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The potassium voltage-gated channel subfamily H member 2
(KCNH2) gene encodes the Kv11.1 potassium channel, which
conducts the rapidly activating delayed rectifier current in the
heart. KCNH2 pre-mRNA undergoes alternative polyadenyl-
ation and forms a functional, full-length Kv11.1a isoform if exon
15 is polyadenylated or a nonfunctional, C-terminally truncated
Kv11.1a-USO isoform if intron 9 is polyadenylated. The molec-
ular mechanisms that regulate Kv1l1.1 isoform expression are
poorly understood. In this study, using HEK293 cells and
reporter gene expression, pulldown assays, and RNase protec-
tion assays, we identified the RNA-binding proteins Hu antigen
R (HuR) and Hu antigen D (HuD) as regulators of Kv11.1 iso-
form expression. We show that HuR and HuD inhibit activity at
the intron 9 polyadenylation site. When co-expressed with the
KCNH?2 gene, HuR and HuD increased levels of the Kv11.1a iso-
form and decreased the Kv11.1a-USO isoform in the RNase
protection assays and immunoblot analyses. In patch clamp
experiments, HuR and HuD significantly increased the Kv11.1
current. siRNA-mediated knockdown of HuR protein decreased
levels of the Kvll.la isoform and increased those of the
Kv11.1a-USO isoform. Our findings suggest that the relative
expression levels of Kv11.1 C-terminal isoforms are regulated by
the RNA-binding HuR and HuD proteins.

KCNH?2 or human ether-a-go-go-related gene 1 (hERGI)
encodes the Kv11.1 voltage-gated potassium channel that con-
ducts the rapidly activating delayed rectifier K* current (IKr) in
the heart (1-4). Kv11.1 channels contribute to the repolariza-
tion of cardiac action potential, and mutations in KCNH2 cause
long QT syndrome type 2 (LQT2)? (5). KCNH2 expresses sev-
eral Kvl1.1 isoforms, including Kvll.1a, Kv11.1b, Kvll.1a-
USO, and Kv11.1b-USO (6). The Kv11.1a isoform represents
the full-length Kv11.1 channel consisting of 1159 amino acids.
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Kv11.1b lacks the first 376 amino acids of Kvl1.1a and has an
alternate 36 amino acid N terminus. The C-terminal isoforms
Kv11.1a-USO and Kv11.1b-USO contain the truncated USO C
terminus, in which the last 359 amino acids of Kvl1.1a/b are
replaced by an alternate 88 residue C-terminal end. Functional
studies have shown that Kv11.1a and Kv11.1b isoforms gener-
ate Kv11.1 currents with distinct gating properties (2—4, 7, 8),
whereas Kv11.1a-USO and Kv11.1b-USO isoforms fail to form
functional channels when expressed in mammalian cells
(9-12). The relative expression of Kv11.1 isoforms is regulated
in a tissue-specific manner (11). In the heart, two-thirds of
KCNH2 pre-mRNA are processed to the nonfunctional
Kv11.1a-USO isoform, whereas in the brain, the levels of
Kvl1l.1a and Kv11.1a-USO are similar (9, 11). The importance
of C-terminal Kv11.1 isoform expression is underscored by our
recent finding that the LQT2-causing KCNH2 mutation IVS9 —
2delA leads to a switch in the expression of Kv11.1 isoforms
from the functional Kvll.1a to the nonfunctional Kvll.la-
USO (13). Thus, the relative expression of Kvll.la and
Kv11.1a-USO isoforms plays an important role in the regula-
tion of Kv11.1 channel function and the pathogenesis of LQT2.

The C-terminal Kv11.1 isoforms are generated by alternative
polyadenylation of KCNH2 intron 9 (11). The full-length
Kvll.1a isoform is produced by the splicing of intron 9 and use
of a distal poly(A) site in exon 15, whereas the truncated
Kv11.1a-USO isoform is generated by the activation of a prox-
imal poly(A) site within intron 9. Alternative polyadenylation of
KCNH?2 pre-mRNA represents a novel posttranscriptional
mechanism that regulates Kv11.1 isoform expression and chan-
nel function. Despite extensive studies of Kv11.1 channel func-
tion, regulation of Kv11.1 isoform expression by alternative
polyadenylation is an unexplored area of Kvl1.1 channel
research.

