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Abstract

The success of mechanism-based drug discovery depends on the definition of the drug target. This 

definition becomes even more important as we try to link drug response to genetic variation, 

understand stratified clinical efficacy and safety, rationalize the differences between drugs in the 

same therapeutic class and predict drug utility in patient subgroups. However, drug targets are 

often poorly defined in the literature, both for launched drugs and for potential therapeutic agents 

in discovery and development. Here, we present an updated comprehensive map of molecular 

targets of approved drugs. We curate a total of 893 human and pathogen-derived biomolecules 

through which 1,578 US FDA-approved drugs act. These biomolecules include 667 human-

genome-derived proteins targeted by drugs for human disease. Analysis of these drug targets 

indicates the continued dominance of privileged target families across disease areas, but also the 

growth of novel first-in-class mechanisms, particularly in oncology. We explore the relationships 

between bioactivity class and clinical success, as well as the presence of orthologues between 

human and animal models and between pathogen and human genomes. Through the collaboration 

of three independent teams, we highlight some of the ongoing challenges in accurately defining 

the targets of molecular therapeutics and present conventions for deconvoluting the complexities 

of molecular pharmacology and drug efficacy.

James Black famously stated in 2000 that “the best way to discover a new drug is to start 

with an old one”1. Where available, a deep understanding of the mechanistic action of 

targeted drugs continues to inform drug discovery, clinical trials and efforts to overcome 

drug resistance. Thus, maintaining an accurate and up-to-date map of approved drugs and 
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their efficacy targets — that is, the targets through which the drugs exert their therapeutic 

effect (Box 1) — is an important activity that will guide future drug development and 

innovation.

Arguably, the first attempt to compile a definitive target list dates from 1996, when Drews 

and Ryser estimated the number of human molecular targets for approved small-molecule 

drugs2,3. From this article and subsequent analyses4–6, the concept of ‘privileged’ protein 

families that have had a consistent and successful history of drug discovery began to emerge. 

In 2006, we published a compendium of drug targets7 and identified that the then available 

US FDA-approved targeted drugs acted through 324 mechanistic protein targets. Alongside 

the well-established druggable families, we analysed privileged families and additionally 

identified a ‘long tail’ of diverse, structurally unrelated protein families with small numbers 

of members, as well as single proteins.

Several databases now provide data on drug–target interactions, each with different scopes 

and foci. The first was the Therapeutic Targets Database8. DrugBank9, the most widely used 

specialist drug information resource, maps drugs to proteins that have been reported to bind 

to them, and SuperTarget10 is a text-mining-based compilation of direct and indirect drug 

targets. More recently, Rask-Andersen et al.11 provided an updated view on the status of 

current drugs and the human targets believed to be responsible for their efficacy in their 

approved indications. Additionally, Munos12 has highlighted trends in drug classes and 

target innovation for the past decade, and Agarwal et al.13 have analysed the overlap and 

uniqueness in the drug targets that are being pursued by industry. Finally, the International 

Union of Basic and Clinical Pharmacology and British Pharmacological Society (IUPHAR/

BPS) Guide to Pharmacology database (see Further information) also compiles information on 

approved drugs, together with affinity and selectivity data, and assigns primary targets that 

are supported by experimental evidence14. However, despite the variety of valuable online 

resources, it is still a challenge to retrieve a consistent and comprehensive view of the targets 

of approved drugs (covering both small molecules and biologics) with their associated 

molecular efficacy targets (human and pathogen) organized by therapeutic use. Furthermore, 

although the concept of a target is a natural one for researchers in the field, there are 

