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ABSTRACT: An experiment was conducted
to test the hypothesis that microbial xylanases
may contribute to the degradation of fiber in
wheat and wheat-based diets and in corn and
corn-based diets along the intestinal tract of
pigs. Twenty-four growing barrows (initial BW:
28.51 £ 1.86 kg) were prepared with a T-cannula
in the proximal duodenum and another T-cannula
in the distal ileum and allotted to a replicated
12 X 4 Youden square design with 12 diets and
four 18-d periods. Two diets based on corn and
soybean meal (SBM) or corn, SBM, and 30%
distillers dried grains with solubles (DDGS) were
formulated and two diets based on wheat and
SBM or wheat, SBM, and 30% wheat middlings
were also formulated. The four diets were formu-
lated without microbial xylanase, or with one of
two microbial xylanases (xylanase A or xylanase
B) for a total of 12 diets. Feces and urine were
collected on days 8 to 13, ileal digesta were col-
lected on days 15 and 16, and duodenal digesta
were collected on days 17 and 18 of each period.
The apparent duodenal digestibility (ADD),
apparent ileal digestibility (AID), and apparent
total tract digestibility (ATTD) of GE, nutri-
ents, and dietary fiber were calculated. Results

indicated that the AID of GE in corn-SBM or
wheat-SBM diets was greater (P < 0.05) than in
the corn-SBM-DDGS and wheat-SBM-wheat
middlings diets, but no difference was observed
for the AID of dietary fiber between wheat-SBM
and wheat-SBM-wheat middlings diets. The
ATTD of dictary fiber was also greater (P < 0.05)
in corn-SBM and wheat-SBM diets compared
with corn-SBM-DDGS and wheat-SBM-wheat
middlings diets, which indicates that the concen-
tration of dietary fiber may influence the degree
of fermentation of fiber. Inclusion of xylanase
A or B improved (P < 0.05) the ADD and the
ATTD of dietary fiber in wheat-based diets, indi-
cating activity of xylanase in the gastro-intestinal
tract of pigs. Inclusion of xylanase A improved
(P < 0.05) the concentration of DE and ME in
wheat-SBM-wheat middlings diets and xylanase
B improved (P < 0.05) the concentration of DE
in wheat-based diets and improved (P < 0.05) the
concentration of the ME in wheat-SBM diet. In
conclusion, the xylanases used in this experiment
improved the digestibility of dietary fiber in the
stomach and hindgut and improved the energy
status of pigs fed wheat-based diets, but not of
pigs fed corn-based diets.
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INTRODUCTION

Corn and wheat and co-products from these
grains contain considerable quantities of arabi-
noxylans (Jaworski et al., 2015), but the response
to microbial xylanases is often greater in wheat-
based diets than in corn-based diets although the
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reason for this observation has not been elucidated.
Degradation of non-starch polysaccharides in the
intestinal tract varies depending on the structure and
physicochemical characteristics of the non-starch
polysaccharides (Bach Knudsen, 2001), which indi-
cates that the rate of degradation of non-starch poly-
saccharides, and consequently the effect of microbial
xylanase, may vary among ingredients. Results of a
recent experiment indicated that most of the soluble
dietary fiber (SDF) was fermented prior to the colon,
whereas most fermentation of insoluble dietary fiber
(IDF) takes place in the colon (Jaworski and Stein,
2017). Fiber in DDGS or soybean hulls is less fer-
mentable compared with fiber in wheat middlings
further indicating that differences among different
types of fiber exist (Jaworski and Stein, 2017). It is
also possible that the type of fiber influences the site
in the intestinal tract where fiber will be fermented
and if that is the case, it is likely that microbial xyla-
nase will have different activities in different sections
of the intestinal tract. However, degradation of
individual dietary fiber fractions in corn and wheat-
based diets in different sections of the gastrointesti-
nal tract of pigs has not been reported. Therefore, an
experiment was conducted to test the hypothesis that
microbial xylanases contribute to the degradation
of fiber in wheat and wheat-based diets and in corn
and corn-based diets at different sites of the intesti-
nal tract. The objectives of the experiment were to
quantify the degradation of dietary fiber fractions in
the stomach, small intestine, and large intestine of
pigs and to determine the effect of xylanase on deg-
radation of dietary fiber fractions in corn and wheat
and their co-products.

MATERIALS AND METHODS

The protocol for this experiment was approved
by the Institutional Animal Care and Use
Committee at the University of Illinois. Pigs that
were the offspring of PIC L359 boars mated to
Camborough females (Pig Improvement Company,
Hendersonville, TN) were used.

Animals, Housing, Diets, and Experimental Design

Twenty-four growing barrows (initial BW:
28.51 £ 1.86 kg) were prepared with a T-cannula in
the proximal duodenum and another T-cannula in the
distal ileum (Stein et al., 1998). Pigs were housed indi-
vidually in metabolism crates with a fully slatted floor,
a fecal collection screen, a urine tray, a feeder, and a
nipple drinker. Feeding of experimental diets was initi-
ated 7 d after surgery. Water was available at all times.

Two diets based on corn and SBM or corn,
SBM, and 30% distillers dried grains with solu-
bles (DDGS) were formulated to meet nutrient
requirements for 25 to 50 kg growing pigs (NRC,
2012; Table 1). Two additional diets based on
wheat and SBM or wheat, SBM, and 30% wheat
middlings were also formulated. The four diets
were formulated without microbial xylanase, or
with one of two microbial xylanases (16,000 units
per kg of xylanase A or xylanase B; Danisco
Animal Nutrition-DuPont Industrial Biosciences,
Marlborough, UK) for a total of 12 diets. All diets
contained microbial phytase (1,000 phytase units
per kg; Axtra PHY; Danisco Animal Nutrition-
DuPont Industrial Biosciences, Waukesha, WI).
Titanium dioxide was included at 0.40% in all diets
as an indigestible marker.