Recent high-throughput sequencing studies reveal that
60-70% of human genes undergo alternative polyadenylation,
leading to the generation of alternative mRNA transcripts with
different coding sequences or variable lengths of 3'-untrans-
lated regions (3'-UTRs) (14). We have previously shown that
activity of the KCNH?2 intron 9 poly(A) site plays an important
role in relative expression of Kv11.1 isoforms. Elimination of
the intron 9 poly(A) site results in predominant expression of
Kvll.1a and an increase in channel current (11). Thus, factors
that modulate polyadenylation activity may lead to the regula-
tion of Kv11.1 isoform expression and channel function. Sev-
eral RNA-binding proteins have been shown to enhance or
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Figure 1. Effect of HuR, HuD, Samé68, and AUF1 on KCNH2 intron 9 pro-
cessing using a luciferase reporter construct. A, diagram of the KCNH2
minigene luciferase reporter construct. B, histogram showing the significant
increase in luciferase activity following the co-transfection of HuR or HuD
compared with vector-transfected control (**, p < 0.01;* p < 0.05,n = 4,
error bars, S.E.).

inhibit polyadenylation (15-17). One example is Hu proteins,
which are a group of RNA-binding proteins including the ubiq-
uitously expressed protein HuR and the neuron-specific pro-
teins HuB, HuC, and HuD. The primary function of Hu pro-
teins is to regulate mRNA stability by binding to AU-rich
elements (ARE) present in the 3'-UTR (18). Hu proteins have
also been reported to block poly(A) sites that contain a U-rich
sequence near cleavage sites (17). Recently, Hu proteins have
been shown to modulate alternative polyadenylation by block-
ing a proximal poly(A) site of HuR mRNA and alter the relative
expression of HuR mRNA transcripts with different lengths of
3'-UTRs (19, 20). Whether Hu proteins can regulate intronic
polyadenylation and modulate relative expression of alternative
mRNA transcripts with different coding sequences is unknown.
In the present study, we tested the hypothesis that HuR and
HuD can inhibit KCNH2 intron 9 poly(A) signal activity and
up-regulate the functional Kv11.1a isoform. Our findings sug-
gest that Hu proteins play an important role in the regulation of
the relative expression of Kv11.1 isoforms.

Results
HuR and HuD inhibit intron 9 poly(A) signal activity

As a first step in demonstrating whether Hu proteins can
regulate KCNH2 intron 9 alternative polyadenylation, we used
a reporter construct containing the Renilla luciferase gene
downstream of a splicing competent minigene composed of
human KCNH2 genomic DNA from exon 8 to exon 11 (21, 22).
In this KCNH2 minigene reporter construct, the splicing of
intron 9 would generate active luciferase and polyadenylation
of intron 9 would result in no luciferase activity (Fig. 14). We
co-transfected the reporter construct with HuR or HuD. As
shown in Fig. 1B, both HuR and HuD significantly increased the
luciferase activity. We also tested RNA-binding proteins Sam68
and AUF1. Sam68 is a KH-type RNA-binding protein that has
been reported to modulate alternative polyadenylation of
Aldhla3 pre-mRNA and AUF1 is an ARE RNA-binding protein
that generally promotes rapid decay of target mRNAs (16, 18).
Sam68 and AUF1 had no effect on the luciferase activity.
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Expression of HuR, HuD, Sam68, and AUF1 in transfected cells
was confirmed by immunoblot analysis (Fig. S1). These results
suggest that HuR and HuD, but not Sam68 and AUF1, may
inhibit intron 9 polyadenylation and promote intron 9 splicing,
leading to an increase in the luciferase activity.

To demonstrate directly that HuR and HuD inhibit KCNH2
intron 9 polyadenylation, we performed a competition assay
using a tandem poly(A) signal construct containing the KCNH2
intron 9 poly(A) signal AGUAAA and flanking sequences
(—130/+172 nt) which are positioned upstream of a relatively
strong synthetic poly(A) signal (Fig. 24 and Fig. S2). We co-
transfected HuR or HuD with the KCNH2 tandem poly(A) sig-
nal construct and performed RPA analysis using a probe spe-
cific to 249 nt of KCNH2 intron 9 (11). This probe will generate
a 158 nt fragment if the intron 9 poly(A) signal is used and a 249
nt fragment if the synthetic poly(A) signal is utilized (Fig. 2A4).
When the pcDNA3 vector was co-transfected with the tandem
poly(A) signal construct, the transcription was predominantly
terminated at the intron 9 poly(A) site (Fig. 2B). Co-transfec-
tion with HuR or HuD with the tandem poly(A) signal con-
struct resulted in decreased usage of the intron 9 poly(A) site
from 77 to 36% (HuR) or 37% (HuD), and concomitantly
increased usage of the synthetic poly(A) site from 23 to 64%
(HuR) or 63% (HuD) (p < 0.001, n = 3) (Fig. 2C). These results
indicate that HuR and HuD are able to inhibit KCNH2 intron 9
poly(A) signal activity.