Further Information
canSAR: https://cansar.icr.ac.uk
ChEMBL: https://www.ebi.ac.uk/chembl
Companion diagnostic test: http://www.fda.gov/companiondiagnostics
DRD2 — GTEx entry page: http://www.gtexportal.org/home/gene/DRD2
DRD3 — GTEx entry page: http://www.gtexportal.org/home/gene/DRD3
Dronedarone prescribing information: http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/022425s021lbl.pdf
DrugCentral: http://drugcentral.org
Illuminating the Druggable Genome: https://pharos.nih.gov/idg/index
Inkscape: https://inkscape.org/en
IUPHAR/BPS Guide to Pharmacology: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?
tab=biology&ligandId=7465
NCATS Pharmaceutical Collection: https://tripod.nih.gov/npc/
Pharmaceuticals and Medical Devices Agency list of approved drugs: http://www.pmda.go.jp/english/review-services/reviews/
approved-information/drugs/0002.html
R Project for Statistical Computing: http://www.r-project.org
WHO Collaborating Centre for Drug Statistics Methodology — ATC/DDD Index: http://www.whocc.no/atc_ddd_index
WHO INN Drug lists: http://www.who.int/medicines/publications/druginformation/innlists/en

Santos et al. Page 2

Nat Rev Drug Discov. Author manuscript; available in PMC 2019 January 02.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://cansarblack.icr.ac.uk/
https://www.ebi.ac.uk/chembl/
https://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/InVitroDiagnostics/ucm301431.htm
https://gtexportal.org/home/
https://gtexportal.org/home/gene/DRD3
https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/022425s021lbl.pdf
http://drugcentral.org/
https://pharos.nih.gov/idg/index
https://inkscape.org/
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=7465
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=7465
https://tripod.nih.gov/npc/
http://www.pmda.go.jp/english/review-services/reviews/approved-information/drugs/0002.html
http://www.pmda.go.jp/english/review-services/reviews/approved-information/drugs/0002.html
https://www.r-project.org/
https://www.whocc.no/atc_ddd_index/
https://www.who.int/medicines/publications/druginformation/innlists/en/


substantial operational difficulties in consistently mapping this target concept to specific 

genes and gene products in practice.

Here, we synthesize and build on our previous approaches7 to systematically recompile and 

comprehensively annotate the current list of FDA-approved drugs (see Box 2 and Box 3 for 

details of data collection and analysis). We assign to each drug their respective efficacy 

target or target set from the prescribing information and/or the scientific literature. We 

emphasize that even with a well-defined concept of efficacy there are challenges in making a 

clean unambiguous assignment in many cases, especially regarding how to treat protein 

complexes or drugs that bind to a number of closely related gene products.

We also map each drug (and thereby target) to the WHO Anatomical Therapeutic Chemical 

Classification System code (ATC code; see Further information) as a way of obtaining a 

standard therapeutic indication for them. The ATC hierarchy consistently classifies drugs 

according to the organ or system on which they act, and their therapeutic effects, 

pharmacological actions and chemical class. With this mapping, we explore the footprint of 

target classes across disease areas and investigate the success of privileged target families 

given the investment in discovery effort. We also compile a list of drug target orthologues for 

standard model organisms to develop a foundation for the deeper understanding of species 

differences, cross-species drug repositioning and applicability of animal model systems.

Complexities in defining efficacy targets

Defining the set of mechanistic drug targets requires unambiguous evidence of the 

therapeutic action of drugs through clear biomolecular partners. In reality, this association is 

not always straightforward. Although in many cases it is possible to annotate a widely 

accepted and unambiguous target, for other drugs there is often disagreement or changes in 

understanding over time, which is then reflected in differences between primary sources. To 

address this challenge, we have reassigned efficacy targets afresh from the primary literature 

and prescribing information and combined annotations made by three independent teams of 

curators at the European Molecular Biology Laboratory-European Bioinformatics Institute 

(EMBL–EBI) ChEMBL database, the University of New Mexico DrugCentral database15 

and The Institute of Cancer Research canSAR knowledge base16 (see Further information). 

We defined a simple, consistent set of guidelines to help us assign therapeutic targets (the 

full set of guidelines is shown in Box 2). Overall, we did not assign targets solely on the 

basis of reported biochemical and pharmacology data, which are now widely available17. 

Although there may be evidence for drugs binding with moderate or even high affinity to 

multiple additional targets, we do not consider these as efficacy targets unless there is 

evidence for their role in the therapeutic effect of the drug.

