical terms used in ecology to describe variability of a dataset. Alpha 
diversity describes within-sample variability, while beta-diversity 
describes variability between samples. Gamma diversity is rarely 
used and describes variability between all samples in the dataset. 
Many different formulas are available that define diversity differently, 
putting different weights on aspects like the number of species, how 
rare/abundant the species are, binary presence/abundance, and even 
taxonomic distance between species.

Enterotype Name for a controversial type of microbiome classification based on the 
proportions of certain microbes.

Fecal microbiota transplantation (FMT) Treatment where subjects are colonized with processed fecal matter 
(usually from a healthy donor in clinical cases or from a specific 
clinical population of interest in experimental studies). To ensure 
grafting of the donor microbiome, antibiotics (or germ-free animals) 
are generally used to deplete the recipient microbiome prior to FMT.

Flux balance analysis (FBA) Computational technique used to predict the metabolic behavior of an 
organism. In other words, what metabolic pathways will be more or 
less active in an organism in a given environment.

Germ-free (GF) A host without a microbiome. Generally refers to mice and rats that were 
born and reared in a sterile environment to keep them from developing 
a microbiome, for the purpose of experimentation.

GreenGenes, SILVA, RDP Sequence databases and tools used to identify which microbes are 
present in a sample and their taxonomic relationships.

Holobiont Term describing the collection of a host and its microbiomes.
Host The organism (e.g., human, rodent etc.) that houses a given microbiome 

population.
Microbiome A term often used synonymously with “microbiota” but more precisely 

used to refer to the collective genome of a given microbiota.
Microbiota The collection of microorganisms found in/on a particular environment 

or living host.
PICRUSt, HUMAnN2, LEfSe, GraPhlAn, MetaPhlAn Parts of the bioBakery set, software tools developed by the Huttenhower 

lab, used to analyze microbiome data. (https://bitbucket.org/biobakery/
biobakery/wiki/Home)

Prebiotics Nondigestible foods (such as fibers) that have a beneficial effect on the 
microbiome for the host.

Principal coordinate analysis (PCoA) Statistical method used for datasets with many numerical values per 
sample, like microbiota data. The complex data are algorithmically 
converted to simpler set of values, called principal coordinates, with 
the aim of explaining variation in the data. Useful for visualizing 
differences between microbiome samples. If a principal coordinate is 
large, this is an indication it is determining a large proportion of the 
observed variance in the data.

Probiotics Live microbes that have a positive effect on host health when ingested in 
adequate quantities.

Psychobiotics Targeted interventions of the microbiome to support mental or brain 
health.

QIIME, QIIME2 Quantitative Insights Into Microbial Ecology: Software tools used to 
analyze microbiome data.

Phylum->Class->Order->Family->Genus->Species->Strain Increasingly granular taxonomic levels used to classify lifeforms. 
Frequently used in the microbiome field.

Synbiotics Synergistic combination of prebiotics and probiotics. The aim is to 
optimize treatment effects by providing both the beneficial microbes 
and the nutrients they need to survive and colonize.

Whole genome shotgun sequencing Bioinformatics technique where all DNA in a sample is sequenced to 
identify which microbes are present in a sample and their functional 
(metagenomic) potential. More expensive than 16S rRNA sequencing, 
but gives more reliable functional predictions.

Box 1. Glossary of microbiome-associated terms
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the Prevotella enterotype, reflecting the role of Prevotella species 
in production of hydrolases specialized for plant fiber degra-
dation (Purushe et al., 2010). Bacteroides, on the other hand, are 
associated with the Western diet (Costea et al., 2018).

The Microbiota-Gut-Brain Axis

The gut microbiota is known to interact with the brain indir-
ectly, in a bidirectional manner, most likely through a variety 
of pathways including vagal nerve stimulation, interaction with 
the immune system, and microbial production of human neu-
rotransmitters (see Figure 1; Cryan and Dinan, 2012; Lyte, 2014; 
Yano et  al., 2015; Schirmer et  al., 2016; Kennedy et  al., 2017). 
While the precise mechanisms of action remain unknown, evi-
dence for bidirectional communication between the microbi-
ome and the brain is clear and the impact striking.

Besides regulating brain function, the microbiome has also 
been shown to regulate the physical development of the brain 
(Dinan and Cryan, 2017b). For instance, hypermyelination of 
prefrontal cortex neurons has been observed in the brains of 

germ-free mice (Hoban et  al., 2016). Moreover, the dendrites 
of neurons in the amygdala and hippocampus of germ-free 
mice are morphologically distinct from those in control mice 
(Luczynski et  al., 2016b). In a recent study, mouse pups born 
from germ-free mothers were colonized with microbiota from 
either slow- or fast-growing human infants (Lu et al., 2018). Pups 
with microbiota from fast-growing infants showed an acceler-
ated neuronal differentiation when compared with slow-grow-
ing humanized and germ-free pups. In addition, slow-growing 
humanized mice were found to exhibit more signs of neuroin-
flammation. Finally, the microbiota-derived molecule Pglyrp2, 
which was determined to cross the blood-brain barrier, has been 
shown to influence the protein expression profile in the germ-
free mouse model (Arentsen et al., 2017).