HuR interacts with the downstream region of the intron 9
poly(A) signal

Hu proteins have been reported to have a strong binding
affinity to U/GU-rich sequences (17, 19, 23). The downstream
region of the KCNH2 intron 9 poly(A) signal contains U/GU-
rich elements that are important for poly(A) signal activity (21).
To test if HuR can interact with these downstream U/GU-rich
sequence elements (DSE), we carried out pulldown assays using
biotinylated RNA oligos and cell lysates from HEK293 cells (Fig.
3A and Fig. S2). The integrity of the biotinylated RNA oligos
was confirmed using denaturing polyacrylamide gel (Fig. S3).
HuR interaction with DSE was readily detected by the pulldown
assay (Fig. 34). Comparable interaction was observed when we
used a positive control RNA oligo containing a known HuR-
binding sequence in the 3'-UTR of androgen receptor mRNA
(24). We also studied the interaction of AUF1 with DSE and
found no association of AUF1 with DSE. AUF1 did show inter-
action with the 3'-UTR of androgen receptor mRNA as re-
ported previously (Fig. S4) (24). In contrast to DSE, the HuR
interaction with the upstream sequence elements (USE) was
minimal. These results indicate that HuR is able to bind to the
downstream region of the KCNH2 intron 9 poly(A) signal.

HuR inhibits the recruitment of the cleavage stimulation factor
CstF-64 to DSE

Pre-mRNA polyadenylation normally requires binding of the
CstF-64 subunit of the cleavage stimulation factor (CstF-64) to
the U/GU-rich downstream elements (17, 19). We hypothe-
sized that HuR binding to these elements may interfere with the
CstF-64 recruitment to DSE, thereby inhibiting KCNH2 intron
9 polyadenylation. We overexpressed HuR by transfecting the
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Figure 2. Inhibition of the KCNH2 intron 9 poly(A) site by HuR and HuD. A, diagram of the tandem poly(A) signal construct and a schematic presentation
of the RPA protocol. B, RPA analysis of relative usage of intron 9 poly(A) signal and synthetic poly(A) signal following the co-transfection of the tandem poly(A)
signal construct with HuR, HuD, or vector-transfected control. Yeast RNA was used as a control for the complete digestion of the probes by RNase. C, histogram
showing the usage of the intron 9 pA and synthetic pA site. RNA signals were quantified and plotted as the expression of intron 9 pA and synthetic pA relative
to the total signal (intron 9 pA+synthetic pA). Co-transfection with HuR or HuD results in the significantly decreased polyadenylation at the intron 9 pA siteand
significantly increased polyadenylation at the synthetic pA site compared with vector-transfected control (***, p < 0.001, n = 4, error bars, S.E.).

HuR-pcDNA3.1/His plasmid into HEK293 cells. Immunoblot
analysis showed that HuR was significantly overexpressed in
the nuclear extract compared with vector-transfected control
(increased 3.6-fold, p < 0.001, n = 3) (Fig. 3, Band C). We then
analyzed the CstF-64 association with the DSE RNA oligo using
the biotinylated RNA pulldown assay. The analysis of the
streptavidin-retained fraction with a CstF-64 —specific anti-
body showed that the CstF-64 interaction with DSE was signif-
icantly less efficient in the HuR overexpressed extract than in
the vector-transfected extract (Fig. 3, D and E). As a control, we
overexpressed AUF1 and showed that overexpressed AUF1 had
no effect on the CstF-64 interaction with DSE (Fig. S4). Taken
together, our results suggest that HuR interferes with CstF-64
recruitment to the DSE of the intronic polyadenylation signal,
thereby inhibiting KCNH2 intron 9 polyadenylation.

Regulation of Kv11.1 isoform expression by HuR and HuD

To test whether inhibition of intron 9 polyadenylation by
HuR and HuD leads to modulation of the Kv11.1 isoform
expression, we used a short KCNH2 gene construct (13). When
expressed in HEK293 cells, the short KCNH2 gene construct
undergoes alternative polyadenylation to generate the Kv11.1a
and Kv11.1a-USO isoforms (Fig. 44). The short KCNH2 gene
construct allows us to study the regulation of Kv11.1 isoform
expression at the mRNA, protein, and functional levels. We
transiently transfected HuR or HuD into Flp-In HEK293 cells
that stably express the short KCNH2 gene. RPA analysis
showed that transfection of HuR or HuD resulted in an increase
in the Kv11.1a transcript and a decrease in the Kv11.1a-USO
transcript (Fig. 4, B and C). This result indicates that relative
expression of Kv11.1 C-terminal isoforms can be regulated by
HuR and HuD.
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HuR and HuD up-regulate Kv11.1a channel protein on the
plasma membrane