For example, antipsychotics are considered to exert their effect largely by acting as 

antagonists of the dopamine D2 receptor (encoded by DRD2) and sometimes as antagonists 

or inverse agonists of the 5-hydroxytryptamine (5-HT; also known as serotonin) 2A receptor 

(encoded by HTR2A)18,19. However, antipsychotics also bind with nanomolar affinity to 

other 5-HT receptor subtypes, as well as adrenergic, muscarinic and histamine receptors 

(Supplementary information S1). Despite much speculation and investigation, however, the 
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contribution of these additional targets to the therapeutic effect of antipsychotics has not yet 

been demonstrated. For example, the therapeutic effect of aripiprazole, a “dopamine–

serotonin system stabilizer”20, has been attributed to it acting as a partial agonist of D2 and 

5-HT1A receptors and an antagonist of the 5-HT2A receptor21, although it also interacts 

with other proteins. However, the dopamine stabilizer (-)-OSU6162 appears to occupy a 

subpopulation of striatal D2/D3 receptors with moderate (micromolar) affinity22, which 

suggests that a specific interplay between, for example, D2 receptor occupancy and tissue 

specificity (striate nucleus) may be more therapeutically relevant. Consequently, targets 

other than D2 and 5-HT2A receptors have not been annotated as efficacy targets of 

antipsychotic drugs. The fact that a drug has high affinity to an alternative target, or that 

different drugs from the same class have differentiated target binding profiles, can be 

important in developing next-generation agents.

Another challenge is how to assign targets to drugs reported to have broad mechanistic 

effects; examples of such drugs include muscarinic receptor antagonists, voltage-gated 

potassium channel blockers and broad-spectrum β-lactam antibiotics. For these drugs, one 

possible solution would be to list the 5 muscarinic receptors for the first case, the 4 α-

subunits that may form voltage-gated potassium channels for the second case and, for the 

third case, to pick all the penicillin-binding proteins (PBPs) from all the bacterial species 

against which the drug is effective. However, in the case of human targets, a more restricted 

subset based on selectivity data or expression data could also potentially be chosen. For the 

pathogen targets, a representative pathogen species could be chosen and only the 

biomolecules or cellular components of that species could be assigned as drug targets. In 

making our assignments, we have identified such subsets among the human targets for which 

sufficient information was available to do so. For targets for which there was inadequate 

evidence to determine which subunits or family members play a key part, we listed all 

possible proteins. For example, all anti-muscarinic agents indicated to treat bronchospasms 

have muscarinic acetylcholine receptor M3 (encoded by CHRM3) assigned as their efficacy 

target because this muscarinic receptor has the highest expression levels in the airways and 

is responsible for bronchoconstriction23,24. However, there is evidence to indicate that M1 

and M2 receptors cannot be definitively excluded; for example, M1 receptors are responsible 

for bronchoconstriction in humans25, whereas tissue expression data seem to indicate that 

M2 receptors might be equally involved24.

For broad-spectrum antibacterials, Escherichia coli was selected as the representative species 

in ChEMBL. Thus, all broad-spectrum β-lactam antibiotics were linked to the seven PBPs 

from E. coli, even though it is clear that not all PBPs are targets for all β-lactams in all 

species26. In DrugCentral, however, susceptible pathogen species were assigned as targets 

based on antibacterial data reported as minimum inhibitory concentrations against well-

defined pathogens. For example, finafloxacin, a fluoroquinolone approved for treating otitis 

caused by Pseudomonas aeruginosa and/or Staphylococcus aureus, was annotated as 

targeting both species. With minimum inhibitory concentration and species data available, a 

microbiologist can compare antibiotic potencies and susceptibilities, which are both 

important aspects of antibiotic efficacy. This strategy is complementary to the ChEMBL 

approach of annotating molecular targets; for example, all fluoroquinolones are annotated as 

