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Abstract

The rising prevalence of primary pediatric hypertension and its tracking into adult hypertension 

point to the importance of determining its pathogenesis to gain insights into its current and 

emerging management. Considering that the intricate control of BP is governed by a myriad of 

anatomical, molecular biological, biochemical, and physiological systems, multiple genes are 

likely to influence an individual’s BP and susceptibility to develop hypertension. The long-term 

regulation of BP rests on renal and non-renal mechanisms. One renal mechanism relates to sodium 

transport. The impaired renal sodium handling in primary hypertension and salt sensitivity may be 

caused by aberrant counter-regulatory natriuretic and anti-natriuretic pathways. The sympathetic 

nervous and renin-angiotensin-aldosterone systems are examples of antinatriuretic pathways. An 

important counter-regulatory natriuretic pathway is afforded by the renal autocrine/paracrine 

dopamine system, aberrations of which are involved in the pathogenesis of hypertension, including 

that associated with obesity. We present updates on the complex interactions of these two systems 

with dietary salt intake in relation to obesity, insulin resistance, inflammation, and oxidative stress. 

We review how insults during pregnancy such as maternal and paternal malnutrition, 

glucocorticoid exposure, infection, placental insufficiency, and treatments during the neonatal 

period have long-lasting effects in the regulation of renal function and BP. Moreover, these effects 

have sex differences. There is a need for early diagnosis, frequent monitoring, and timely 

management due to increasing evidence of premature target organ damage. Large controlled 

studies are needed to evaluate the long-term consequences of the treatment of elevated BP during 

childhood, especially to establish the validity of the current definition and treatment of pediatric 

hypertension.
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Introduction

According to the National Health and Nutrition Examination Survey from 2011 to 2014, 

29% of adults have hypertension, with non-Hispanic blacks having the highest prevalence of 

41.2% [1]. Twenty-five years ago, the prevalence of pediatric hypertension in the USA was 

approximately 0.3–1.2%. Current epidemiological data suggest that at least 1 in 10 children 

is prehypertensive, while 4 in 100 children are hypertensive [2]. This substantial upsurge is 

attributed to the obesity epidemic and high salt intake, risk factors similar to those for adult 

primary hypertension [2–5, 6•]. According to the World Health Organization, adult 

hypertension is the leading risk factor for morbidity in middle-income countries and second 

only to tobacco smoking in low and high-income countries. The blood pressure (BP) trends 

in children may not be related to the country’s economic status, although data are not 

available for low-income countries [4]. In the USA, the prevalence of hypertension in obese 

children is 11% in 2013 [5]. Comparable prevalence of pediatric hypertension and its risk 

factors are also seen in Asia [6•]. There has been a 0.19% increase per year in the prevalence 

of hypertension, adjusted for height, among Chinese children in the past 20 years [7]. The 

increasing prevalence of hypertension in children may not be related solely to increasing 

obesity [2–5, 6•, 7].

Elevated BP during childhood is a risk factor for adult hypertension, bearing in mind that not 

all children with elevated BP have elevated BP as adults and that many adults with 

hypertension have normal BP during childhood [4]. Indeed, the predictive value of 

childhood hypertension for adult hypertension has been estimated to vary from 19 to 65% 

[5, 8]. Nevertheless, there is some predictability of adult BP from childhood values and 

juvenile target organ damage, which includes left ventricular hypertrophy, carotid intima-

media thickening, and decreased neurocognitive performance and brachial flow-mediated 

dilation [9, 10, 11•]. Higher systolic BP in male children and adolescents with a family 

history of hypertension increases the risk of developing long-term arterial stiffness, 

determined by brachial-ankle pulse wave velocity [11•].