To determine whether HuR and HuD lead to isoform switch
at the protein level, we analyzed Kv11.1 protein expression by
immunoblotting. When expressed in HEK293 cells, the short
KCNH?2 gene construct produced three protein bands at 155
kDa, 135 kDa, and 100 kDa (Fig. 54). The 155 kDa band repre-
sents the fully glycosylated mature form of Kvl1.1a, the 135
kDa band represents the core-glycosylated immature form of
Kvll.1a, and the 100 kDa band represents the core-glycosy-
lated form of Kv11.1a-USO (13). Transient transfection of HuR
or HuD into Flp-In HEK293 cells stably expressing the short
KCNH?2 gene significantly increased the level of Kvl1.1a pro-
tein and decreased the Kv11.1a-USO protein level (Fig. 5, A and
B). To determine whether up-regulation of Kvl1l.1a channel
protein by HuR and HuD leads to an increase in the cell surface
expression of the channel protein, we isolated cell surface pro-
teins using biotinylation. As shown in Fig. 5, Cand D, HuR and
HuD significantly increased the 155 kDa, fully glycosylated,
mature form of the Kvl1.1a channel, suggesting that the cell
surface density of Kv11.1a is up-regulated by HuR and HuD.

HuR and HuD increase Kv11.1 channel current

To study the functional effect of HuR- and HuD-induced
isoform switch, we performed patch clamp recordings of
Kv11.1 channel current. Cells stably expressing the short
KCNH?2 gene were transiently transfected with HuR+GFP
or HuD+GFP plasmids. Transfection of HuR+GFP or
HuD+ GFP significantly increased Kv11.1 current compared
with the GFP vector control (Fig. 64). The maximum tail
current densities in vector, HuR, and HuD were 7.2 = 1.1
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Figure 3. Interaction of HuR with intron 9 poly(A) signal downstream
sequence. A, cell lysates from HEK293 cells were incubated with biotinylated
and streptavidin bead-bound RNA probes corresponding to the DSE, the
USE, or the control HuR-binding sequence from the 3’-UTR of androgen
receptor mRNA. The RNA-bound protein fractions (E) and unbound fractions
(FT) were analyzed by immunoblotting with anti-HuR antibody. Signals were
quantified and expressed as percentage of total (FT + E) protein (n = 4). B,
immunoblot analysis of total nuclear extracts from vector or HuR transfected
cells. G, histogram showing the significant increase in HuR expression follow-
ing transfection compared with vector-transfected control (***, p < 0.001,
n = 3, error bars, S.E.). Protein bands were quantified, normalized to the tubu-
lin, and plotted as relative expression of the vector-transfected control. D,
total nuclear extracts from HEK293 cells co-transfected with vector or HUR
were incubated with biotinylated RNA oligo corresponding to DSE. Immuno-
blot analysis of RNA-bound protein fractions probed with anti-CstF-64 anti-
body. E, histogram showing the significant decrease in the interaction
between CstF-64 and DSE following HuR transfection compared with vector-
transfected control (***, p < 0.001, n = 3, error bars, S.E.). Protein bands were
quantified and plotted as relative to the interaction in the vector-transfected
control.

pA/pF (n = 7), 17.9 = 1.3 pA/pF (p < 0.001, n = 8), and
16.9 £ 1.8 pA/pF (p < 0.001, n = 7) (Fig. 6B), respectively.
These patch clamp experiments demonstrate that HuR and
HuD increase Kv11.1 channel current.

RNAi knockdown endogenous HuR reduces relative expression
ofthe Kvii.1aisoform

Although overexpression studies indicate a role of HuR in
the regulation of Kv11.1 isoform expression (Fig. 4), these
experiments did not prove that endogenous HuR contributes to
such regulation. RNAi-mediated knockdown is an important
complementary experiment to the overexpression studies. We
co-transfected HuR siRNA with the short KCNH2 gene into
HEK293 cells. The siRNA-mediated knockdown of HuR pro-
tein is shown in Fig. 7A. RPA analysis revealed that RNAi
knockdown of HuR significantly decreased the level of the
Kvll.la mRNA and concomitantly increased the level of the
Kv11.1a-USO mRNA (Fig. 7, B and C). These results indicate
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that endogenously expressed HuR plays a role in the regulation
of Kv11.1 isoform expression.

Discussion

Our present experiments reveal that HuR and HuD inhibit
the poly(A) signal in KCNH2 intron 9 and modulate relative
expression of Kvl1l.1 C-terminal isoforms. Co-expression of
the short KCNH2 gene with HuR and HuD results in a shift
from the nonfunctional Kv11.1a-USO isoform to the functional
Kvll.1laisoform and an increase in Kv11.1 current. These find-
ings suggest that RNA-binding proteins HuR and HuD play an
important role in the regulation of Kv11.1 channel function.