E. coli DNA gyrase inhibitors. The DrugCentral approach focuses on the microorganism 
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rather than the bacterial protein target because there is no clear evidence that the 

antibacterial would be efficacious in other species. Furthermore, bacteria have topical 

specificity in that some prefer the colon (for example, E. coli), whereas some prefer the 

nasopharyngeal sinus cavities, lung, kidney or skin. Antibiotics are prescribed differently for 

different infections. This difference makes target assignment even more complicated because 

particular antibiotics may be taken up via active transport into a certain tissue (where the 

infection is), whereas others may not. In addition, infections cause tissues to respond 

differently. For example, bacterial meningitis makes the blood–brain barrier leaky, enabling 

the use of antibiotics that otherwise do not cross this barrier but are effective in such 

infections. Such pathology-related phenomena are even more difficult to account for at a 

molecular level.

Oncology is a therapeutic area that further illustrates the challenges in defining efficacy 

targets. The FDA-approved drugs assigned to ATC categories L01 (antineoplastics) and L02 

(endocrine therapies) can be broadly divided into three groups. The first group are cytotoxic 

agents that target human DNA and/or RNA, such as platinum compounds. The second group 

are cytotoxic agents that act at least partially through protein targets, such as DNA 

polymerase, DNA topoisomerase and the proteasome. Finally, drugs in the third group are 

those that are typically considered to be targeted therapeutics, such as kinase inhibitors. 

However, the assignment of a drug to the third group rather than the second group is 

complicated by the spectrum of targeting observed. Topoisomerase inhibitors, for example, 

are selective for their targets but are highly toxic. Conversely, some kinase inhibitors inhibit 

a wide range of normally functioning kinases and their associated pathways, and adverse 

reactions to these drugs have been reported in the clinic. A further challenge in the 

assignment of efficacy targets to cancer drugs is the rapidly growing number of kinase 

inhibitors (37 approved small-molecule protein kinase inhibitors worldwide as of June 

2016). The original clinical hypothesis may be based on the alteration of a specific (EGFR)), 

but the resultant launched drug may inhibit a broad range of kinase targets, most of which 

function outside the deregulated pathway — although kinase signalling pathways are largely 

interconnected in cancer. For example, vandetanib, which was approved for the treatment of 

metastatic medullary thyroid cancer27, inhibits the kinase product of the oncogene RET, 

which is mutated in many patients with medullary thyroid cancer28. Vandetanib also inhibits 

other kinases with interconnecting pathways, such as EGFR and vascular endothelial growth 

factor receptor (VEGFR) pathways. Indeed, it is common for the prescribing information to 

list a large number of targets in the section describing the mechanism of action of the drug, 

and certainty about the importance of a single target can usually only be obtained when the 

drug is approved in conjunction with a companion diagnostic test (see Further information). 

However, in contrast to the situation with D2 receptor antagonists described above, the 

kinases listed as binding a drug in the prescribing information often act on interlinked 

pathways; thus, we have mechanistic reasons to suspect their involvement in the efficacy of 

the drug. Therefore, we attempted to include all proteins that are likely to contribute to the 

observed efficacy of a drug as part of our drug target list, and this list will change as our 

understanding of drug action improves.

Using these guidelines, the final assignment still requires substantial curation effort. For 

example, for dronedarone, an anti-arrhythmic drug approved in 2009, the FDA label (see 
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Further information) states that it has anti-arrhythmic properties belonging to all four 

Vaughan–Williams classes, and that its mechanism of action is “unknown”. This statement 

implies that at a molecular level, it may have the capacity to modulate sodium channels 

(class I), β-adrenergic receptors (class II), voltage-gated potassium channels (class III) and L 

type calcium channels (class IV)23. Recently, blockade of the If current (funny current) via 

HCN (hyperpolarization-activated cyclic nucleotide-gated) channels — of which there are 

four subtypes, with HCN4 being the form most highly expressed in the sinoatrial node29 — 

was identified as the likely mechanism for the bradycardic effect of dronedarone30, rather 

than modulating L type calcium channels or β-adrenergic receptors. Notably, ivabradine, a 

recently approved cardiac drug, also blocks If currents via HCN channels29,31. However, 

the dronedarone study30 did not rule out a role for sodium channels or voltage-gated 

potassium channels in the overall efficacy of the drug, but focused purely on its bradycardic 

effect. Other studies have further suggested that the inhibition of inward-rectifier potassium 

channels (in particular Kir2.132,33) may contribute to the antifibrillatory efficacy of 

dronedarone. A recent review makes it clear that dronedarone has many anti-arrhythmic 

effects and has a complex mechanism of action that probably involves many different target 

classes to a greater or lesser extent34.