Pediatric Hypertension

The consensus-based guidelines of the National High Blood Pressure Education Program 

and National Heart, Lung, and Blood Institute define pediatric hypertension on the basis of 

percentiles according to age, height, and sex [12]. Hypertension is defined as systolic blood 

pressure (SBP) or diastolic BP (DBP) at or above the 95th percentile. Prehypertension is 

defined as SBP or DBP from 90th to <95th percentile. Stage 1 hypertension is defined as 

SBP or DBP from 95th to 99th percentile plus 5 mmHg and stage 2 as SBP or DBP >99th 

percentile, plus 5 mmHg. Normal BP is defined as SBP and DBP that are <90th percentile 

for sex, age, and height. The accepted BP is the average of three readings of SBP or DBP in 

a controlled environment after 5 min of rest, with the patient seated and the right arm 
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supported at heart level. The 2016 European Society of Hypertension (ESH) similarly 

defines hypertension according to the 2004 US Task Force. The 2016 ESH recommends that 

normotensive children should be reevaluated every 2 years and those with high-normal BP 

and no organ damage should be reevaluated after 1 year. However, hypertension in older 

adolescents is defined by the 2016 ESH as BP at the 95th percentile or greater for age, sex, 

and height. Moreover, patients 16 years or older with hypertension should be graded as for 

adults.

In addition to normal BP and “usual” hypertension, there are other subclasses of 

hypertension including: (i) white-coat hypertension, (ii) masked hypertension, (iii) isolated 

systolic hypertension, (iv) central hypertension, and (v) exercise hypertension. Based on the 

effect of NaCl intake on BP, the classes of BP are: (i) salt-resistant BP, which includes (a) 

salt-resistant normotensive and (b) salt-resistant hypertensive, and (ii) salt-sensitive BP, 

which includes (a) salt-sensitive normotensive and (b) salt-sensitive hypertensive. There is 

another subclass called inverse salt-sensitive where the BP is increased by a very low salt 

diet (vide infra).

BP should be measured by the auscultatory method, using the arm with a properly calibrated 

and validated instrument, usually a mercury sphygmomanometer [13]. If hypertension is 

detected by an oscillometric method, it must be confirmed by the auscultatory method. 

Chronic ambulatory BP monitoring is being supported because it can differentiate sustained 

hypertension from white-coat, masked, non-dipping (decrease in BP <10% while sleeping), 

and overly dipping hypertension (decrease in BP >20% while sleeping) [14].

The risk for primary hypertension in children is increased several factors, including low birth 

weight, male sex, African-American ethnicity, sedentary lifestyle, family history of 

hypertension, and especially by elevated body mass index [2–5, 13]. By contrast, secondary 

hypertension is linked to non-obese younger children, lower glomerular filtration rate, and 

higher DBP [15]. Sixty to 90 % of secondary hypertension is accounted for by renal 

parenchymal, renovascular, and endocrine etiologies [16].

Pathogenesis of Primary Pediatric Hypertension

Fetal Programming

Fetal programming is the association of adverse events in pregnancy with long-lasting 

effects into adulthood. This concept was introduced by Barker et al. in 1989 when they noted 

an inverse relationship between birth weight and SBP [17••]. They hypothesized the 

“thrifty” phenotype where malnutrition of the mother leads to fetal and infant malnutrition, 

and ultimately to changes in growth, metabolism, and vasculature in the offspring. All of 

these effects culminate into the metabolic syndrome, which is characterized by hypertension, 

obesity, dyslipidemia, and insulin resistance. In the Avon Longitudinal study of Parents and 

Children, Fraser et al. noted that the offspring of hypertensive mothers had elevated BP by 

17 years of age; however, there were no differences in insulin, glucose, or lipid values from 

the normotensive group [18•].
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The prenatal manipulations that have been used to study the effect of prenatal environment 

on the offspring include the following: (i) maternal and paternal nutrition, including the 

intake of alcohol; (ii) nicotine exposure; (iii) maternal glucocorticoids; (iv) maternal 

infection; and (v) placental dysfunction [19]. The elevation of BP of the offspring of 

pregnant mothers with these prenatal manipulations is caused by several mechanisms, 

including genetics, epigenetics, inflammation, endoplasmic reticulum stress, and oxidative 

stress [19–22].

Prenatal insults constrain capillary density, endothelial function, and the development of the 

kidney, which result in adult hypertension [21, 22]. In humans, nephrogenesis continues 

until 34 to 36 weeks of gestation, after which no new nephrons are formed. Reduced 

nephron number contributes to fetal programming of adult hypertension [22]. This agrees 

with Brenner’s hyperfiltration hypothesis which states that the compensatory mechanism of 

the remaining nephrons results in hastened decline of renal function [23•]. Kidney volume 

has been used as a surrogate indicator for nephron number. However, kidney volume is 

positively, rather than negatively, correlated with SBP in children 4–20 years of age [24•]. 