The 24 pigs were allotted to a replicated 12 x 4
Youden square design with 12 diets and four peri-
ods using the Balanced Latin Square Designer
(Kim and Stein, 2009). Within each period, two
pigs received each diet for a total of eight replicate
pigs per diet for the four periods. The daily feed
allowance was calculated to provide 3.2 times the
estimated requirement for maintenance energy (i.e.,
197 kcal ME/kg®; NRC, 2012) and was divided
into two equal meals that were fed at 0800 and 1600
hours, respectively. All diets were fed in a meal form.
The BW of each pig was recorded at the beginning
of the experiment and at the end of each period.

Each period lasted 18 d. The initial 7 d was an
adaptation period to the diets. Feces and urine were
collected from the feed provided from days 8 to 13
following the marker to marker approach (Adeola,
2001). Ileal digesta were collected on days 15 and
16, and duodenal digesta were collected on days 17
and 18 (Gonzalez-Vega et al., 2014). Digesta were
collected by attaching a 225-mL plastic bag to the
cannula barrel, which allowed digesta to flow into
the bag. Bags were replaced every 30 min or when-
ever full. Immediately after collection, digesta were
stored at — 20 °C.

The total volume of urine was measured when
collected, and 20% of the volume was stored at —
20 °C. At the end of each collection period, urine
was thawed, filtered through cheesecloth, subsam-
pled, and freeze-dried for analysis. At the conclu-
sion of the experiment, the duodenal digesta and
ileal digesta were thawed, sub-sampled, lyophilized,
and then ground. Fecal samples were thawed,
mixed, dried for 120 h in a 65 °C drying oven, and
ground through a 1-mm screen in a Wiley Mill
(Model 4; Thomas Scientific, Swedesboro, NJ), and
then subsampled.
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Table 1. Ingredient composition and calculated chemical composition of experimental diets

Corn-SBM-
Item Corn-SBM! DDGS! Wheat-SBM Wheat-SBM-wheat middlings
Ingredient, %
Corn 71.40 47.55 — —
DDGS — 30.00 — —
Wheat — — 73.75 44.88
Wheat middlings — — — 30.00
SBM, 48% CP 24.00 18.00 22.00 21.00
Soybean oil 1.00 1.00 1.00 1.00
Limestone 1.17 1.44 1.40 1.45
Dicalcium phosphate 0.56 0.18 0.14 —
L-Lys HCI, 78% Lys 0.28 0.33 0.21 0.17
DL-Met 0.03 — — —
L-Thr 0.06 — — —
Vitamin-mineral premix? 0.30 0.30 0.30 0.30
Sodium chloride 0.30 0.30 0.30 0.30
Titanium dioxide 0.40 0.40 0.40 0.40
Phytase premix** 0.50 0.50 0.50 0.50
Calculated values®
NE, kcal/kg 2,476 2,416 2,348 2,247
CP, % 17.38 20.76 21.24 21.31
Ca, % 0.66 0.66 0.66 0.66
Standardized total tract digestible P, % 0.31 0.31 0.31 0.40
Amino acids®, %
Arg 1.01 1.04 1.12 1.23
His 0.42 0.48 0.47 0.49
Ile 0.62 0.69 0.73 0.71
Leu 1.36 2.08 1.30 1.28
Lys 0.98 0.98 0.98 0.98
Met 0.28 0.32 0.27 0.27
Met + Cys 0.56 0.61 0.62 0.61
Phe 0.74 0.87 0.89 0.86
Thr 0.59 0.60 0.60 0.60
Trp 0.18 0.17 0.24 0.24
Val 0.69 0.81 0.80 0.81

'SBM = soybean meal; DDGS = distillers dried grains with solubles.

2Provided the following quantities of vitamins and micro-minerals per kilogram of complete diet: vitamin A as retinyl acetate, 11,136 IU; vita-
min D, as cholecalciferol, 2,208 IU; vitamin E as pL-a tocopheryl acetate, 66 IU; vitamin K as menadione dimethylprimidinol bisulfite, 1.42 mg;
thiamin as thiamine mononitrate, 0.24 mg; riboflavin, 6.59 mg; pyridoxine as pyridoxine hydrochloride, 0.24 mg; vitamin B ,, 0.03 mg; p-pantoth-
enic acid as p-calcium pantothenate, 23.5 mg; niacin, 44.1 mg; folic acid, 1.59 mg; biotin, 0.44 mg; Cu, 20 mg as copper sulfate and copper chloride;
Fe, 126 mg as ferrous sulfate; I, 1.26 mg as ethylenediamine dihydriodide; Mn, 60.2 mg as manganese sulfate; Se, 0.3 mg as sodium selenite and
selenium yeast; and Zn, 125.1 mg as zinc sulfate.

3The phytase premix contained 200,000 units of microbial phytase (Axtra PHY; Danisco Animal Nutrition-DuPont Industrial Biosciences,
Waukesha, WI) per kilogram, which resulted in addition of 1,000 units per kilogram of microbial phytase in the complete diet.

“Four additional diets that were identical to the diets above were formulated by including xylanase A in the phytase premix and another four diets
were formulated by including xylanase B in the phytase premix. Each of the two xylanases was included in the premixes in quantities that provided
16,000 units of xylanase in the final diet. Both xylanases A and B were experimental xylanases produced by Danisco Animal Nutrition-DuPont
Industrial Biosciences (Marlborough, UK).

SCalculated from NRC (2012).
°Amino acids are indicated as standardized ileal digestible AA.

Chemical Analyses

All ingredients, diets, duodenal digesta, ileal
digesta, and fecal samples were analyzed for
DM (Method 930.15; AOAC Int., 2007) and ash
(Method 942.05; AOAC Int., 2007). These samples

were also analyzed for ADF and NDF using Ankom
Technology method 12 and 13, respectively
(Ankom®™® Fiber Analyzer, Ankom Technology,
Macedon, NY) and ADL using Ankom Technology
method 9 (Ankom Daisy” Incubator, Ankom
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Technology, Macedon, NY). Samples were also
analyzed for SDF and IDF according to Method
991.43 (AOAC Int., 2007) using the Ankom™*"
Dietary Fiber Analyzer (Ankom Technology,
Macedon, NY).