This complexity is reflected by the diversity of annotations included in other databases for 

this drug. For example, Rask-Andersen et al.11 assigned one voltage-gated potassium 

channel (Kv11.1; encoded by KCNH2) and two adrenergic receptors as targets for 

dronedarone, whereas the Therapeutic Targets Database lists only Kv1.5 (another voltage-

gated potassium channel) as a target. DrugBank lists a total of 18 proteins (adrenergic 

receptors, sodium and potassium channels and L type calcium channels) for dronedarone, 

but all flagged with ‘pharmacological action unknown’ because, for their curator, their 

therapeutic role is uncertain. Finally, the IUPHAR/BPS Guide to Pharmacology database 

does not include any primary target information (or binding affinity data) for dronedarone, 

although it does describe its mechanism as involving adrenergic receptors and sodium, 

potassium and calcium channels35. In January 2016, none of these resources annotated 

HCN channels as a dronedarone target, even though this specific information was published 

several years ago and at least one follow up review dedicated to dronedarone agrees that 

HCN channel blockade may be an important mechanism of action34.

The complex case of dronedarone highlights that our annotations are only a snapshot that 

represents current knowledge. We will continue to curate and update our assignments in the 

ChEMBL, DrugCentral and canSAR databases as more experiments are performed and 

knowledge of drug mechanisms increases. Such complexity is also at the heart of the 

concept of network pharmacology — the proposal that often several simultaneous distinct 

points of intervention are required for drug action. It remains to be seen in practice what 

proportion of drugs absolutely require binding to multiple targets for their efficacy.

Drugs, targets and therapeutic areas

Target annotations were combined from the ChEMBL, DrugCentral and canSAR databases 

to provide a unified set of drug efficacy targets, provided in Supplementary information S2 
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(table). Using this approach, we identified 667 unique human protein efficacy targets and 

189 pathogen protein efficacy targets (table 1).

Using the ChEMBL hierarchical target classification system17, we then examined how the 

human protein targets distribute into homologous families and identified the most enriched 

ones. Rhodopsin-like G protein-coupled receptors (GPCRs; also known as 7TM1), ion 

channels, protein kinases and nuclear hormone receptors were considered to be privileged 

families given that they alone account for 44% of all human protein targets (GPCRs: 12%; 

ion channels: 19%; kinases: 10%; and nuclear receptors: 3% (figure 1a)). Moreover, owing 

to the variable number of approved drugs per target, these privileged families are responsible 

for the therapeutic effect of 70% of small-molecule drugs (GPCRs: 33%; ion channels: 18%; 

kinases: 3%; and nuclear receptors: 16% (figure 1a)).

There is a large difference between the drug and target fractions for protein kinases because 

of the broad polypharmacology typical of small-molecule kinase inhibitors, whereas the 

opposite is seen for nuclear receptors. The area of directed protein kinase inhibitors was 

highlighted in our original 2006 publication as an emerging target class7, and this trend has 

clearly continued. The remaining human protein efficacy targets are mostly unrelated 

enzymes. In the case of biologics, secreted or surface antigen proteins are the most 

important target class. This result is as expected given the highly restricted compartmental 

distribution of high-molecular-mass drugs within the body.

The number of drugs per target and the number of targets per drug are noteworthy in our 

analysis. By simple averaging, we obtain the figure of two drugs per target. However, this 

result is an oversimplification of complex pharmacology. Some targets have provided a rich 

ground for selective drugs, such as the glucocorticoid receptor (which has 61 approved 

drugs), whereas others fall into the opposite category, such as kinase inhibitors, for which 

few drugs act on many targets, thus contributing to the overall pharmacological response to 

those drugs (Supplementary information S3 (figure)). Another key developing trend is 

monoclonal antibody therapies, which are typically highly specific to a single gene product. 