Completing the circle, not only does targeting the gut micro-
biome influence the brain, there is research that suggests tar-
geting the brain also influences the gut microbiome. There have 
been several recent studies indicating that certain pharmaceuti-
cals, especially psychotropic agents, can shape the microbiome 
(Davey et al., 2012, 2013; Kao et al., 2018; Maier et al., 2018). The 
best evidence for psychotropic effects on the microbiota have 
been observed with antipsychotic drugs (Davey et al., 2012, 2013; 
Kao et  al., 2018). In addition, most classes of antidepressants, 
including the widely used selective serotonin receptor inhibi-
tors, have also been shown to impact the microbiota, exhibiting 
antimicrobial activity in vitro (Munoz-Bellido et al., 2000; Macedo 
et al., 2017). These findings are suggestive of a potential whole 
microbiota-gut-brain axis effect of certain psychotropics, con-
sistent with the effects of stress and psychological state on this 
axis (Cryan and Dinan, 2012; Moloney et al., 2014; Foster et al., 
2017). However, it is difficult to disentangle whether such effects 
are mediated by changes in signaling from the brain to the gut 
microbiota or, alternatively, via direct actions of the drugs on 
the microbiota. Other tools and models such as brain stimula-
tion and traumatic brain injury are now being used to establish 
brain-to-microbiota influences more directly. Brain stimulation 
research is still very much in the preliminary stages; only one 
conference abstract on this topic  has been published, which 
reported that deep transcranial magnetic stimulation improves 
symptoms of obesity by modulating gut microbiota (Ferrulli 
et  al., 2018). In a controlled experimental model of stroke in 
mice, changes in the cecal microbiota were observed within 72 
hours after brain damage was induced (Houlden et  al., 2016). 
This work replicates clinical findings from a patient popula-
tion of Chinese stroke victims who exhibited altered microbiota 
composition compared with asymptomatic controls (Yin et al., 
2015). Together, these studies highlight the substantial influence 
of the brain over the microbiota, which we are only just begin-
ning to understand.

Tools to Interrogate the Microbiome

Over the years, a plethora of different experimental models 
have been utilized to investigate the microbiome and its inter-
actions with the host. Here, some of the most common will be 
discussed. For the most part, mice and rats are used as hosts 
when modelling the microbiome. While both animals have dis-
tinct features compared with humans, there are many simi-
larities and advantages, making them the preferred models in 
most studies (Nguyen et  al., 2015). However, many other spe-
cies from drosophila (Leitão-Gonçalves et al., 2017) to zebrafish 
(Borrelli et al., 2016) and up to primates (Bailey and Coe, 1999; 
McKenney et al., 2015; Amaral et al., 2017) have also been used 
to investigate the microbiome. As the field of microbiota-brain 

Figure  1.  The gut-brain axis. Pathways of communication between the gut 

microbiome and the brain include vagal nerve stimulation, interaction with 

short-chain fatty acids, immunoregulatory elements, and tryptophan metabol-

ism. In addition, certain microbes are known to produce and secrete human 

neurotransmitters. Figure adapted from Cowan et al. (2018).
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interactions matures, we can expect that more studies will be 
carried out in healthy humans and clinical populations, which 
will further strengthen the conclusions that can be drawn from 
this line of research.

Microbiota Depletion: Germ-Free Animals and 
Antibiotics

As in all aspects of science and engineering, one of the main 
ways to confirm the importance of a specific process is to remove 
it and study the consequences. Germ-free animals represent our 
best available model for complete removal of all microorgan-
isms. This method has been instrumental in linking the micro-
biome to many key brain processes and behaviors (Diaz Heijtz 
et al., 2011; Luczynski et al., 2016a, 2016b). However, given that 
germ-free animals exhibit such dramatically abnormal neu-
rodevelopment, it is difficult to determine the precise role of 
the microbiome in said processes (Al-Asmakh and Zadjali, 2015; 
Luczynski et al., 2016a). Moreover, this is an extreme model with 
limited clinical translation.