Samples were analyzed for CP using the com-
bustion procedure (Method 990.03; AOAC Int.,
2007) on an Elementar Rapid N-cube protein/
nitrogen apparatus (Elementar Americas Inc., Mt.
Laurel, NJ); aspartic acid was used as a calibra-
tion standard, and CP was calculated as N X 6.25.
Diets and ingredients were analyzed for AA on a
Hitachi AA Analyzer, Model No. L8800 (Hitachi
High Technologies America, Inc., Pleasanton, CA)
using ninhydrin for postcolumn derivatization and
norleucine as the internal standard (Method 982.30
E (a, b, ¢); AOAC Int., 2007). All diets and ingredi-
ents were analyzed for acid hydrolyzed ether extract
using 3N HCl on the ANKOM"“ Hydrolysis System
(ANKOM Feed Technology, Macedon, NY) fol-
lowed by crude fat extraction using petroleum ether
on an ANKOMX™5 Extractor (Method: AOCS Am
5-04; ANKOM Feed Technology, Macedon, NY).

Titanium concentration in diets, duodenal
digesta, and ileal digesta samples was analyzed
following the procedure of Myers et al. (2004). All
ingredients, diets, duodenal digesta, ileal digesta,
freeze-dried urine, and fecal samples were ana-
lyzed in duplicate for GE using bomb calorimetry
(Model 6300; Parr Instruments, Moline, 1L), with
benzoic acid used as a calibration standard. Diets
and ingredients were also analyzed for Ca and P by
inductively coupled plasma-optical emission spec-
trometry (Method 985.01 A, B, and C; AOAC Int.,
2007) after wet ash sample preparation [Method
975.03 B(b); AOAC Int., 2007].

Calculations

Values for cellulose, insoluble hemicellulose,
total dietary fiber (TDF), non-starch polysaccha-
rides, insoluble non-starch polysaccharides, and
non-cellulosic non-starch polysaccharides were cal-
culated in ingredients, diets, duodenal digesta, ileal
digesta, and fecal samples (Table 2). The apparent

Table 2. Calculation of dietary fiber components

duodenal digestibility (ADD), the apparent ileal
digestibility (AID), and the apparent total tract
digestibility (ATTD) of GE in each diet were cal-
culated (Stein et al., 2007; NRC, 2012), and the
GE in feces and urine samples was subtracted from
the GE in diets to calculate DE and ME of each
diet (Adeola, 2001). The ADD, AID, and ATTD
of DM, ash, OM, CP, ADL, ADF, NDEF, cellu-
lose, insoluble hemicellulose, IDF, SDF, TDF,
non-starch polysaccharides, insoluble non-starch
polysaccharides, and non-cellulosic non-starch pol-
ysaccharides were also calculated.

Statistical Analyses

All data were analyzed following a 2 X 2 X
3 design with two types of diets (corn based or
wheat based), two levels of fiber (low or high),
and three microbial xylanase treatments (none,
xylanase A, or xylanase B) using the MIXED pro-
cedure of SAS (SAS Inst. Inc., Cary, NC) with
pig as the experimental unit. The model included
diet, fiber, xylanase, diet X fiber, diet X xylanase,
fiber X xylanase, and diet X fiber X xylanase as
fixed effects, and pig and period as random effects.
Least square means were calculated for each inde-
pendent variable, and means were separated using
the PDIFF option. The significance among diet-
ary treatments was determined at P < 0.05 for all
analyses.

RESULTS
Ingredients and Diets

The analyzed nutrient composition of ingredi-
ents and diets was close to expected values (Tables 3
and 4). The analyzed values for xylanase in all diets
containing xylanase A or xylanase B were more
than 16,000 units of xylanase per kg. The analyzed
phytase values were between 636 and 8§28 phytase
units for all corn-based diets, close to 1,000 phytase
units per kilogram for the wheat-SBM diets, and
wheat-SBM-wheat middlings diets contained
between 1,376 and 1,549 phytase units per kg.

Item

Calculation

Cellulose

Insoluble hemicellulose

Total dietary fiber

Non-starch polysaccharide

Insoluble non-starch polysaccharide
Non-cellulosic non-starch polysaccharide

Acid detergent fiber—acid detergent lignin
Neutral detergent fiber—acid detergent fiber
Insoluble dietary fiber + soluble dietary fiber
Total dietary fiber—acid detergent lignin
Non-starch polysaccharide—soluble dietary fiber
Non-starch polysaccharide—cellulose
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Table 3. Chemical composition of ingredients
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Item Corn Corn-DDGS! Wheat ‘Wheat middlings SBM!
GE, kcal/kg 3,906 4,755 3,898 4,162 4,282
DM, % 87.08 85.40 87.47 89.58 89.24
CP (N x 6.25), % 7.29 27.71 11.32 16.61 47.56
AEE?, % 3.44 9.90 2.47 5.25 3.45
Ash, % 1.10 441 1.48 4.77 6.17
OM?, % 85.98 80.99 85.99 84.81 83.07
Ca, % ND 0.03 0.04 0.08 0.51
P, % 0.26 0.81 0.33 0.98 0.57
ADL, % 0.10 1.33 0.70 2.83 0.37
ADF, % 1.89 10.29 2.94 10.96 3.64
NDE, % 7.07 35.18 10.17 37.81 6.61
Cellulose?, % 1.79 8.96 2.24 8.13 3.27
Insoluble hemicellulose?, % 5.18 24.89 7.23 26.85 2.97
Insoluble dietary fiber, % 10.10 31.10 11.70 37.60 16.70
Soluble dietary fiber, % 0.30 1.50 1.20 1.50 1.90
Total dietary fiber?, % 10.40 32.60 12.90 39.10 18.60
Non-starch polysaccharides?, % 10.30 31.27 12.20 36.27 18.23
Insoluble non-starch polysaccharides®, % 10.00 29.77 11.00 34.77 16.33
Non-cellulosic non-starch polysaccha- 8.51 22.31 9.96 28.14 14.96
rides?, %
Indispensable AA, %
Arg 0.32 1.23 0.52 1.07 3.49
His 0.20 0.74 0.25 0.43 1.24
Ile 0.25 1.11 0.39 0.52 2.27
Leu 0.81 3.18 0.72 0.99 3.72
Lys 0.25 0.86 0.37 0.68 2.97
Met 0.15 0.52 0.17 0.24 0.66
Phe 0.33 1.25 0.47 0.63 2.42
Thr 0.24 1.05 0.31 0.51 1.84
Trp 0.06 0.21 0.13 0.20 0.68
Val 0.34 1.46 0.48 0.78 2.39
Dispensable AA, %
Ala 0.50 1.88 0.42 0.76 2.04
Asp 0.46 1.74 0.59 1.10 5.36
Cys 0.15 0.50 0.23 0.32 0.63
Glu 1.22 3.55 2.74 2.90 8.49
Gly 0.28 1.10 0.46 0.84 2.01
Pro 0.58 1.98 0.91 0.96 2.27
Ser 0.31 1.21 0.44 0.59 2.10
Tyr 0.19 0.94 0.23 0.40 1.72
Total AA, % 6.67 24.78 9.88 13.98 46.45