Alternative polyadenylation is increasingly being recognized
as an important mechanism of gene regulation (14). More than
60% of human genes contain two or more polyadenylation sites.
Alternative poly(A) signals are commonly present in tandem
within the region of the 3'-UTR, but are also frequently present
in upstream intronic regions. Although the use of tandem alter-
native poly(A) signals leads to the generation of alternate
mRNA transcripts with variable 3'-UTRs, the alternative poly-
adenylation at intronic sites results in the generation of alter-
nate mRNA isoforms with different coding sequences. It has
been reported previously that inhibition of the HuR upstream
poly(A) signal by Hu proteins results in the increased utilization
of a downstream polyadenylation site in the 3'-UTR of HuR
pre-mRNA, leading to an up-regulation of the HuR mRNA iso-
form with a longer 3'-UTR (19, 20). Our findings show that
HuR and HuD inhibit the intron 9 poly(A) signal, resulting in a
switch from the truncated Kv11.1 isoform to the full-length
Kv11.1 isoform. Thus, the present work is the first to demon-
strate that Hu proteins can inhibit intronic polyadenylation and
modulate the relative expression of the mRNA isoforms with
different coding sequences.

We found that HuR binds to the downstream sequence but
not the upstream sequence of the intron 9 poly(A) signal. We
have previously shown that the downstream region of the
intron 9 poly(A) signal contains two U/GU-rich elements
important for KCNH2 intron 9 poly(A) signal activity. Muta-
tions of these elements resulted in the predominant production
of Kvl1.1aand a marked increase in channel current. The bind-
ing of Hu proteins to U-rich regions of poly(A) sites has also
been reported in SV40 late poly(A) site and calcitonin exon
4 poly(A) site (17). In addition, inhibition of polyadenylation of
these poly(A) sites depends on binding of Hu proteins to the
U-rich sequences. Similar to our finding, Hu proteins were
shown to inhibit polyadenylation by interfering with the CstF-64
recruitment to these pre-mRNAs. Because the balance
between splicing and polyadenylation of intron 9 is impor-
tant for the relative expression of Kvll.1la and Kv11.1a-USO
isoforms, inhibition of intron 9 polyadenylation by Hu pro-
teins can shift the balance toward the splicing pathway,
thereby leading to the predominant expression of the full-
length Kv11.1a isoform.

The Hu family consists of four proteins, the neuron-specific
proteins HuB, HuC, and HuD and the ubiquitously expressed
protein HuR. We have previously demonstrated that the rela-
tive expression of Kv11.1 isoforms is regulated in a tissue-spe-
cific manner (11). The tissue-specific expression patterns of Hu
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Figure 4. Effect of HuR and HuD on Kv11.1 isoform expression. A, structure of the short KCNH2 gene construct and a schematic presentation of the RPA
protocol for Kv11.1a and Kv11.1a-USO. B, RPA analysis of mRNA from Flp-In HEK293 cells stably expressing the short KCNH2 gene following transfection with
vector control, HuR, or HuD. C, histogram showing modulation of Kv11.1a (7a) and Kv11.1a-USO (7a-USO) transcripts following HuR and HuD overexpression.
RPA signals were quantified and shown as an isoform percentage of the total signal (1a + 1a-USO). The overexpression of HuR or HuD resulted in significantly
increased expression of Kv11.1a transcripts and significantly decreased expression of Kv11.1a-USO transcripts compared with vector-transfected control (¥,

p < 0.05, n = 3, error bars, S.E.).
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Figure 5. Regulation of Kv11.1 isoform protein expression and cell sur-
face expression by HuR and HuD. A, immunoblot analysis of Kv11.1 protein
from Flp-In HEK293 cells stably expressing the short KCNH2 gene following
transfection of vector control, HuR, or HuD. The expression level of HPT en-
coded by the hygromycin B resistance gene served as a loading control. Cell
lysates were subjected to SDS-PAGE and probed with antibodies against the
N terminus of Kv11.1 or HPT. B, histogram showing modulation of Kv11.1a(7a,
including both 1a-mature and 1a-immature) and Kv11.1a-USO (7a-USO) iso-
forms following HUR and HuD overexpression. The protein bands were quan-
tified, normalized to HPT, and plotted as relative expression of total Kv11.1
protein (1a + 1a-USO) in vector control. The overexpression of HUR or HuD
resulted in significantly increased expression of the Kv11.1a isoform and sig-
nificantly decreased expression of Kv11.1a-USO isoform compared with vec-
tor-transfected control (***, p < 0.001; **, p < 0.01, n = 3, error bars, S.E.). C,
immunoblot showing the effect of HUR and HuD overexpression on the cell
surface expression of Kv11.1 protein. Following transfection of vector control,
HuR, or HuD, cell surface proteins were biotinylated, isolated, and analyzed
with antibody against the N terminus of Kv11.1. The Na/K-ATPase served as a
loading control. D, histogram showing the significant increase in cell surface
expression of mature form of Kv11.1a following transfection of HUR or HuD
compared with vector-transfected control (**, p < 0.01,n = 3, error bars, S.E.).
Protein bands were quantified, normalized to Na/K-ATPase and plotted as
relative expression of the vector control.
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Figure 6. Effect of HuR and HuD on Kv11.1 channel current. A, represen-
tative currents from GFP-positive Flp-In HEK293 cells stably expressing the
short KCNH2 gene following transfection of GFP vector (Con), HuR+GFP, or
HuD+GFP. B, current-voltage plot of tail current densities measured at —50
mV following test voltages from —70 to +50 mV for vector-transfected con-
trol (square, n = 7), HuR (circle, n = 8) and HuD (triangle, n = 7), Error bars, S.E.