This contrasts with small-molecule drugs, for which the interaction with multiple targets 

(polypharmacology) is more common.

Kinase inhibitors provide some of the best-known examples of polypharmacology because 

their bioactivity is routinely profiled against many kinases (and other targets) during the 

drug discovery and development process. This profiling was made possible by the 

introduction of high-throughput (in vitro) assay technologies. However, for most drugs, 

which were approved before 1990, this type of target profiling was not systematic; thus, our 

ability to understand polypharmacology both within and outside target families is a more 

recent endeavour.

The highly biased distribution in successfully ‘drugged’ protein families is also reflected in 

the biased distribution of bioactivity data from the ChEMBL database when examining the 

data at the target class level (figure 1b). ChEMBL is an open-access, large-scale bioactivity 

database containing manually extracted information from the medicinal chemistry literature 

together with data from United States Adopted Name (USAN) applications. Consequently, 
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ChEMBL provides an unbiased reflection of small-molecule compounds at the lead 

optimization phase of drug discovery17. The protein-family-based organization of the data 

enables detailed examination of attrition during clinical development at a target family level 

(specifically, potent leads can be identified, but these may then fail in clinical development). 

Pooling the data by family enables a more robust statistical analysis and reduces the impact 

of specific targets on the analysis. As shown in figure 1b, it is clear that the discovery-phase 

investment in rhodopsin-like GPCRs has, at least until now, consistently paid off, because 

the fraction of approved drugs is slightly higher than the fraction of compounds in ChEMBL 

targeted to members of this family. The same relative enrichment (or survival) through 

clinical development is found for nuclear receptors, voltage-gated ion channels (VGICs), 

various reductases, electrochemical transporters and ligand-gated ion channels (LGICs). 

Curiously, in the case of nuclear receptors, no new efficacy target belonging to this family 

has emerged in recent years, although some are currently in trials (Supplementary 

information S4 (figure)). For protein kinases and proteases, the return in investment has 

shown the opposite trend. However, interest in protein kinases as drug targets is more recent 

(data not shown), and many potential kinase-directed drugs are still in active clinical 

development. For the extensively explored and high-attrition families — for example, the 

trypsin-like serine proteases — these data support the possibility that, on average, the family 

has low inherent druggability. Other examples from this simple data-driven analysis point to 

specific target-based attrition in some cases; for example, more than 40 mitogen-activated 

protein kinase p38α (also known as MAPK14) inhibitors have entered clinical trials, but 

have typically only progressed to, or stalled in, phase II trials.

To gain insight into drug innovation patterns by disease area, we linked a target to cognate 

drugs and then the drugs to their ATC codes. The number of small-molecule and biologic 

drugs per therapeutic area are shown in Table 2. We then grouped drugs per ATC level 3 

code according to their worldwide or FDA approval year. As shown in figure 2, the maturity 

of the drugs targeting the cardiovascular system (category C) or the dermatological system 

(category D) is clear. By contrast, figure 2 also illustrates the recent innovation in the 

oncology and immunology areas (category L), as well as the recent lack of progress and 

small number of drugs available in the antiparasitic class (category P). A similar analysis at 

the target family level reveals a higher number of recently approved drugs that modulate 

kinases compared with the number of recently approved drugs that act through either nuclear 

receptors or ion channels (figure 3). Specifically, 20 protein kinase inhibitors have been 

approved by the FDA since 2011, accounting for 28% of all kinase-modulating drugs. This 

fraction would be even higher if only small molecules were considered in the analysis 

because biologics such as insulin derivatives (mainly approved before 1990) constitute a 

substantial portion of the kinase-modulating drugs (although these biologics do not bind to 

the protein kinase catalytic domain, which is typically used to define family membership).