'DDGS = distillers dried grains and solubles; SBM = soybean meal.

*AEE = acid hydrolyzed ether extract.

3Calculated values: OM = DM—ash; cellulose = ADF—ADL; insoluble hemicellulose = NDF—ADF; total dietary fiber = insoluble dietary
fiber + soluble dietary fiber; nonstarch polysaccharides = total dietary fiber—ADL; insoluble nonstarch polysaccharides = nonstarch polysaccha-
rides—soluble dietary fiber; noncellulosic nonstarch polysaccharide = nonstarch polysaccharide—cellulose.

Apparent Duodenal, lleal, and Total Tract
Digestibility

Addition of xylanase B to the corn-SBM diet
reduced (P < 0.05) the ADD of GE, DM, and OM,
but that was not the case if added to the corn-SBM-
DDGS diets or wheat-based diets (grain source
X fiber concentration X Xxylanase interaction,

P <0.05; Table 5). Inclusion of xylanase A improved
(P <0.05) the ADD of GE, DM, and OM in wheat-
SBM-wheat middlings diets, but no difference was
observed if added to the wheat-SBM or corn-based
diets (grain source X fiber concentration X xylanase
interaction, P < 0.05). There was an interaction
(P=0.01) between fiber concentration and xylanase
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Table 4. Analyzed composition of diets
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Item Corn-based diets Wheat-based diets
Wheat-SBM-wheat middlings
Corn-SBM diets! Corn-SBM-DDGS diets Wheat-SBM diets diets
Xylanase — A? B — A B — A B — A3 B
GE, kcal/kg 3,956 3,949 3,937 4,175 4,136 4,157 3,949 3,934 3,9201 4,024 3,999 3,989
DM, % 88.37 88.07 88.16 87.70 87.34 87.40 88.22 88.31 88.41 88.95 88.57  88.53
CP (N X 6.25), % 16.72 16.33 16.26 20.06 20.12 19.55 19.04 19.55 19.93 21.28 21.54 21.21
AEE?, % 1.99 1.81 1.65 2.89 3.12 3.57 2.67 2.85 2.51 341 3.67 2.89
Ash, % 4.24 4.29 4.24 4.75 491 4.84 4.27 4.30 4.39 5.18 5.29 5.19
OM*, % 84.13 83.78 83.92 82.95 82.43 82.56 83.95 84.01 84.02 83.77 83.28  83.34
Ca, % 0.71 0.90 0.71 0.82 0.76 0.85 0.67 0.70 0.72 0.70 0.77 0.93
P, % 0.45 0.49 0.46 0.52 0.54 0.52 0.45 0.43 0.41 0.63 0.62 0.62
ADL, % 0.13 0.10 0.10 0.38 0.37 0.46 0.50 0.49 0.45 1.15 1.16 1.14
ADF, % 2.20 2.29 2.20 4.22 422 4.44 3.05 295 2.95 5.40 5.28 5.31
NDE, % 6.48 6.59 6.60 14.43 14.50 14.89 9.58 9.19 8.65 17.72 17.38  16.69
Cellulose*, % 2.07 2.19 2.10 3.84 3.85 3.98 2.55 2.46 2.50 4.25 4.12 4.17
Insoluble hemicellu- 4.28 4.30 4.40 10.21 10.28 10.45 6.53 6.24 5.70 12.32 12.10  11.38
lose*, %
Insoluble dietary 10.50 10.80 10.60 17.40 17.70 17.00 12.90 12.80 12.90 21.90 21.30  21.90
fiber, %
Soluble dietary fiber, % 0.60 0.50 0.40 1.00 1.10 1.00 1.00 1.30 1.20 1.60 1.90 1.80
Total dietary fiber*, % 11.10 11.30 11.00 18.40 18.80 18.00 13.90 14.10 14.10 23.50 23.20  24.70
Nonstarch polysaccha- 10.97 11.20 10.90 18.02 18.43 17.54 13.40 13.61 13.65 22.35 22.04  23.56
rides*, %
Insoluble nonstarch 10.37 10.70 10.50 17.02 17.33 16.54 12.40 12.31 12.45 20.75 20.14  20.76
polysaccharides*, %
Noncellulosic nonstarch 8.90 9.01 8.80 14.18 14.58 13.56 10.85 11.15 11.15 18.10 1792 19.39
polysaccharides®, %
Indispensable AA, %
Arg 1.09 1.01 1.01 1.10 1.14 1.10 1.17 1.26 1.23 1.32 1.29 1.34
His 0.45 0.43 0.43 0.52 0.54 0.53 0.48 0.49 0.48 0.51 0.51 0.52
Ile 0.76 0.71 0.71 0.83 0.87 0.84 0.82 0.85 0.83 0.84 0.82 0.85
Leu 1.51 1.45 1.46 1.97 2.03 2.02 1.41 1.46 1.43 1.45 1.42 1.47
Lys 1.11 1.07 1.04 1.16 1.23 1.16 1.12 1.17 1.19 1.13 1.16 1.19
Met 0.29 0.29 0.27 0.33 0.35 0.34 0.30 0.31 0.30 0.30 0.31 0.31
Phe 0.84 0.80 0.80 0.94 0.97 0.96 0.91 0.95 0.92 0.93 0.91 0.95
Thr 0.66 0.64 0.66 0.74 0.77 0.75 0.67 0.71 0.69 0.69 0.69 0.71
Trp 0.22 0.20 0.21 0.22 0.24 0.21 0.22 0.23 0.23 0.24 0.23 0.25
Val 0.86 0.81 0.80 0.99 1.02 0.99 0.91 0.94 0.93 0.97 0.96 0.99
Dispensable AA, %
Ala 0.86 0.83 0.83 1.15 1.18 1.16 0.78 0.81 0.79 0.85 0.85 0.88
Asp 1.68 1.56 1.56 1.68 1.74 1.70 1.69 1.80 1.74 1.77 1.75 1.83
Cys 0.27 0.25 0.24 0.33 0.34 0.33 0.30 0.32 0.32 0.32 0.33 0.35
Glu 3.02 2.85 2.85 3.19 3.31 3.30 3.90 4.07 4.01 3.88 3.90 3.99
Gly 0.70 0.67 0.66 0.80 0.82 0.79 0.79 0.83 0.82 0.86 0.89 0.91
Pro 0.96 0.94 0.96 1.28 1.30 1.29 1.19 1.22 1.22 1.15 1.19 1.21
Ser 0.72 0.69 0.68 0.84 0.87 0.86 0.79 0.84 0.81 0.80 0.81 0.83
Tyr 0.55 0.52 0.52 0.64 0.66 0.66 0.53 0.59 0.59 0.58 0.57 0.59
Total AA, % 16.62 15.78 15.75 18.78 19.45 19.05 18.05 18.90 18.59 18.65 18.65 19.23
Xylanase, units/kg — 14,856 24,875 — 13,391 25,943 — 20,420 42,556 — 19,105 40,248
Phytase, units/kg 636 711 828 677 722 654 983 859 1,052 1,549 1,376 1,410