While at first glance similar to the germ-free model, antibi-
otics represent an alternative distinct model to investigate the 
microbiome (Lundberg et al., 2016). Antibiotics have the advan-
tage that they can be used to knock out/down the microbiota 
for specified timeframes without affecting neurodevelopmen-
tal programming per se. However, as antibiotic treatments can 
negatively impact the animals’ health, it is sometimes hard to 
distinguish the side-effects of the antibiotics from the micro-
biome-driven effects (Luczynski et al., 2016a). Moreover, many 
antibiotics can cross the blood brain barrier (Nau et al., 2010), 
and caution is therefore required when interpreting studies of 
antibiotic-induced microbiota depletion.

“Friends with Benefits”: Prebiotics, Probiotics, 
Synbiotics, and Psychobiotics

While disruption of the microbiome can have a negative effect 
on the host, supplementing the microbiome has been used as 
a strategy to optimize host performance. Introducing probiotic 
microbes that are known or suspected to be beneficial is an 
intuitive way to investigate the relationship between the host 
and the microbiome. Here, it is important to note that it is likely 
not just specific microbes that may be beneficial, but the collat-
eral effects of that strain on the microbial ecosystem in given 
niches (Duran-Pinedo and Frias-Lopez, 2015). Although the term 
probiotic has gained substantial public attention and become 
part of the wider vocabulary, it is important to clarify that many 
commercially available strains marketed as probiotics have 
never been tested in clinical trials and therefore by definition 
would not meet the criteria of conferring a health benefit.

Prebiotics represent a more general way to alter microbi-
ome composition, essentially providing nutrients to encourage 
the growth of beneficial microorganisms (Gibson et  al., 2017). 
However, prebiotics are considered less specific than probiotics, 
as there is little control over which microorganisms will metab-
olize the prebiotics and which will proliferate. A growing body of 
work is now focused on combining prebiotics and probiotics to 
develop synbiotics (Ford et al., 2014). Finally, and most recently, 
the term psychobiotics has been introduced to describe tar-
geted microbiome interventions with a beneficial effect on 
mental health, which is of particular interest to the study of 
psychiatric disorders (Dinan et  al., 2013; Sarkar et  al., 2016; 
Anderson et al., 2017). Overall, these approaches are appealing 
because they can be introduced in food and drink and therefore 

provide a relatively noninvasive method of manipulating the 
microbiota. While these studies show the potential of probiot-
ics, negative studies have demonstrated that similar probiotic 
treatments can vary in effectiveness, suggesting that there are 
more factors at play than just the specific probiotic strain used 
(Hojsak et al., 2015, Mazurak et al., 2015). This conforms with 
the understanding that the behavior of a microbial strain is 
dependent on its metabolic, microbial, and host environment 
(Succurro et al., 2018).

Fecal Microbiota Transplantation (FMT)

The concept of fecal microbiome transplantation (FMT) as a 
therapeutic intervention is disrupting Western medicine com-
pletely. The procedure involves introducing fecal microbiota 
from a selected donor to the gastrointestinal tract of the recipi-
ent, with the aim of making the recipient microbiome more 
similar to that of the donor (Borody and Khoruts, 2011). When 
used as a therapeutic intervention, donors must be screened 
to ensure they are healthy, as phenotypes like obesity and 
depression have been shown to be transferable via FMT, at 
least in rodents (Turnbaugh et al., 2006; Kelly et al., 2016). FMT 
used in a preclinical setting can involve deliberately unhealthy 
donor phenotypes. The realization that patients with recurrent 
Clostridium difficile infection have a good chance to recover after 
FMT treatment represents an arguably noninvasive and cheap 
approach to an otherwise difficult to treat disease (Gianotti and 
Moss, 2017). Moreover, the potential of FMT as a clinical and 
experimental tool is reflected in the application of this approach 
to treat a wide variety of diseases (e.g., irritable bowel syndrome, 
steatohepatitis, ulcerative colitis, and even autism (Pinn et al., 
2015; Ren et al., 2015; Kang et al., 2017; Zhou et al., 2017) and 
investigations of the effects of inter-species FMT from specific 
clinical populations to experimental rodents (Arrieta et  al., 
2016). Intriguingly, FMT from young donors to middle-aged 
recipients has even been used to extend the lifespan of killifish 
(Smith et al., 2017).

Cross-Sectional Studies

One of the most widely used methods to study the microbi-
ome in humans is to assess microbiome composition across 
cohorts of clinical patients and matched controls. Thanks to the 
increasing number of such studies including the microbiome 
in their measurements, there are a large number of databases 
available for interrogation, such as the Human Pan Microbial 
Communities Database (Forster et al., 2016) and the NIH Human 
Microbiome Project (The N.  I. H. H. M. P. Working Group et al., 
2009). Here, it is important to note that it is often problematic to 
pool measurements from different databases together because 
the exact techniques used for extraction and processing of 
microbial genetic material account for a large part of the vari-
ation between samples (Clooney et al., 2016).