Furthermore, decreased capillary sprouting increases vascular resistance, leading to 

increased BP. Preterm infants with excessive exposure to atmospheric oxygen produce free 

radicals which injure vasculogenesis [25•].

There are sex differences in the fetal programming of hypertension. Experimental models 

show differences in the effects of developmental insults on males and females through a 

hormonal milieu (Table 1). Testosterone appears to have a permissive effect, while estrogen 

has a protective effect, on hypertension in the adult offspring with intrauterine growth 

retardation (IUGR) [23•, 26••]. Increasing age also leads to sex-specific susceptibility of 

impaired BP regulation through an age-dependent increase in adiposity, leading to increased 

plasma leptin that activates the renal sympathetic nerves [23•, 27].

Maternal and Paternal Nutrition—Maternal nutrition plays a role in developmentally 

programmed hypertension [28, 29]. A high-salt diet during gestation and lactation in 

Sprague-Daley rats results in increased BP in adult male offspring [30]. Female offspring 

have lesser increase in BP and even a decrease in BP in some studies [31]. High-salt diet 

limited to the gestational period or only during weaning [32] may not be associated with 

hypertension in male or female adult offspring [33]. However, high-salt diet 30 days after 

birth (dams fed high-salt diet before weaning) increased the BP of adult male offspring [34]. 

The increase in BP has been related to increased pressor response related to calcium and 

PKC signaling [35]. Twelve-week-old offspring of Sprague-Dawley dams fed high-salt diet 

had normal BP but had increased wall thickness of central (aorta, carotid), muscular 

(mesenteric) and intrapulmonary arteries, regardless of the post-weaning diet [36]. Some 

offspring of high-salt diet-fed dams had low BP and heart rate, indicative of both left 

ventricular systolic and diastolic function, and decreased aortic vasodilatory response to 

nitric oxide [32]. Both high and low maternal salt intakes during pregnancy have been 

reported to decrease nephron number and increase BP in male offspring [37].

A high fructose diet in pregnant Sprague-Dawley rats also increases BP and aggravates the 

increase in BP caused by a high-salt diet in male offspring [38]. The mechanisms involved 
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may include the arachidonic acid pathway and the renin-angiotensin system [30]. The 

increase in BP in the off-spring of dams fed a high-sucrose diet related to increased 

reactivity to angiotensin II involves calcium signaling, akin to those observed in offspring of 

pregnant mothers fed a high-salt diet [39•].

High-fat diet in rat dams during pregnancy increases both SBP and DBP; high-fat diet 

during lactation increases the DBP and other features of the metabolic syndrome in female 

but not male offspring [40]. A paternal high-fat diet before conception and after birth also 

leads to hypertension with features of the metabolic syndrome in the offspring [41•]. Statins 

given to mouse dams during the second half of pregnancy and lactation decreases metabolic 

risk in both mother and female offspring [42]. The beneficial effect of statins in the female 

offspring has been related to a decrease in C-reactive protein-induced inflammation [43]. 

High paternal fat diet may also disturb fetal programming of metabolism through epigenetic 

changes [41•]. Sirtuins (SIRT1 and SIRT3) are proposed to mediate the fetal programming 

of obesity, as well as its myriad long-term effects [44•]. Despite the multiple links of 

maternal obesity to childhood obesity, prenatal weight management did not show any 

differences in infant growth [45].

High protein diet during pregnancy in Wistar-Kyoto rats does not affect nephron number or 

BP in adult offspring [46]. However, low protein diet or maternal undernutrition during 

pregnancy leads to the metabolic syndrome in the offspring [47]. Protein restriction during 

pregnancy was also associated with decreased nephron number [48] and cardiac dysfunction 

[49]. In Wistar rats, maternal protein restriction led to increased BP in F1 and F2 but not F3 

generation in both adult male and female rats [50•]. F1 but not F2 male offspring of pregnant 

guinea pigs that had a 30% reduction in food intake during pregnancy also develop 

hypertension [51]. The high BP in male offspring is glucocorticoid-dependent without 

modulation of renal angiotensin receptor; however, it is glucocorticoid-independent and 

associated with decreased renal AT2R expression in female offspring [52]. The cardiac 

dysfunction may be restricted to the male rat offspring [53]. Maternal protein restriction 

leads to sympathetic overactivity and oxidative dysfunction at the medulla oblongata of 