proteins and Kv11.1 isoforms raise the possibility that Hu pro-
teins may contribute to the tissue-specific expression of Kv11.1
isoforms. The expression level of HuR is often elevated in can-
cer cells, and reduced in senescent and quiescent cells including
the brain and heart (25-27). The reduced expression of HuR
may play a role in the relatively lower expression of full-length
Kvl1.1a isoform in the heart. In contrast, the expression neu-
ron-specific Hu proteins HuB, HuC, and HuD may play a role in
the relatively higher expression of the full-length Kv11.1a iso-
form in the brain.

It is well-documented that Hu proteins regulate mRNA sta-
bility by binding to ARE present in the 3'-UTR (18). To rule out
the possibility that the effect of HuR and HuD on Kv11.1 iso-
form expression is caused by changes in mRNA stability of
Kvll.laand Kv11.1a-USO isoforms, we performed RNA stabil-
ity assays. The half-lives of Kv11l.1a and Kv11.1a-USO mRNAs
are comparable and HuR had no effect on the stability of
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Figure 7. Effect of siRNA-mediated knockdown of HuR protein on Kv11.1 isoform expression. A, immunoblot showing that HuR siRNA reduced HuUR
protein expression. B, RPA analysis of mRNA from Flp-In HEK293 cells stably expressing the short KCNH2 gene following transfection of control siRNA (Con) or
HuR siRNA. The same RNA probe as described in Fig. 4 was used. C, histogram showing modulation of Kv11.1a (7a) and Kv11.1a-USO (7a-USO) transcripts
following HuR siRNA transfection. RPA signals were quantified and shown as an isoform percentage of the total signal (1a + 1a-USO). HuR siRNA treatment
resulted in significantly decreased expression of Kv11.1a transcripts and significantly increased expression of Kv11.1a-USO transcripts compared with control

siRNA (**, p < 0.01, n = 3, error bars, S.E.).

Kv1l.1a and Kv11.1a-USO mRNAs (Fig. S5). This result is in
line with the fact that no ARE is present in the 3'-UTR of the
Kv11l.1a or Kv11.1a-USO isoform.

The expression of HuR may undergo dramatic changes in
specific physiological and pathological conditions. HuR is
markedly reduced during heat shock as a result of proteasome-
dependent degradation (28). In addition, HuR protein is pre-
dominantly in the nucleus but has been shown to relocalize to
the cytoplasm during cellular stress (hypoxia and ischemia)
and in response to alphavirus infection (25, 29-31). Because
the regulation of alternative polyadenylation requires nuclear
localization of Hu proteins, the decrease in HuR in the nucleus
because of cytoplasmic relocalization may lead to down-regu-
lation of the functional Kv11.1a isoform expression. Several dis-
ease conditions such as myocardial infarction and virus infec-
tion are frequently associated with arrhythmias (32, 33).
Whether relocalization of HuR to the cytoplasm during these
pathological conditions results in dysregulation of Kv11.1 iso-
form expression, leading to the development of arrhythmias,
warrants future investigation.

Experimental procedures
Plasmids, cell culture, and transfections

The minigene luciferase reporter construct was generated by
subcloning the Renilla luciferase gene downstream of the splic-
ing competent minigene composed of KCNH2 genomic DNA
from exon 8 to exon 11 as described previously (21). Expression
of the minigene luciferase reporter is driven by the CMV pro-
moter. The vector also contains the firefly luciferase gene
driven by the SV40 promoter, which was used as a control for
transfection efficiency. HEK293 cells were transiently trans-
fected with the minigene luciferase reporter construct using the
Effectene method (Qiagen, Valencia, CA). After 48 h, cells were
harvested and assayed for both firefly and Renilla luciferase
activity using the Dual-Luciferase Assay kit (Promega, Madi-
son, WI). Data were analyzed by normalizing Renilla luciferase
activity to firefly luciferase activity.

The generation of the tandem poly(A) signal construct was
described previously (11). The construct contained the SV40
promoter, the firefly luciferase gene, and 308 bp of KCNH2
intron 9 poly(A) signal and flanking sequences followed by a
synthetic poly(A) signal. HEK293 cells were transiently trans-
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fected with the tandem poly(A) construct using the Effectene
method.