Analysis of the Microbiome

The field of bioinformatics is rapidly developing in response to 
the large amount of big microbiome datasets released thanks 
to Next Generation Sequencing (for a review of analysis tech-
niques, see Claesson et al., 2017). Both 16S rRNA gene sequenc-
ing and whole genome shotgun sequencing techniques allow 
for analysis of compositional analysis and functional analysis of 
the microbiome (see Figure 2). It should be noted that because of 
the highly dynamic nature of the field, it is difficult to establish 
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standard data-analysis protocols. Given the impact of both 
sequencing and in silico methods on the outcomes of analysis 
(Voigt et al., 2015; Clooney et al., 2016), we stress the importance 
of precise documentation when reporting microbiome research 
to ensure the reproducibility of findings.

Linking the Microbiome to Psychiatric 
Disorders

Given the many modes of communication between the brain 
and the gut microbiome, it is not difficult to imagine the impact 
the gut microbiome has on host mental health and illness. Here, 
we first discuss the role of the gut microbiome in stress regu-
lation, as stress is one of the most potent risk factors for psy-
chiatric illness. We then briefly discuss the current state of the 
evidence linking the microbiome to various psychiatric disor-
ders, from developmental disorders to mood, anxiety, and eating 
disorders.

The Microbiome and Stress

There is a robust association between stress, which is associ-
ated with activation of the hypothalamus-pituitary-adrenal 
(HPA) axis, and the state of the microbiome (for reviews, see  

Moloney et al., 2014; Gur et al., 2015; de Weerth, 2017; Foster et al., 
2017). A number of studies have demonstrated that stress alters 
the composition of the microbiota in a range of different hosts, 
from rats and mice (Gareau et al., 2007; O’Mahony et al., 2011; 
Golubeva et al., 2015; Bharwani et al., 2016; Burokas et al., 2017) to 
Syrian hamsters (Partrick et al., 2018), pigs (Mudd et al., 2017), and 
nonhuman primates (Bailey and Coe, 1999; Bailey et al., 2011).

In the other direction, the gut microbiome also regulates the 
stress response. In a seminal study, Sudo et al. (2004) elegantly 
demonstrated that germ-free mice exhibit elevated HPA axis 
responses to stress as measured by adrenocorticotropic hor-
mone and corticosterone. The HPA axis response was found to be 
normalized by colonization with a probiotic species but exagger-
ated by colonization with an enteropathogen in the same study. 
Similarly, probiotics have been shown to reverse stress effects in 
many studies using various animal models (Gareau et al., 2007; 
Desbonnet et  al., 2010; Bravo et  al., 2011; Ait-Belgnaoui et  al., 
2012; Barouei et al., 2012; Liang et al., 2015; Cowan et al., 2016; 
Bharwani et al., 2017; Callaghan et al., 2016). Promisingly, there 
is analogous evidence that probiotics promote stress resilience 
or reduce stress-induced physical symptoms and cognitive 
deficits in humans (Diop et al., 2008; Langkamp-Henken et al., 
2015; Kato-Kataoka et  al., 2016; Allen et  al., 2017; Wang, 2017;  
Papalini et  al., 2018). Finally, certain prebiotics have also been 
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in preparation for amplification by PCR. Using next-generation sequencing platforms like Illumina and 454 pyrosequencing, the cDNA library is digitalized. From here, 

species can be identified by clustering the sequences and comparing them with a reference database. Popular databases for this purpose are RDP, SILVA, and, while 

arguably outdated, GreenGenes. The table of identified taxa can be used for abundance analysis and comparison using metrics like alpha diversity and beta diversity, 

principal coordinate analysis (PCoA) and differential abundance to quantify differences between samples or groups of samples on platforms like QIIME2. Using this 

same table, metagenomic data can be inferred, which can be used to make predictions about the functional implications of the observed differences in microbiome 

composition.
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shown to protect against stress-induced effects on the micro-
biome, physiology, and behavior (Tarr et al., 2015; Burokas et al., 
2017).

Attention Deficit Hyperactivity Disorder (ADHD)

Diet has long been considered a potential predisposing factor 
for attention deficit hyperactivity disorder (ADHD; Jacobson and 
Schardt, 1999; Pelsser et al., 2011), and many studies testing the 
effects of elimination diets on symptoms of ADHD have pro-
duced positive outcomes (for reviews, see Jacobson and Schardt, 
1999; Millichap and Yee, 2012). Of note, a Western-style diet is 
associated with increased risk for ADHD (Howard et al., 2011). 
Given the known influence of diet on the microbiome, it has 
been proposed that the association between diet and ADHD may 
be driven by the microbiome. Providing preliminary support 
for this hypothesis, altered microbiome composition has been 
observed in a clinical cohort of adolescents and adults with 
ADHD (Aarts et al., 2017). Using predictive functional analysis, it 
was found that these differences were likely to lead to differen-
tial regulation/synthesis of dopamine precursors, changes that 
were associated with decreased reward anticipation. Finally, one 
small longitudinal randomized control study of a perinatal pro-
biotic intervention found that probiotic-treated children were 
less likely to be diagnosed with ADHD (Pärtty et al., 2015).