Wistar rat dams [54]. There is an increase in circulating leptin in the adult offspring [55]; 

leptin can stimulate the sympathetic nervous system in rodents [56•]. Chronic administration 

of leptinin humans does not increase BP [56•]. Small-for-gestational-age offspring of 

mothers fed with low-protein diet have higher mu-opioid receptor and dopamine type 1 

receptor binding but not with dopamine transporters in mesolimbic brain regions. Changes 

in these neurotransmitter pathways may affect the development of obesity, attention-deficit/

hyperactivity disorder, and addiction [57]. BP was not measured in these studies although 

mood disorders and cardio-metabolic diseases have genetic overlap [58]. Impaired renal 

dopamine production or function can result in hypertension [59, 60•, 61–65]. There is 

increased sodium transport in the renal medullary thick ascending limb due to increased 

NKCC2 expression in rat dams fed a low-protein diet [66]. The hypertension may be 

associated with salt sensitivity [67]. Undernutrition in sheep dams leads to increased 

expression of several extracellular matrix proteins in the carotid arteries, related in part to 

suppression of miR-29c that may involve glucocorticoids [68•]. Low-protein diet during 

pregnancy has been reported to lead to enhanced responsiveness to angiotensin II [69], 

especially in male off-spring [70], and exaggerated proliferative response to vascular injury 
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in the offspring with increased expression of genes related to oxidative stress [71]. By 

contrast, in the hypothalamus, angiotensin II type 1 receptor is decreased in offspring of 

Wistar rats fed a low-protein diet [72]; the effect of this apparent difference in central and 

peripheral angiotensin II expression/function on renal function and BP remains to be 

determined. miRNAs may play a role in increasing susceptibility to the development of 

cardio-metabolic disease in off-spring of mothers with abnormal nutrition during gestation 

or lactation [73]. Some of the programmed effects may be reversible, for example, by 

inhibition of soluble epoxide hydrolase [74••] and use of antioxidants, such as melatonin and 

N-acetylcysteine in pregnant rats with nitric oxide deficiency [75••] and seed extract of 

Euterpe oleracea [76••].

High multivitamin intake during pregnancy in Wistar rats results in high BP, high fasting 

glucose and insulin in male offspring [77, 78•]. However, both male and female offspring 

fed an obesogenic diet led to increased body weight, glucose intolerance, and high BP [79]. 

This was prevented by continued high multivitamin or folic acid intake [80].

Maternal Glucocorticoids—Excessive exposure to endogenous or exogenous synthetic 

glucocorticoids during pregnancy is associated with low birth weight and hypertension in 

animal models [37]. Steroid administration to pregnant sheep and rats [81–83] but not mice 

are associated with increased BP in adult offspring [84••] that is sex-specific. Betamethasone 

administered to pregnant ewes caused hypertension in the 0.5-month-old male offspring that 

has been related to decreased expression of angiotensin 1–7 Mas receptor in the dorsal 

medulla and increased angiotensin-converting enzyme in the cerebrospinal fluid [85, 86]. 

Steroids given to pregnant mice cause dysregulation of the RAAS in 6- and 12-month-old 

male but not female offspring [87]. Short-term administration of corticosteroids to pregnant 

mice decreases nephron number in female and male offspring [87]. At 6 months of age, male 

but not female offspring had increased plasma aldosterone, renal expression of angiotensin 

II, and Na+,K+/ATPase alpha1 subunit and sodium ion channels; blood measure was not 

measured [87]. However, at 12 months of age, the male but not female mice had decreased 

BP [88]. Other studies have reported an increase in BP in 6–7-month-old female offspring 