'SBM = soybean meal.

*Xylanases A and B were experimental xylanases supplied by Danisco Animal Nutrition-DuPont Industrial Biosciences (Marlborough, UK).
SAEE = acid hydrolyzed ether extract.

Calculated values: OM = DM—ash; cellulose = ADF—ADL,; insoluble hemicellulose = NDF—ADF; total dietary fiber = insoluble dietary
fiber + soluble dietary fiber; nonstarch polysaccharides = total dietary fiber—ADL; insoluble non-starch polysaccharides = nonstarch polysaccha-
rides—soluble dietary fiber; non-cellulosic nonstarch polysaccharide = nonstarch polysaccharide—cellulose.

for the ADD of ash with xylanase A reducing the
ADD of ash in the corn-SBM diet, but xylanase B
increased the ADD of ash in the wheat-SBM diet.

The ADD of SDF was reduced if xylanase B was
added to the corn-SBM diet, but not to the corn-
SBM-DDGS diet, but for the wheat-based diets,
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no differences among treatments were observed for
the ADD of SDF (fiber concentration X xylanase
interaction, P < (0.05). Addition of xylanase B to
wheat-based diets improved (P < 0.05) the ADD
of ADF and non-cellulosic non-starch polysac-
charides, but no difference was observed if added
to the corn-based diets (grain source X xylanase
interaction, P < 0.05). Inclusion of xylanase A or
B to the wheat-based diets improved (P < 0.05) the
ADD of NDF, cellulose, insoluble hemicellulose,
IDF, TDEF, non-starch polysaccharides, and insol-
uble non-starch polysaccharides, but no difference
was observed if xylanase was added to the corn-
based diets (grain source X xylanase interaction, P
<0.05).

The ADD of CP in wheat-SBM-wheat mid-
dlings diets was greater (P < 0.05) than in wheat-
SBM diets, but no difference was observed between
corn-SBM and corn-SBM-DDGS diets (grain
source X fiber concentration interaction, P < 0.05).
The ADD of ADF in corn-SBM diets was less
(P < 0.05) than in the corn-SBM-DDGS diets, but
the ADD of ADF in wheat-SBM diets was greater
(P <0.05) than in the wheat-SBM-wheat middlings
diets (grain source X fiber concentration interaction,
P <0.05). The ADD of NDF in wheat-SBM diets
was greater (P < 0.05) than in wheat-SBM-wheat
middlings diets, but no difference was observed
between corn-SBM and corn-SBM-DDGS diets
(grain source X fiber concentration interaction,
P < 0.05). The ADD of ADL and insoluble hemi-
cellulose in corn-SBM-DDGS diets was greater
(P < 0.05) than in corn-SBM diets, but no differ-
ence was observed between wheat-SBM and wheat-
SBM-wheat middlings diets (grain source X fiber
concentration interaction, P < 0.05).

The AID of NDF, cellulose, insoluble hemi-
cellulose, and SDF in corn-SBM-DDGS diets was
greater (P < 0.05) than in corn-SBM diets, but no
difference was observed between wheat-SBM and
wheat-SBM-wheat middlings diets (grain source X
fiber concentration interaction, P < 0.05; Table 6).
The improvement in the AID of ADL and ADF
was greater (P < 0.05) if DDGS was added to the
corn-based diets than if wheat middlings was added
to the wheat-based diets (grain source X fiber con-
centration interaction, P < 0.05). The AID of ash
in wheat-SBM diets was greater than (P < 0.05)
in wheat-SBM-wheat middlings diets, but no dif-
ference was observed between corn-SBM and
corn-SBM-DDGS diets (grain source X fiber con-
centration interaction, P < 0.05). The AID of GE
in corn-based diets was greater (P < 0.05) than in
wheat-based diets and the AID of CP, IDF, TDF,

non-starch polysaccharides, insoluble non-starch
polysaccharides, and non-cellulosic non-starch
polysaccharides in wheat-based diets was greater
(P < 0.05) than in corn-based diets. The AID of
GE, DM, OM, and CP in diets without DDGS or
wheat middlings was greater (P < 0.05) than in diets
containing DDGS or wheat middlings.