Autism Spectrum Disorder (ASD)

There is a strong relationship between autism spectrum disor-
ders (ASD) and gastrointestinal disorders, including high rates 
of comorbidity between these seemingly disparate diagnoses 
(Hsiao, 2014) and evidence of a correlation between the severity 
of ASD and severity of gastrointestinal complaints (Adams et al., 
2011). When examining the microbiome, several studies have 
observed differences in children diagnosed with ASD, includ-
ing relatively low representation of members of the Prevotella 
genus and other fermenting microbes compared with typically 
developing children (Kang et al., 2013). While these correlative 
studies do not provide evidence of causality (Mayer et al., 2014), 
the case for investigating microbiome-based treatments for ASD 
continues to strengthen. One recent small-scale pilot study of 
FMT for ASD showed promising results (Kang et al., 2017), while 
perinatal probiotic treatment reduced the risk for ASD (Pärtty 
et al., 2015). Moreover, preclinical studies demonstrate the cru-
cial role of the microbiota in many mouse models of autism (e.g., 
maternal immune activation, maternal high-fat diet, and the 
BTBR genetic model; Hsiao et al., 2013; Buffington et al., 2016; 
Golubeva et al., 2017) as well as specific symptoms of ASD such 
as abnormal social behavior (Desbonnet et al., 2014).

Schizophrenia

Recently, there have been calls to investigate the link between 
schizophrenia and the microbiome (Dinan et al., 2014; Severance 
et al., 2015). As in ASD, there are high rates of gastrointestinal 
problems reported in schizophrenia (Severance et al., 2015). This 
finding may be related to the proposed immune origins of the 
disorder (Patterson, 2009; van Kesteren et al., 2017) and provides 
a theoretical foundation for investigating the microbiome in 
schizophrenia, given the key role the microbiome plays in estab-
lishing and maintaining immune function (Hooper et al., 2012; 
Belkaid and Hand, 2014). A recent preliminary study of patients 
with first-episode psychosis identified differences in the micro-
biota composition, including reduced prevalence of Lactobacillus 

and Bifidobacteria species compared with healthy age-matched 
controls (Schwarz et  al., 2018). Importantly, differences in the 
microbiota were correlated with severity of negative symptoms 
and risk for remission at 12-month follow-up but did not correl-
ate with duration of antipsychotic drug treatment. Other studies 
have identified differences in the composition and functional 
potential of the oropharyngeal microbiome of individuals diag-
nosed with schizophrenia (Yolken and Dickerson, 2014; Castro-
Nallar et al., 2015). Although probiotics have been proposed as 
a potential adjunctive treatment for schizophrenia, only one 
published study has examined the efficacy of this approach. 
Dickerson et al. (2014) found no effects of probiotic treatment on 
positive or negative symptoms, although the chosen probiotic 
(Lactobacillus rhamnosus GG and Bifidobacterium animalis subs. 
lactis) reduced the risk for severe bowel problems in a small 
group of outpatients with moderate to severe schizophrenia 
symptoms.

Bipolar Disorder

It has been proposed that microbiome-mediated immune acti-
vation may contribute to the onset of bipolar disorder (Dickerson 
et al., 2017). This hypothesis seems to have originated from the 
observation that patients with bipolar mania were approximately 
twice as likely as other patients to have been recently treated 
with systemic antibiotics (Yolken et  al., 2016). Since then, evi-
dence implicating the microbiota in bipolar disorder has started 
to build. The microbiome of bipolar patients has been found to 
differ from healthy controls, at least for patients with more severe 
symptoms (Evans et al., 2017). Specifically, significant differences 
in 2 separate genera of Firmicutes were observed (one being a 
reduction in Faecalibacterium, which has also been observed in 
major depression; see below), with these and several other gen-
era correlating to symptom severity. Moreover, a recent pilot 
study has shown that probiotic supplementation reduces rates of 
rehospitalization in patients who have been recently discharged 
following hospitalization for mania (Dickerson et al., in press).