[83]. The increased BP of male offspring of pregnant rats given dexamethasone has also 

been related to increased levels of asymmetric dimethylarginine (an endogenous inhibitor of 

nitric oxide synthase) and increased expression of renal NCC and NHE3, effects that were 

prevented by administration to the mother rat of L-citrulline, which can be converted to 

arginine, a substrate of nitric oxide synthase [89]. Placental 11β-hydroxysteroid 

dehydrogenase 2 (11β-HSD2) inactivates the conversion of cortisol to cortisone in humans; 

thus, a deficiency or dysfunction of the enzyme (e.g., in cases of zinc deficiency) causes 

excessive fetal exposure to cortisol [90]. Preeclampsia, preterm labor, IUGR, and treatment 

with dexamethasone or betamethasone to hasten lung maturity all compound the increased 

exposure to corticosteroids. Long-term consequences are numerous, which include increased 

the risk for allergies, infection that may be related to decreased immunity, insulin resistance, 

type I diabetes mellitus, and reduction in nephron number [91], in addition to hypertension 

[92, 93]. However, maternal glucocorticoids may not directly cause the hypertension in the 

offspring [94]. It has been suggested that the inconsistency in the increase in BP after 

prenatal exposure to glucocorticoids in rodents could indicate that hypertension becomes 
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apparent only under stressed conditions and that the use of tail cuff to measure BP 

contributed to the irregularity [95]. The absence of glucocorticoid-inducible kinase SGK1 in 

the mother prevents the ability of prenatal protein restriction to increase the BP in adult male 

and female offspring.

Maternal Infection—There is a positive relationship between infection during pregnancy 

and adverse outcomes in the off-spring, including cardiovascular diseases [96•, 97•]. 

Maternal bacterial infection has been mimicked by the systemic administration of the gram-

negative bacterial endotoxin lipopolysaccharide (LPS) to dams. Exposure of rat dams to LPS 

results in increased BP in the offspring that is related to oxidative stress and inflammation 

[96•, 97•, 98, 99]. The increased BP was found in both male and female offspring [100]. The 

increase in BP caused by prenatal exposure to LPS has been suggested to be the result of 

increased sympathetic nerve activity, increased activity of the RAAS, impaired endothelium-

dependent and endothelium-independent vascular relaxation, and decreased activity of the 

renal dopaminergic system [96•, 97•, 98]. The impaired vascular relaxation is caused by 

decreased vascular expression of connexin 37, endothelial nitric oxide synthase, NO 

production, and soluble guanylyl cyclase [96•]. As will be discussed below, the renal 

dopaminergic system is important in the regulation of BP by enabling the kidney to excrete a 

sodium load during conditions of normal or moderate increase (5–10% acute saline load, or 

about 200–250 mmol sodium intake/day) in sodium intake. The increase in reactive oxygen 

species (ROS) in the offspring of dams that received LPS also increased the renal expression 

and activity of G protein-coupled receptor kinase type 2 (GRK2) and type 4 (GRK4). These 

kinases are upstream of dopamine receptors (D1R and D3R) and angiotensin type 1 receptor 

(AT1R). Variants of human GRK4 impair D1R and D3R function but increase AT1R 

expression and function [101••] which ultimately lead to hypertension in humans and 

transgenic mice expressing human GRK4γ142V. The impairment of renal dopamine 

receptor function also impairs the ability of the kidney to excrete an oral sodium load 

(gastro-renal communication) [102•]. There may be differences in organ response to 

maternal LPS administration because D2R not D1R expression is decreased in the prefrontral 

cortex of Sprague-Dawley rat offspring [103]. These apparent discrepancies need to be 

sorted out because the administration of a proinflammatory cytokine inductor, 

polyriboinosinic polyribocytidilic acid (poly[I:C]), during gestational day 14–16 in Sprague-

Dawley rats increased baseline extracellular dopamine levels in the nucleus accumbens, but 

not in the prefrontal cortex of their offspring; their ventral tegmental neurons had reduced 

activity but normal D2R autoreceptor activity [104].

Interestingly, although prenatal exposure to LPS or high-fat diet increased the BP of the 

offspring, the combination of prenatal exposure to LPS and pre- and post-natal high-fat diet 

was associated with normalization of BP [98]. This discordant result has been suggested to 

be the result of adaptive response to inflammation because a high-fat diet can increase 

plasma LPS levels [98, 105].