Inclusion of xylanase A or B improved
(P < 0.05) the ATTD of GE, DM, OM, NDF,
insoluble hemicellulose, IDF, TDF, and insoluble
non-starch polysaccharides in wheat-based diets,
but that was not the case for corn-based diets (grain
source X xylanase interaction, P < 0.05; Table 7).
The ATTD of ash, ADF, NDF, cellulose, and insol-
uble hemicellulose in wheat-SBM diets was greater
(P < 0.05) than in wheat-SBM-wheat middlings
diets, but no difference was observed between corn-
SBM and corn-SBM-DDGS diets (grain source
X fiber concentration interaction, P < 0.05). The
reduction in ATTD of insoluble non-starch poly-
saccharides was greater (P < 0.05) if DDGS was
added to corn-based diets than if wheat middlings
was added to wheat-based diets, and the improve-
ment in ATTD of ADL was greater (P < 0.05) if
DDGS was added to corn-based diets than if wheat
middlings was added to wheat-based diets (grain
source X fiber concentration interaction, P < 0.05).

The ATTD of SDF in corn-SBM-DDGS diets
was greater (P < 0.05) than in corn-SBM diets,
but no difference was observed between wheat-
SBM and wheat-SBM-wheat middlings diets (grain
source X fiber concentration interaction, P < 0.05).
The ATTD of non-cellulosic non-starch polysac-
charides in corn-SBM diets was greater (P < 0.05)
than in corn-SBM-DDGS diets, but less (P < 0.05)
in wheat-SBM diets than in wheat-SBM-wheat
middlings diets (grain source X fiber concentra-
tion interaction, P < 0.05). The ATTD of CP and
non-starch polysaccharides in wheat-based diets
was greater (P < 0.05) than in corn-based diets and
the ATTD of CP and non-starch polysaccharides
in diets without DDGS and wheat middlings was
greater (P < 0.05) than in diets with DDGS and
wheat middlings.

Concentration of DE and ME in the Diets

The reduction in the concentration of DE and
ME was greater (P < 0.05) if wheat middlings was
added to the wheat-based diets than if DDGS was
added to the corn-based diets (grain source X fiber
concentration interaction, P < 0.05; Table 8). The
concentration of DE in wheat-based diets was
improved (P < 0.05) if xylanase B was used, but no
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Table 8. Concentration of DE and ME of diets

Diets DE, kcal’kg ME, kcal/kg
Corn-based diets
Corn-SBM 3,627 3,491
Corn-SBM + xylanase A 3,630 3,504
Corn-SBM + xylanase B 3,639¢ 3,495
DDGS 3,590¢ 3,428a0¢
DDGS + xylanase A 3,577 3,435ube
DDGS + xylanase B 3,561¢ 3,410¢
Wheat-based diets
Wheat-SBM 3,564¢ 3,410°
Wheat-SBM + xylanase A 3,555¢ 3,4200
Wheat-SBM + xylanase B 3,624 3,488
Wheat middlings 3,379¢ 3,233¢
Wheat middlings + xylanase A 3,4524 3,310¢
Wheat middlings + xylanase B 3,445¢ 3,282¢
SEM 20.28 30.10
P-values
Grain source <0.001 <0.001
Fiber concentration <0.001 <0.001
Grain source X fiber concentration <0.001 0.004
Xylanase 0.117 0.262
Grain source X xylanase 0.030 0.185
Fiber concentration X xylanase 0.146 0.322
Grain source X fiber concentration 0.165 0.504

% xylanase

difference was observed if xylanase B was added to
the corn-based diets (grain source X xylanase inter-
action, P <0.05). Inclusion of xylanase B improved
(P < 0.05) the concentration of ME in wheat-SBM
diets and xylanase A improved (P < 0.05) the con-
centration of DE and ME in wheat-SBM-wheat
middlings diets.

DISCUSSION

All diets were fortified with the same concen-
trations of microbial phytase, but it is likely that
wheat and wheat middlings contained endogenous
phytase, which resulted in the greater analyzed con-
centrations of phytase in these diets compared with
the corn-based diets. Because diets were not heat
treated, the endogenous phytase was likely intact
in the feed and although the bio-efficacy of the
endogenous wheat phytase is less than that of the
microbial phytase, the analyzed values reflect the
total concentration of microbial and endogenous
phytase. The microbial phytase and the xylanase
that were added to the diets were prepared as one
premix and the fact that phytase did not appear to
be included above the intended level indicates that
premix inclusion in the diets was as intended. The
much greater analyzed values for xylanase B com-
pared with intended levels, therefore, appears to be

a result of an unintended overage of xylanase B in
the premix.

Commercial xylanases are usually included in
diets at concentrations of ~4,000 units. The rea-
son the intended inclusion in this experiment was
16,000 units was that we hypothesized that by
including superdosing levels of xylanase we might
have a greater chance of increasing the digestibility
of energy in the corn-based diets, where a xylanase
response is often elusive. Thus, because the hypoth-
esis was that xylanase increases degradation of
fiber, we ensured that there was sufficient amount
of the enzyme even in the high-fiber diets.

The Youden square design that was used in this
experiment resulted in pigs being fed four different
diets during the experiment. This design was used
to minimize the number of animals that needed to
have intestinal cannulas installed, but the design
assumes that there is no carry-over effect from one
diet to another. The 7-d adaptation period that
was used for each diet is believed to be sufficient to
obtain a steady fermentation of fiber because it has
been demonstrated that fiber fermentation is max-
imized after 5 d of feeding a diet (Jaworski et al.,
2016). In other similar studies, a 5-d adaptation
period has been used (Kiarie et al., 2016), further
indicating that the 7-d adaptation period used in
this experiment likely was adequate.