Major Depression

While the study of the microbiome in schizophrenia and bipo-
lar disorder is still in its infancy, there is stronger (and continu-
ally mounting) evidence that the microbiome plays a role in 
major depression (Foster and McVey Neufeld, 2013; Dash et al., 
2015). Germ-free mice display reduced depressive-like behav-
ior; in the forced swim test of behavioral despair, germ-free 
mice will continue to swim or attempt to escape an inescap-
able pool for longer than control mice (Zheng et al., 2016), and 
both probiotic and prebiotic treatments have been shown to 
reduce depressive-like behavior in rodent models (Desbonnet 
et al., 2010; Bravo et al., 2011; Burokas et al., 2017). These stud-
ies seem to hold translational value, with several systematic 
reviews indicating that probiotics effectively improve mood in 
humans (Huang et al., 2016; Pirbaglou et al., 2016; Wallace and 
Milev, 2017). It is worth noting, though, that one such system-
atic review found that benefits were limited to those with mild 
to moderate depression (i.e., healthy individuals did not signifi-
cantly benefit; Ng et al., 2018), which, alongside probiotic strain 
differences, may explain some of the conflicting findings in the 
attempts to translate probiotic effects to humans (Allen et al., 
2016; Kelly et al., 2017).

Clinically, several studies have found an altered micro-
bial composition in patients with major depression  
(Naseribafrouei et al., 2014; Jiang et al., 2015; Kelly et al., 2016; 
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Zheng et al., 2016). Of note, 2 studies reported a reduction in the 
relative abundance of Faecalibacterium (Jiang et al., 2015; Zheng 
et al., 2016), mirroring the results described earlier for bipolar dis-
order (Evans et al., 2017). Jiang et al. (2015) went further to iden-
tify a negative correlation between the severity of depression 
and the prevalence of Faecalibacterium. Another study reported 
lower levels of Bifidobacterium and Lactobacillus in depressed 
patients (Aizawa et al., 2016). Strikingly, when the gut microbi-
ome of depressed humans has been transferred to either rats or 
mice via FMT, the recipient animals exhibit greater depressive- 
and anxiety-like behavior compared with those that received 
FMT from healthy humans (Kelly et al., 2016; Zheng et al., 2016).

Anxiety Disorders

There is clear preclinical evidence to support a link between 
anxiety and the microbiome (Foster and McVey Neufeld, 2013; 
Malan-Muller et al., 2018). Germ-free mice and zebrafish exhibit 
reduced anxiety-like behavior (Diaz Heijtz et al., 2011; Neufeld 
et al., 2011; Clarke et al., 2013; Davis et al., 2016), although germ-
free rats exhibit more anxiety-like behavior compared to con-
ventionally colonized controls (Crumeyrolle-Arias et  al., 2014). 
Anxiety-associated microbiome differences have also been 
observed between strains of mice, with the anxious BALB/c hav-
ing a distinct microbiome profile compared with the more resili-
ent Swiss Webster strain (Bercik et al., 2011). Furthermore, FMT 
from one mouse strain to the other was sufficient to partially 
transfer the respective behavioral phenotypes (i.e., BALB/c mice 
given NIH Swiss microbiota became less anxious, whereas NIH 
Swiss mice given BALB/c microbiota became more so).

Additional preclinical studies have shown that probiotic 
and prebiotic treatments can reduce anxiety-like behaviors in 
rodents (e.g., Bravo et al., 2011, Burokas et al., 2017). Unfortunately, 
very few studies have examined the relationship between anx-
iety and the microbiome in clinical populations. A single, small 
study of a South African population revealed specific phylum-
level differences in the microbiome for those diagnosed with 
posttraumatic stress disorder compared with trauma-exposed 
controls (Hemmings et al., 2017). Aside from this correlational 
study, there have been 2 small intervention studies showing 
that probiotics reduce self-reported anxiety in healthy individu-
als (Messaoudi et  al., 2011) and in a clinical group presenting 
with chronic fatigue syndrome (Rao et al., 2009).

Obsessive-Compulsive Disorders (OCD)

While there have been no direct investigations (as of yet) into the 
microbiome in obsessive-compulsive disorder (OCD) patients, 
several researchers have speculated that there may be a link 
(Rees, 2014; Turna et al., 2016). This hypothesis is based on 2 lines 
of observation. First, it has been noted that many of the risk 
factors for onset of OCD are also known to disrupt the microbi-
ome, including stress, pregnancy, and antibiotic use (Rees, 2014). 
Second, there is preclinical evidence that OCD-like behavior in 
rodents (frequently measured using the marble burying test, 
which aims to assess repetitive, compulsive behaviors, one of the 
core symptoms of OCD) can be modified by microbial treatments, 
including germ-free environments and probiotic treatments 
(Nishino et al., 2013; Kantak et al., 2014; Savignac et al., 2014).