Placental Dysfunction—Utero-placental insufficiency is a leading cause of IUGR and 

low birth weight even with normal maternal nutrition. There are several models of utero-

placental insufficiency, including ligation of either the ovarian or uterine arteries [106]. F1 
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and F2 male but not female offspring of Wistar-Kyoto rat dams with uteroplacental 

insufficiency caused by bilateral uterine vessel ligation developed hypertension at 6 months 

of age that could be related, in part, to impaired vasorelaxation and arterial stiffness, 

especially in the mesenteric artery [107, 108]. Female offspring which were not hypertensive 

had normal mesenteric, renal, and femoral artery stiffness but had uterine artery endothelial 

dysfunction and increased wall stiffness [109••]. Utero-placental insufficiency has been 

shown to decrease nephron number and cyclooxygenase-2 (COX-2) in a rat model [110] and 

to increase umbilical and carotid artery stiffness in sheep dams due to disrupted extracellular 

matrix deposition [111]. Increased markers of renal apoptosis and decreased urinary sodium 

excretion [112] were also noted in rats and newborn piglets. There are sex differences in the 

development of hypertension in the IUGR offspring; 12-week-old male rats with IUGR have 

elevated mean arterial BP compared to females [106]. Furthermore, adult IUGR female rats 

have higher vascular endothelial growth factor (VEGF) levels than IUGR males but have 

similar lower VEGF levels at birth [113]. Testosterone has a modulating role in the 

hypertension of adult male offspring of rat dams with placental insufficiency [114•].

Genetics and Pharmacogenetics of Primary Hypertension: Role of GRK4

Hypertension, a complex trait caused by interactions of genetic, epigenetic, environmental, 

and behavioral factors, is a major public health problem because of its high prevalence and 

increased risk for cardiovascular and renal diseases [115]. Considering that the intricate 

control of BP is governed by a gamut of anatomical, molecular biological, biochemical, and 

physiological systems, multiple genes are likely to influence an individual’s BP and 

susceptibility to develop hypertension. The long-term regulation of BP rests on renal and 

non-renal mechanisms [116••]. One renal mechanism relates to sodium transport. The 

impaired renal sodium handling in primary hypertension and salt sensitivity could be caused 

by aberrant counter-regulatory natriuretic and anti-natriuretic pathways. The sympathetic 

nervous and RAAS are examples of antinatriuretic pathways. An important counter-

regulatory natriuretic pathway is afforded by the renal autocrine/paracrine dopamine system, 

aberrations of which are involved in the pathogenesis of hypertension [116••], including that 

associated with obesity. As indicated earlier, LPS administration to rat dams induces the 

hypertensive phenotype in the offspring that is related to an increase in the renal expression 

and activity of GRK2 and GRK4 [97•]. Because GRK4 fulfills all the criteria needed to 

implicate a gene as a cause of a complex trait, hypertension, in this instance, only GRK4 

will be included in this review. The GRK4 gene is one of the few genes that fulfill the 

criteria for ascribing a gene as causal of a complex disorder. These criteria include gene 

linkage and gene variant association, in vitro phenotype, with the definitive evidence 

involving the expression of the variant genes in transgenic animals [64, 117]. Only the 

variants of genes of AGT that encodes angiotensinogen [118], AGTR1 that encodes the 

angiotensin II (Ang II) type 1 receptor (AT1R) [119], CYP11B2 that encodes aldosterone 

synthase [120], and GRK4 have been shown to cause hypertension in transgenic mice [121, 

122]. Variants of ATP2B1, STK39 [123], GRK4, and SLC4A5 [124, 125] have been 

associated with salt sensitivity; GRK4γ486V causes salt-sensitive hypertension in transgenic 

mice [126].
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Genome-wide association studies (GWAS), which have identified only ≈2–5% of the genetic 

factors believed to influence BP, failed to associate the GRK4 variants with hypertension 

[127–129]. There are several reasons for this non-association, including stringent correction 

and requirement for independent replication, resulting in higher type 2 error rates and the 

absence of specific GRK4 gene variants in the Affymetrix and Illumina chips (vide infra). 

Nevertheless, using gene-targeted studies, the association of GRK4 variants with 

hypertension has been replicated in several ethnic groups [59], with some exceptions [130, 

131]. Additional reasons for non-association in GWAS include failure to include epistasis, 

epigenetics, environment, behavioral influences, e.g., sodium and potassium intake, and age 

in the analyses. Nutrition and gut microbiota can influence epigenetics [132]. Increased 

dietary salt can increase oxidative stress [133] and oxidative stress can influence epigenetics 

(e.g., histone deacetylase 1 activity) [134]. Felder et al. reported that miR-124 expression is 

increased in urinary exosomes of salt-sensitive subjects [135•] and can regulate c-Myc [136]. 