Finally, to investigate the relationship between drugs, target classes and therapeutic areas, 

we again linked a target to cognate drugs and the drugs to their ATC codes, then connected 

drugs that share efficacy targets belonging to the same target class. In this way, we can 

analyse target family or functional class promiscuity across diseases or anatomical systems 

(figure 4). For example, if we look at several of the previously identified privileged target 

families — membrane receptors belonging to rhodopsin-like GPCRs, VGICs, LGICs and 
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protein kinases — we see that rhodopsin-like GPCRs are targets for small-molecule drugs 

across almost every ATC class (figure 4a), with the exception of antiparasitic products 

(category P) and hormonal systems (category H). By contrast, protein kinases, which 

represent 13% of the protein human efficacy targets assigned to small molecules, only 

account for 2.4% of the small-molecule drugs, almost all of which are antineoplastic and 

immunomodulating agents (category L). This category is also represented when linking 

kinases assigned to biologic drugs, but for this type of drug, kinases seem to have an 

important role in other anatomical systems too. For biologics overall, only a small fraction 

of ATC categories are covered (figure 4b). As shown in figure 4a, the patterns created by ion 

channels are also distinct. Both VGICs and LGICs cover the musculoskeletal system 

(category M), the nervous system (category N), the alimentary tract and metabolism 

(category A), the respiratory system (category R), and the cardiovascular system (category 

C). The VGIC family also covers the dermatological system (category D) and the sensory 

system (category S). It is interesting to speculate that this clustering reflects a deeply rooted 

evolutionary relationship of various signalling and control subsystems of the body, and may 

provide additional guidance and constraints in effective drug repositioning and side-effect 

liability.

Worldwide drug approvals

Although the analysis presented above is restricted to FDA-approved drugs and antimalarials 

approved in the rest of the world, we have also collated mechanism-of-action data on an 

additional set of ~1,200 drugs from WHO International Nonproprietary Names (INN) lists 

(see Further information) combined with literature searches35,36 to select drugs approved by 

other regulatory agencies. The vast majority of these drugs are members of the same 

chemical classes and share the same target (or targets) as an FDA-approved drug. For 

example, etoricoxib, a selective cyclooxygenase 2 (COX2) inhibitor, is approved in more 

than 80 countries but has not currently received FDA approval owing to safety concerns, 

whereas fimasartan, an angiotensin II receptor antagonist, is approved in South Korea only. 

Inclusion of these drugs identified eight additional, novel drug efficacy targets (table 3).

Orthologues in animal models

Selecting the best model organism to study a particular disease or to validate a novel target 

mechanism involves identifying an induced disease state in a model organism with sufficient 

similarities to human pathology that a reliable prediction of the effects in humans may be 

made on the basis of the effects in the model organism. In practice, this is not 

straightforward. One approach that can be used to select a suitable model organism is to take 

the core human ‘pharmacolome’ (which we define here as the set of gene products that are 

modulated by current drugs) to compile a list of orthologues in typical model organisms. 

These genes can then be mapped back to the respective protein efficacy targets, the efficacy 

targets to the drugs and the drugs to the therapeutic indication (through the ATC code). 

Thus, from these data, one can infer which therapeutic areas are potentially best mimicked 

by which model organism. Figure 5 is a visualization of this information in a single plot (see 

Supplementary information S5 (figure) for a full-sized version). As in figure 4, the outer ring 

corresponds to the ATC categories scaled to the number of approved drugs in those 
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categories. The inner ring is composed of ATC level 4 categories, which indicate the 

chemical, therapeutic and pharmacological subgroup. A series of heatmaps per species is 

then shown, coloured by how many of the protein efficacy targets are conserved for that 

ATC level 4 category between model organisms. The dark blue sections in Homo sapiens or 

E. coli heatmaps indicate that the drug target is a human protein or a bacterial protein. The 

conservation of efficacy targets is always with respect to the drug target species.

Overall, the vertebrates (dog, pig, rat, mouse and zebrafish) all provide comparatively good 

coverage of the set of human drug targets. In some cases, however, the apparent variation is 

due to the currently incomplete annotation in genome annotation and/or orthologue 

assignment for more recently completed genomes. As would be expected, the genomes of 

Drosophila and Caenorhabditis elegans contain fewer orthologues for human disease targets. 