The low ADD of GE, DM, OM, CP, and all
dietary fiber components that was observed for all
diets was expected because there is limited absorp-
tion of these components in the stomach (Wilfart
et al., 2007; Cadogan and Choct, 2015). The low
ADD of most fiber components indicates that
insoluble fiber is not fermented in the stomach.
However, it appears that, particularly for wheat-
based diets, some solubilization of non-cellulosic
non-starch polysaccharides takes place in the stom-
ach or the first part of the duodenum. The reason
some of the SDF disappeared in the stomach likely
is that some parts of fiber solubilize in the liquid
environment in the stomach, as previously reported
in sows (Planas, 1999). It appears that SDF from
wheat and wheat middlings are more soluble in the
early part of the digestive tract than SDF from corn
or corn-DDGS, but microbial xylanases do not
appear to influence solubility of dietary fiber in the
stomach of pigs fed corn-based diets.

The AID of GE in the corn-SBM diets that
was calculated in this experiment is in agreement
with values from previous experiments (Urriola
and Stein, 2012; Gutierrez et al., 2016), although
lower AID of DM and OM also has been reported
(Passos et al., 2015). Likewise, the AID of GE in
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the corn-SBM-DDGS diets was within the range
of previous estimates (Urriola and Stein, 2010;
Ndou et al., 2015; Gutierrez et al., 2016; Moran
etal., 2016; Jaworski and Stein, 2017). However, the
observation that there was no effect of xylanase sup-
plementation on the AID of GE in the corn-SBM
or DDGS diets is in contrast with previous reports,
where supplementation of xylanase improved
(Ndou et al., 2015) or reduced (Moran et al., 2016)
the AID of GE in corn-SBM-DDGS diets.

The reason the AID of GE, DM, OM, and CP
in the corn-SBM-DDGS diets was less than in corn-
SBM diets is most likely that DDGS increased the
dietary fiber concentration, thereby reducing digest-
ibility and increasing endogenous nutrient losses
(Grieshop et al., 2001; Souffrant, 2001; Urriola
and Stein, 2010). These results are in agreement
with previous data (Gutierrez et al., 2016; Jaworski
and Stein, 2017). The observation that the AID
of NDF and ADF was greater in the corn-SBM-
DDGS diets than in the corn-SBM diets is likely a
result of the fact that there was more substrate in
the corn-SBM-DDGS diets than in the corn-SBM
diets, and this observation is also in agreement with
previous data (Urriola and Stein, 2010). However,
a lack of a difference in the AID of NDF and ADF
between a corn-SBM-DDGS diets and corn-SBM
diets has also been reported (Urriola and Stein,
2010; Gutierrez et al., 2016; Jaworski and Stein,
2017). The negative AID of ADF, cellulose, and
SDF that was observed in this experiment may have
been a result of the fact that some compounds that
are secreted by the animal into the intestinal tract
are analyzed as fiber (Cervantes-Pahm et al., 2014;
Montoya et al., 2015, 2016, 2017). Likewise, the
negative AID of ADL that was observed may be a
result of cutin and other non-lignin carbohydrates
that are analyzed as lignin in the ADL procedure
(Van Soest and Wine, 1968; Cherney, 2000).

The AID of GE in the wheat-SBM diets is
in agreement with previous data (Cadogan and
Choct, 2015) and the AID of GE in the wheat-
SBM-wheat middlings diets is also in agreement
with data by Jaworski and Stein (2017), but a lower
AID of GE has also been reported (Moran et al.,
2016). There is, however, a considerable difference
in the composition of wheat middlings among sup-
pliers, which may be the reason different results for
the AID of GE have been observed. The greater
AID of GE, DM, OM, and CP that was observed
for the wheat-SBM diets than for the wheat-SBM-
wheat middlings diets is likely a result of greater
concentration of dietary fiber in wheat middlings
than in wheat and SBM, which may have resulted

in reduced digestibility of other nutrients as was
also observed for the corn-SBM-DDGS diets. The
observation that there was no difference in the AID
of fiber fractions between the wheat-SBM and
the wheat-SBM-wheat middlings diets, which has
also been reported previously (Jaworski and Stein,
2017), indicates that the fiber fractions from wheat
are fermented at the same rate regardless of the con-
centration in the diet. The low, but highly variable,
AID of dietary fiber fractions that was observed in
this experiment is in agreement with previous data
(Bach Knudsen et al., 2013; Jaworski and Stein,
2017), and reflects the fact that there is limited fer-
mentation of dietary fiber in the small intestine of
pigs. The lack of responses to the xylanases on AID
of GE or nutrients is in agreement with some pre-
vious data (Yanez et al., 2011; Moran et al., 2016),
although a positive response to xylanase has also
been reported (Diebold et al., 2004; Nortey et al.,
2007).

The observed values for ATTD of DM, GE,
CP, ADF, NDF, cellulose, and insoluble hemicel-
lulose in all diets are within the range of reported
data (Yin et al., 2000; Urriola and Stein, 2010;
Gutierrez et al., 2016; Moran et al., 2016; Jaworski
and Stein, 2017; Tsai et al., 2017) and the observed
values for the ATTD of insoluble hemicellulose,
IDF, TDF, non-starch polysaccharides, insoluble
non-starch polysaccharides, and non-cellulosic
non-starch polysaccharides are in agreement with
previous data (Jaworski and Stein, 2017). The
observation that values for the ATTD of cellulose
is greater than the ATTD of hemicellulose in corn-
SBM and corn-SBM-DDGS diets, but not in diets
based on wheat-SBM or wheat-SBM-wheat mid-
dlings indicates that the insoluble hemicellulose in
corn is less fermentable than in wheat, whereas the
cellulose in corn may be more fermentable than in
wheat. Fermentability of cellulose is related to the
proportion of amorphous cellulose, and the pres-
ent results indicate that cellulose from corn may be
more amorphous and less crystalline than cellulose
from wheat. This difference in the fermentability of
cellulose between corn- and wheat-based diets is the
reason the ATTD of ADF is similar to the ATTD
of NDF in corn-based diets, whereas the ATTD
of ADF is much less than of NDF in wheat-based
diets as was observed in this experiment.