C-Myc can regulate GRK4 [135•], probably by interacting with the GRK4 promoter. This is 

of interest because of the following reasons: (1) c-Myc is proto-oncogenic [137]; (2) c-Myc 

is positively associated with hypertension and cancer, at least in males [138]; and (3) 

increased dietary salt intake increases the risk of gastric cancer [139]. Furthermore, 

epigenetics can influence gene transcription. Variants in the promoter region of GRK4 can 

influence its expression [140], and the salt sensitivity of C57BL/6J mice is related to 

increased renal expression of GRK4 [141]. Aortic and renal expression of GRK4 is also 

increased in spontaneously hypertensive rats [142, 143] whose high BP can be increased 

further by high-salt diet [144].

GRK4142V is not included in the Affymetrix and Illumina chips, except for Illumina Human 

1M bead chip [101••]. The only Affymetrix chip that has GRK4486V is Genomewide 6. The 

Illumina chips, except for Illumina Human 1M-Duov3, do not have GRK4486V. Not all the 

chips have GRK465L either. It should also be noted that in all the GWAS studies, circulating 

DNAwas used which may not reflect spontaneous somatic mutations in the kidney that can 

also cause hypertension. We have reported the association of hypertension and certain DNA 

and miRNA in urine exosomes and urine renal proximal tubule cells [135•, 145].

GRK4 is upstream of genes that regulate renal function and BP, i.e., those of the RAAS and 

renal dopaminergic system. GRK4 variants impair D1R and D3R function and increase 

AT1R function [116••, 121]. As stated above, this could be related to the ability of GRK4 
variants, via histone deacetylase 1, to positively regulate renal AT1R expression [121]. The 

effect of renal dopamine on BP is different from that administered systemically [116••]. The 

normal circulating concentrations of dopamine (picomolar range) are not sufficiently high to 

activate endogenous dopamine receptors but high nanomolar to low micromolar 

concentrations can be attained in dopamine-producing tissues [116••]. The GRK family is 

normally important in maintaining the responsiveness of certain dopamine receptor 

subtypes, e.g., D1R and D3R. GRK decreases GPCR responsiveness after continued 

stimulation by agonists through phosphorylation of the receptors and uncoupling them from 

their G protein complexes [122]. Growing evidence support the association between the 

allelic variants of GRK4, salt sensitivity, hypertension, and response to antihypertensive 

drugs [101••]. This has been reviewed by Rayner and Ramesar and Yang et al. [64,146]. A 

recent metaanalysis showed that GRK4 and DRD1 gene polymorphisms, rs1024323 GRK4 
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(OR = 1.826) and rs4532 of DRD1 genes (OR = 1.833), are associated with hypertension in 

Caucasians and East Asians, respectively [59]. GRK4 polymorphisms are not associated 

with preeclampsia in northern Han Chinese [147]. However, DRD1 (−48G) and DRD4 
(−521T) receptors are associated with preeclampsia in a Polish population [148]. Mice 

harboring GRK4 gene variants such as GRK4γ486V are hypertensive on a high-salt diet, 

while mice harboring GRK4γ142V variants are hypertensive on a normal salt diet but not 

affected by a high-salt diet [149••]. These variants with increased constitutive GRK4 activity 

have been shown to down-regulate the renal dopaminergic system and upregulate RAAS 

(AT1R) by decreasing and increasing their expression and activities, respectively, in humans 

[146]. Furthermore, these variants offer new pharmacogenomic approaches in the treatment 

of hypertension as evidenced by the African-American Study of Kidney Disease (AASK) 

where GRK465L and GRK4142V predict a reduced response to α-adrenergic blockers 

[149••]. By contrast, GRK4142V, by itself, is associated with a more rapid response to a β-

adrenergic blockade. In another study in two cohorts with primary hypertension without 

renal disease, as the number of individual GRK4 single nucleotide polymorphisms (SNPs; 

65R>L and 142A>V) increase, BP response to a β-adrenergic blockade in a mixed 

population of black and white individuals decreases [150••]. GRK4R65 or GRK4A142 

predicts a good BP response to a decrease in salt intake, whereas GRK465L or GRK4142V 

predicts a limited response to reduced salt intake [64]. However, the presence of at least 

three GRK4 allele variants (65L, 142V, and 486V), relative to those with fewer than three is 

associated with a better response to diuretic therapy [151]. The expression of GRK4486V, but 

not GRK4142V, in transgenic mice confers salt sensitivity [152] and predicts a response to 

diuretics in humans with primary hypertension [153]. Among Japanese, GRK4142V predicts 

a good response to angiotensin receptor blockers [101••].