Eating Disorders

Perhaps unsurprisingly, given their highly impoverished nutri-
ent intake, the microbiota composition of patients suffering 

from anorexia nervosa differs significantly from that of healthy 
individuals (Kleiman et al., 2015; Morita et al., 2015; Mack et al., 
2016). In the first of these studies, by Kleiman et al. (2015), differ-
ences in anxiety, depression, and eating disorder psychopathol-
ogy were all correlated to microbiota composition. Furthermore, 
microbiota composition changed during treatment and weight 
gain, moving closer to the composition observed in healthy con-
trol groups, although never fully recovering (Kleiman et al., 2015; 
Mack et al., 2016).

At the other end of the spectrum, the gut microbiome has 
also been linked to diet-induced obesity (Torres-Fuentes et al., 
2017). Obese individuals exhibit differences in microbiota com-
position (Ley et  al., 2005; Turnbaugh et  al., 2006, but see also 
Sze and Schloss, 2016). Importantly, a causal contribution of 
the microbiome to diet-induced weight gain has been demon-
strated using mice with a humanized microbiome (Turnbaugh 
et  al., 2009). In these mice, switching from a plant-based diet 
to a Western-style diet caused rapid shifts in the microbiome 
composition (within 24 hours) and subsequent weight gain. 
Furthermore, the increased adiposity associated with the 
Western diet could then be transferred to naïve mice via FMT. 
Offering hope that we might utilize the microbiome to enact 
positive weight changes as well, it has been hypothesized that 
the microbiome may contribute to weight loss following bariat-
ric surgery, based on evidence that such surgeries induce micro-
biome alterations in both humans and rodents (Peat et al., 2015; 
Torres-Fuentes et al., 2017).

In patients suffering from disorders that are associated 
with altered eating habits, it will continue to be difficult to 
disentangle the direction of microbiome-mental health rela-
tionships. It is intriguing to consider this problem; is eating 
behavior “manipulated” by an altered microbiome (as has 
been suggested by some, e.g., Alcock et al., 2014), does eating 
behavior drive microbiome changes and thereby alter gut-
brain communication, or both? When considering this ques-
tion, it is worth noting that changes in eating habits are not 
limited to eating disorders but are observed across a variety of 
psychiatric disorders (including anxiety, ADHD, ASD, depres-
sion; Yannakoulia et  al., 2008; Ptacek et  al., 2014), while epi-
demiological studies show that healthy dietary patterns are 
associated with better mental health (O’Neil et al., 2014). It is 
therefore an important question that deserves ongoing atten-
tion. Regardless of the initial cause of these disruptions, the 
opportunity to utilize dietary or other microbiome-targeting 
interventions to improve mental health holds great appeal 
and scientific potential.

Linking the Microbiome to Cognitive 
Impairment

The gut microbiome has been found to play a role in cognitive 
function, both in age-related cognitive decline as well as general 
cognitive performance. Mice that were treated with antibiot-
ics showed decreased hippocampal neurogenesis (Möhle et al., 
2016). Cessation of neurogenesis has been linked to general cog-
nitive impairment and the onset of Alzheimer’s disease (Costa 
et al., 2015; Hollands et al., 2017). FMT from healthy mice restored 
neurogenesis in the antibiotic-exposed animals, but only when 
combined with specifically selected probiotics (Möhle et  al., 
2016). In patients suffering from hepatic encephalopathy, where 
the patient exhibits neuropsychiatric abnormalities as a result 
of liver dysfunction, the presence and concentration of certain 
microbes was correlated to the severity of cognitive impairment 
(Bajaj et al., 2011).
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Just as development in early life has been found to parallel 
gut microbiome development, several age-related diseases have 
been similarly linked to the state of the microbiome in both ani-
mals (Scott et al., 2017) and humans (Claesson et al., 2012). In a 
study in elderly Koreans, administration of Lactobacillus helveti-
cus IDCC3801 improved performance in cognitive fatigue tests 
(Chung et  al., 2014). A  decline in microbial diversity is associ-
ated with a concomitant increase in microglial activation cor-
related to brain mass differences in the mouse (Von Bernhardi 
et al., 2015). This contributes to an age-associated inflammatory 
response known as inflammaging, which in turn has been asso-
ciated with neurodegenerative diseases such as Alzheimer’s 
and Parkinson’s diseases (Franceschi et al., 2007). Furthermore, 
the microbiome has been shown to regulate microglia activa-
tion; one study showed that germ-free mouse brains expressed 
defective microglia, which was partially rescued upon restor-
ation of the microbial community to control levels (Erny et al., 
2015; Möhle et al., 2016; Thion et al., 2018).