The generation of a short KCNH2 gene construct in which
the two longest introns, intron 2 (14.9 kb) and intron 5 (4.4 kb),
are shortened to 600 bp was described previously (13). Stably
transfected Flp-In HEK293 cells were generated by the
co-transfection of the short KCNH2 gene construct (0.1 ug)
with the Flp recombinase expression vector pOG44 (0.9 ug)
using the Effectene method and selected with 100 pg/ml hygro-
mycin. Flp-In HEK293 cells contain a single FRT genomic
locus, allowing the integration of a single copy of the KCNH2
gene construct. Flp-In HEK293 cells were cultured in DMEM
supplemented with 10% FBS.

HuR cDNA in pcDNA3.1/His-B vector was obtained from
Dr. Luo (17) and HuD ¢cDNA with Myc-tag in pcDNA3 vector
was obtained from Dr. Perrone-Bizzozero (34). These plasmids
were used in all HuR/HuD transfection experiments except
patch clamp experiments where the plasmids expressing both
GFP and HuR or HuD were used. For the HuR+GFP and
HuD+GEFP plasmids, the GFP coding sequence was subcloned
into PGL-3 promoter vector at HindIII and Xbal sites, then the
SV40 promoter—GFP fragment was exited at Bglll and BamHI
sites and subcloned into HuR-pcDNA3.1/His-B or HuD-pcDNA3
plasmid at BgllI site. Sam68 cDNA was obtained from Mammalian
Gene Collection and subcloned into pcDNA3.1/His-C at EcoRI
and Apal sites. AUF1 (HNRNPD) cDNA in the pFRT/TO/His/
FLAG/HA-DEST vector was a gift from Dr. Markus Landthaler
(Addgene plasmid no. 38066) (35). The His/FLAG/HA-tagged
AUF1 cDNA was subcloned into pcDNA3 at HindIII and Xhol
sites. The plasmids expressing HuR, HuD, HuR+GFP, or
HuD+GEFP were transiently transfected into the Flp-In HEK293
cells that stably express the short KCNH2 gene construct using
PolyJet transfection reagent. HuR, HuD, Sam68, or AUF1 was
transiently transfected together with the minigene luciferase
reporter construct into HEK293 cells using the Effectene method.
HuR or HuD was transiently transfected together with the tandem
poly(A) signal construct into HEK293 cells using the Effectene
method.

RNase protection assay

The RNase protection assay (RPA) was performed as
described previously (11). Briefly, total RNA isolated from
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HEK293 cells were analyzed with the riboprobes using the
RPAII and BrightStart BioDetect Kits (Ambion, Austin, TX).
Briefly, antisense RNA riboprobes were transcribed in vitro
in the presence of biotin-14-CTP. Yeast RNA was used as a
control for the complete digestion of the probes by RNase.
The relative intensity of each band was quantified using
Image] software and adjusted for the number of biotin-la-
beled cytidines in each protected fragment. The expression
level of the hygromycin B resistance gene from the short
KCNH?2 gene constructs was used to normalize relative
expression of Kv11.1 isoforms.

Biotinylated RNA pulldown assays

The biotinylated RNA pulldown assay was performed using a
Magnetic RNA-Protein Pull-Down Kit (Thermo Scientific).
RNA oligos upstream and downstream of intron 9 poly(A) sig-
nal were custom synthesized by GenScript (Piscataway, NJ).
The USE and DSE RNA oligos are 40 nt long (Fig. S2). A known
HuR-binding sequence in the 3'-UTR of androgen receptor
mRNA was used as a positive control RNA oligo (24). The RNA
oligos were labeled with biotin using RNA 3’ End Desthiobioti-
nylation Kit (Thermo Scientific). The biotinylated RNAs were
extracted with chloroform:isoamyl alcohol, precipitated with
ethanol, rehydrated in nuclease-free water and bound to Strepta-
vidin Magnetic Beads. The integrity of biotinylated RNA oligos
was determined by electrophoresis with 15% denaturing poly-
acrylamide gel. After being transferred to nylon membrane, the
bands were detected by alkaline phosphatase conjugated
streptavidin and chemiluminescence. The cell lysates were pre-
pared by Mammalian Protein Extraction Reagent (M-PER)
(Thermo Scientific). The nuclear extracts were prepared using
Nuclear and Cytoplasmic Extract Reagent (Thermo Scientific).
Briefly, HuR/RNA complexes were allowed to form at 4 °C for
60 min in 50 ul mixtures containing 50 pmol biotinylated RNA
probe, 50 ug of cell lysate in 1X binding buffer with 15% glyc-
erol. To study the effect of HuR overexpression on CstF-64
binding to RNA oligos, the nuclear extract was used, as nuclear
localized HuR is expected to modulate CstF-64 binding. CstF-
64/RNA complexes were assembled at 30 °C for 30 min in 50 ul
mixtures containing 50 pmol biotinylated RNA probe, 40%
(v/v) nuclear extract diluted by 1X binding buffer to 2 mg/ml
(i.e. 40 pgin total), 15% glycerol, and 1 mm ATP. The complexes
were further stabilized by UV cross-linking at 254 nm, 1.0 J/cm?
with 0.01% Nonidet P-40, 2 mm DTT, and 20 mm phosphocre-
atine. Both HuR/RNA and the UV- cross-linked CstF-64/RNA
complexes were washed with 50 ul of 1 X wash buffer twice, and
then bead-associated proteins were eluted with 50 ul of elution
buffer for 30 min at 37 °C. For CstF-64/RNA complexes the
elution buffer contains 1 mg/ml RNase A. The eluted samples
were heated for 5 min at 95 °C in the presence of SDS-PAGE
loading buffer and then analyzed by immunoblot.