Target Organ Damage

Systemic target organ damage (TOD) has been clearly documented with elevated BP in 

children. However, the lowest level of BP that causes TOD has not been determined. One of 

the earliest changes seen is left ventricular hypertrophy (LVH) without any correlation to 

severity of BP [154]. Although hypertension is one of the top causes of chronic kidney 

disease in adults, this is not the case with children. Hypertensive nephrosclerosis, 

microalbuminuria, and reduced glomerular filtration rates have been reported in children 

with hypertension [155]. Hypertensive children have been found to have inferior 

neurocognitive performance, executive function, and decreased cerebrovascular reactivity 

(CVR) [156•]. Atherosclerotic changes such as increased carotid intimal-medial thickness 

(cIMT), arteriolar narrowing, and stiffness have also been associated with pediatric 

hypertension [157]. These pathologic alterations support Folkow’s hypothesis that elevated 

BP thickens the medial layer of the vessels which be-gets hypertension [158•]. Furthermore, 

these linked with BP tracking in children in which BP during childhood predicts adult blood 

BP [4, 8–10, 11•]. Therefore, there is a need for early monitoring and treatment of pediatric 

hypertension such as ambulatory BP monitoring and pharmacologic and non-pharmacologic 

management of elevated BP [159]. Figure 1 summarizes the pathogenesis of pediatric 

hypertension showing the causes and effects at different stages of human life.
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Conclusions

Despite the increasing prevalence of hypertensive and prehypertensive children in different 

parts of the world, pediatric hypertension remains an underdiagnosed condition. Reformed 

normative data on BP inclusive of ethnicity and not just of age, sex, and height are 

imperative to define pediatric hypertension across all ethnic backgrounds, especially among 

African-American and Hispanics. The rise of the obesity epidemic in children shifts the 

onset of metabolic syndrome to an earlier age. Thus, public health measures to reduce this 

burden are needed as experimental evidence has documented the interaction of 

hyperglycemia, hyperinsulinemia, renal dopaminergic system dysfunction, upregulation of 

the RAAS, and hypertension. Larger controlled studies must be done to evaluate the long-

term effect of childhood obesity and dietary salt with adult cardiovascular morbidity and 

mortality. Studies evaluating the effect of interventions on complicated pregnancies and their 

offspring must also be reassessed because of the evident theory of fetal programming of 

hypertension.
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Fig. 1. 
Timeline showing the pathogenesis of pediatric hypertension. Identified underlying causes 

and short-term and long-term effects are shown above and below the blue line, respectively. 

Genetic predisposition, early developmental insults, and dietary influences lead to changes 

in the regulation of BP that are carried into adulthood. GRK4 G protein-coupled receptor 

kinase type 4, GRK2 G protein-coupled receptor kinase type 2, AGT angiotensinogen gene, 

AGTR1 angiotensin II (Ang II) type 1 receptor gene, CYP11β2 aldosterone synthase gene, ↑ 
increase, ↓ decrease, 11β-HSD2 placental 11β-hydroxysteroid dehydrogenase 2, SNS 
sympathetic nervous system, RAS Renin-angiotensin system, NO nitric oxide, CVR 
cerebrovascular reactivity, cIMT carotid intimal-medial thickness, LVH left ventricular 

hypertrophy
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Table 1

Sex differences in the effects of fetal developmental insults through a hormonal milieu

Male Female

Hormonal milieu Testosterone Estrogen

RAAS ↓a
(−)

a

Nephron number ↓a ↓/(−)
a

Endothelin production ↑a
(−)

a

Reactive oxygen species ↑a ↓a

a
↓ = decreased, ↑ = increased, (−) = no change
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