The greater ATTD of GE, DM, CP, and OM in
the corn-SBM and wheat-SBM diets than in corn-
SBM-DDGS and wheat-SBM-wheat middlings
diets is likely a result of the greater concentration
of dietary fiber in DDGS and wheat middlings than
in corn, wheat, and SBM, which may have reduced
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nutrient digestibility in diets containing DDGS or
wheat middlings. Dietary fiber may serve as a struc-
tural barrier for digestion because of hindering
the access of digestive enzymes to starch, CP, and
possibly other nutrients (Jorgensen, 1996; Le Gall,
2009; de Vries, 2014). The observation that the
ATTD of IDF, TDF, non-starch polysaccharides,
insoluble non-starch polysaccharides, and non-cel-
lulosic non-starch polysaccharides in corn-SBM
diets is greater than in the corn-SBM-DDGS diets
indicates that these dietary fiber components in
corn are more fermentable if present in the diet in
reduced concentrations. This observation also indi-
cates that the fermentation process during ethanol
production does not solubilize or de-lignify dietary
fiber in corn, which is in agreement with data, indi-
cating that acid extrusion of DDGS did not affect
the degradation of non-starch polysaccharides in
corn DDGS (de Vries et al., 2014). The observa-
tion that the ATTD of NDF, ADF, and cellulose in
corn-based diets is not influenced by the presence
of DDGS in the diets indicates that dietary fiber
components in corn and DDGS are fermented to
the same degree regardless of the concentration in
the diet, which is likely a result of the fact that the
percentage of arabinoxylans and cellulose in the
non-starch polysaccharides of DDGS is not differ-
ent from that of corn (Jaworski et al., 2015).

The observed greater ATTD of NDF, ADF,
cellulose, insoluble hemicellulose, IDF, TDF,
non-starch polysaccharides, insoluble non-starch
polysaccharides, and non-cellulosic non-starch
polysaccharides in the wheat-SBM diets compared
with the wheat-SBM-wheat middlings diet indicates
that the fermentability of dietary fiber in wheat may
be reduced with increased fiber concentration in the
diet. The digestibility of these dietary fiber fractions
is likely influenced by their structural arrangement
in the cell wall, which makes them less susceptible to
digestive enzymes (Bach Knudsen, 1993; Jorgensen,
1996; Le Gall, 2009; de Vries, 2014).

The observation that the DE and ME in corn
diets are greater than in wheat diets was expected
because corn contains more starch and less NDF
compared with wheat (NRC, 2012). The reduction
in DE and ME with increased fiber level in the diets,
as observed in the wheat-SBM-wheat middlings
diets, is in agreement with previous data (Stewart
et al., 2013; Jaworski and Stein, 2017).

The lack of a response to xylanase in the corn-
based diets indicates that the microbial xylanases
used in this experiment are not effective in hydro-
lyzing the glycosidic and ester bonds in the arabi-
noxylans in corn and DDGS even when included

at very high concentrations. A positive response
to xylanase to both corn- and wheat-based diets
was reported (Kiarie et al., 2016), but it is possi-
ble that the lack of a response in this experiment
is because different xylanases were used. The rea-
son the response to xylanase addition to corn-
based diets was less than to wheat-based diets may
be that the arabinoxylans in corn and DDGS are
lignified, highly branched, and linked to structural
proteins, which make it difficult for microbial and
exogenous enzymes to ferment arabinoxylans and
other dietary fiber components in corn or DDGS
compared with wheat or wheat middlings (Saulnier
et al., 1995; Saha and Bothast, 1999). It is also pos-
sible that the three-dimensional structure of the
arabinoxylans in corn fiber is different from that in
wheat fiber and that this hinders xylanase activity
in corn fiber. However, because we did not measure
the three-dimensional structure of arabinoxylans in
this experiment we cannot confirm this hypothesis.
The improvement in the ADD and ATTD of some
nutrients in the wheat-SBM-wheat middlings diet
in response to both xylanases is likely a result of
increased fermentability of arabinoxylans because
the calculated ATTD of hemicellulose increased.
The observed responses to xylanase B in both
wheat-SBM and the wheat-SBM-wheat middlings
diets indicate that xylanase B may be included in
wheat-based diets to improve digestibility of nutri-
ents and fermentability of dietary fiber fractions.
The positive effects of xylanase on DE and ME in
the wheat-based diets are in agreement with previ-
ous data (Nortey et al., 2007; Olukosi et al., 2007),
although a lack of a positive response to xyla-
nase has also been reported (Yanez et al., 2011).
It is possible that this effect is not only a result of
increased utilization of carbohydrates, but may also
be related to increased digestibility of fat (Adeola
and Cowieson, 2011). The observed improvement
in both DE and ME in wheat-SBM diets and wheat-
SBM-wheat middlings diets with the inclusion of
xylanase B and xylanase A, respectively, indicates
that xylanase B may be included in wheat-based
diets with less concentration of dietary fiber and
xylanase A may be more effective in wheat-based
diets with greater concentration of dietary fiber.

CONCLUSION

Digestion of energy and fermentation of diet-
ary fiber occur mainly in the small intestine and
hindgut of the pigs, respectively. The ATTD of
dietary fiber is greater in corn-SBM and wheat-
SBM diets compared with diets containing DDGS
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or wheat middlings, which indicates that the con-
centration of dietary fiber may influence the
degree of fermentation of dietary fiber. Microbial
xylanase improved the ATTD of energy and diet-
ary fiber and the concentration of DE and ME in
wheat-based diets. The microbial xylanases used in
this experiment improved the dietary fiber digest-
ibility in the stomach and hindgut of the pigs and
improved energy status of pigs fed wheat-based
diets, but not corn-based diets.
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