RNAi knockdown of HUR

Small interfering RNA (siRNA) targeting HuR was ob-
tained from Santa Cruz Biotechnology (Dallas, TX). The
HuR siRNA (sc-35619) is a pool of two targeting-specific
19-25 nt siRNAs designed to knockdown expression of
HuR. The Flp-In HEK293 cells stably expressing the short
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KCNH?2 gene were transfected with control or HuR siRNAs
using Lipofectamine 2000 (Invitrogen). After 48 h, cells were
analyzed by RPA. The knockdown of the HuR protein was
analyzed by immunoblotting.

Immunoblot analysis

Immunoblot analysis was performed as described previ-
ously (11). Cell lysates were subjected to SDS-PAGE and
transferred to nitrocellulose membranes electrophoreti-
cally. The Kvl1.1 isoforms were detected using an anti-
Kv11.1 antibody directed against the N terminus of Kvl1.1a
and Kv11.1a-USO (H-175) (Santa Cruz Biotechnology) at a
1:600 dilution and visualized with the ECL detection kit
(Amersham Biosciences). The expression of hygromycin B
phosphotransferase (HPT) encoded by the hygromycin B
resistance gene was used to normalize the relative expression
of Kv11.1 isoform proteins (11). Other antibodies used are
anti-HuR (3A2, Santa Cruz Biotechnology), anti-CstF-64
(H-1, Santa Cruz Biotechnology), anti-AUF1 (Abcam, Cam-
bridge, MA), anti-Na/K-ATPase (C464.6, Santa Cruz Bio-
technology), anti-Xpress (Invitrogen), anti-c-Myc (Con-
vance), and anti-FLAG M2 (Sigma-Aldrich).

Biotinylation and isolation of cell surface proteins

Biotinylation and isolation of cell surface proteins were per-
formed using Pierce Cell Surface Protein Isolation Kit (Thermo
Scientific). Cells cultured in 100 mm dishes were washed twice
with 8 ml of ice-cold PBS, and then incubated with 8 ml of
ice-cold PBS containing sulfo-NHS-SS-Biotin for 30 min at
4 °C. After two washes with ice-cold PBS, the cells were incu-
bated in 8 ml of ice-cold PBS with 400 ul of quenching solution
for 10 min at 4 °C and washed again with ice-cold PBS. Cells
were scraped into ice-cold PBS and collected by centrifugation.
Cell pellets were suspended in 200 ul of lysis buffer containing
Protease Inhibitor Mixture (Thermo Scientific). The cells were
disrupted by sonication on ice using five 1-s bursts and incu-
bated on ice for 30 min. Cell lysates were collected after centrif-
ugation at 10,000 X g for 2 min at 4 °C. The biotin-labeled cell
surface proteins were isolated using NeutrAvidin Agarose col-
umns (Thermo Scientific), eluted with SDS-PAGE sample
buffer, and analyzed by immunoblotting.

Patch clamp recordings

Membrane currents were recorded in whole cell configura-
tion as described previously (4). Cells were bathed in a solution
containing 137 mm NaCl, 4 mm KCl, 1.8 mm CaCl,, 1 mm
MgCl,, 10 mm glucose, and 10 mm HEPES (pH 7.4). The pipette
solution contained 130 mm KCl, 1 mm MgCl,, 5 mm EGTA, 5
mM MgATP, and 10 mm HEPES (pH 7.2). Patch clamp experi-
ments were performed using suction pipettes at 22 to 23 °C.
Data were recorded using an Axopatch-200B amplifier and
analyzed with pCLAMPI10 software (Molecular Devices,
Sunnyvale, CA).

Data analysis

Data are presented as mean * S.E. Student’s ¢ test was used
for comparison between two groups. Analysis of variance
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(ANOVA) was used for comparisons between more than two
groups. p < 0.05 is considered statistically significant.
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