Linking the Microbiome to Neurological 
Disorders

Alzheimer’s Desease (AD)

In addition to being involved in the general phenomenon of 
inflammaging, the gut microbiome has also been found to 
be involved in specific age-related illnesses. In patients with 
Alzheimer’s disease (AD), Hill et  al. (2014) reported a correl-
ation between colonization of certain pathogenic microbes such 
as Toxoplasma and Clamydophila pneumoniae and progression 
of the disease. Furthermore, patients suffering from AD were 
shown to have a less diverse microbiome with distinct com-
positional differences compared with the healthy microbiome 
(Vogt et al., 2017). In the same study, the researchers theorized 
about the high prevalence of proinflammatory, lipopolysaccha-
ride-producing, gram-negative bacteria such as Bacteroides in AD 
patients and their role in pathogenesis of the disorder (Cattaneo 
et  al., 2017). Finally, germ-free or antibiotic-treated transgenic 
AD mouse models fail to develop plaques (Harach et al., 2017; 
Minter et al., 2017).

Parkinson’s Disease (PD)

There is a growing emphasis on the role of the gut-brain axis in the 
onset of Parkinson’s disease (PD; Dinan and Cryan, 2017a; Perez-
Pardo et al., 2017). A number of studies have shown alterations 
in the microbiome in PD (Scheperjans et al., 2015; Keshavarzian 
et  al., 2015; Heintz-Buschart et  al., 2018; Qian et  al., 2018; Sun 
et al., 2018). When mice were colonized with the microbiota of 
PD patients via FMT, they developed motor deficits and neuroin-
flammation, 2 hallmark symptoms of PD (Sampson et al., 2016). 
Additionally, symptoms improved when the mice were treated 
with antibiotics. Large-scale investigations using the extensive 
patient records in Denmark and Sweden have shown that vagot-
omy (or more specifically truncal vagotomy), which removes one 
of the major routes for microbiota to brain communication, is 
protective against PD (Svensson et al., 2015; Liu et al., 2017).

Multiple Sclerosis (MS)

The immune-related neurological disease multiple sclerosis 
(MS) has been convincingly linked to alterations in the micro-
biome (Berer et al., 2011; Wang and Kasper, 2014; Tremlett and 
Waubant, 2018). When the microbiome of patients diagnosed 

with MS was transferred to mice, the animals began exhibiting 
autoimmune encephalomyelitis, a main symptom of MS (Berer 
et al., 2017). Certain specific microbial species, like Akkermansia 
muciniphila and Acinetobacter calcoaceticus, have been identified 
that are present at significantly higher levels in patients suf-
fering from MS than in the healthy population (Cekanaviciute 
et al., 2017). When these strains were introduced to mice, they 
again exhibited symptoms of autoimmune encephalomyelitis.

Conclusions

There are many ways in which the microbiome is connected to 
brain health. Oftentimes, it is hard to differentiate where the 
causative elements lie: in the brain or in the gut or in other sys-
tems such as the immune system. Therefore, it is not advisable 
to regard the two organs as separate systems but rather as a 
vastly more complex ecosystem of molecules, microbes, and 
neurons that should be approached with an interdisciplinary 
modus operandi. In the context of health and disease, the role of 
the microbiome as an ecological entity should not be ignored. 
Many afflictions discussed here are accompanied by altera-
tions in the composition, or even stability, of the microbiome. 
Rather than the effect of individual taxa in a vacuum, their role 
in maintaining homeostasis within the microbiome deserves 
more scientific attention. Recently the role of guilds, taxonom-
ically distinct but functionally related microbes that are associ-
ated with metabolic roles of the microbiome, has been stressed 
(Banerjee et  al., 2018). Reinforcing the important role of diet 
in maintenance of the microbiota-gut-brain axis, food intake, 
especially dietary fiber, plays an important role in stabilizing 
these guilds (Zhao et al., 2018). Dietary interventions are gaining 
momentum as a plausible and modifiable target for improving 
mental health via the microbiome (Jacka, 2017; Jacka et al., 2017).

Considering the numerous illnesses that are impacted by the 
microbiome, it is hard to argue against further research to estab-
lish the precise underlying mechanisms involved. A comprehen-
sive understanding of the mechanisms regulating the gut-brain 
axis in health and disease would be of tremendous benefit in 
predicting the efficacy of novel psychobiotics as well as poten-
tial off-target effects of traditional psychotropics. Developments 
in artificial intelligence and modelling seem promising in this 
regard. Techniques like flux balance analysis have been imple-
mented to predict the growth medium required for 2 given micro-
biota to co-occur. There are still many challenges ahead of us, like 
how to handle the massive amounts of data that will be generated 
from mechanistic studies of the complex microbiome community.

For now, simply considering the role of the microbiome in a 
given disorder could be hugely beneficial. This would not only 
encourage us to keep up to date with current developments in 
microbiome research but will also help us understand and per-
sonalize treatments. After all, “just a gut feeling” seems to be 
more substantial than the saying might imply.
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