The differences reflect anatomical systems that are substantially different or missing 

compared with humans. However, the degree of conservation varies significantly between 

the two species and between different therapeutic areas. For example, C. elegans retains 

many of the targets that are responsible for the efficacy of dermatological and genitourinary 

drugs, whereas these appear to be absent in Drosophila. When considering even simpler 

unicellular organisms such as yeast or E. coli, generally only targets reflecting core essential 

cellular functions, such as DNA, protein and nucleotide synthesis, remain.

When seeking to identify novel anti-infective targets, it is often proposed that absence of the 

corresponding protein in the host organism (normally humans) is an important prerequisite 

for success, and such constraints are often applied in bioinformatics filtering of potential 

targets. However, it can be seen from figure 5 that although several pathogen targets do lack 

human orthologues, there are a number of proteins that are also present in humans or other 

mammals. If the ribosome is considered, the number of pathogen targets with human 

orthologues increases even further. Dihydrofolate reductase (DHFR) inhibitors, for example, 

are used as antibacterial agents, antineoplastic agents and antiparasitic agents in humans. 

Antibacterial DHFR-targeted agents, such as trimethoprim, generally achieve sufficient 

selectivity and therapeutic index over the human systems to avoid mechanism-based toxicity.

Cancer drivers and cancer targets

A substantial proportion of drug discovery efforts in the past decade have involved the 

rational selection of mechanistic cancer drivers to be targeted37. Moreover, cancer is the 

area of biggest growth in large-scale systematic efforts to identify disease drivers, powered 

by major international consortia38–41, and so it is interesting to consider the impact of such 

efforts on the identification of novel clinically validated targets. The 154 cancer drugs 

approved by the FDA can be broadly divided into the three groups mentioned above: 26 

drugs are cytotoxic agents; 38 drugs are broadly cytotoxic and act at least partially through 

protein targets, such as proteasome inhibitors; and 85 drugs can be assigned to clear 

mechanistic protein targets. A further 5 drugs act through unknown or non-protein targets. 

Systematic efforts to identify cancer drivers based on ‘omics’ data have contributed 

considerably to the growth in the number of drugs in the third category in recent years. The 

impact of such approaches is clearly illustrated by the discovery in 2002 of BRAF as the 

major driver for malignant melanoma, which led to the approval in 2011 of the BRAF 
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inhibitor vemurafenib as the first targeted therapy for melanoma. Subsequently, the MEK 

inhibitor trametinib, which targets the same signalling pathway as vemurafenib, was 

approved in 2013. Another example is the discovery of EML4–ALK driver translocation in 

non-small-cell lung cancer42, leading to the approval of the ALK inhibitor crizotinib in 

2011.

The relationship between drug mechanisms and bona fide cancer drivers merits 

consideration. We have previously analysed the trends in identifying cancer drivers and have 

shown that multiple studies are converging towards ~600 cancer drivers across different 

cancers43. We compared the lists of consensus 553 cancer drivers43 to the list of 109 

protein targets of the 85 protein-targeted cancer drugs described above (figure 6) and found a 

small overlap (30 proteins) between the two sets. There are several reasons for this small 

overlap. Despite the large numbers of patients involved in these studies, they can be biased 

in their composition and in the statistical methodologies used to select drivers; hence, a gene 

may fall short of the final statistical prevalence cut-off. Another reason is that many of these 

drivers are newly discovered cancer-associated genes for which there has been little 

historical biological investigation; thus, time will tell whether they can yield useful targets 

for drug discovery. Indeed, our own analysis indicated that at least 10% of cancer drivers are 

likely to be druggable by small-molecule drugs, but such investigations had not been 

reported in the medicinal chemistry literature43–45. Finally, and importantly, non-oncogene 

addiction has been — and will remain — a key aspect of cancer that can be therapeutically 

targeted46,47. This trend is exemplified by FDA-approved hormone-recognition- and 

hormone-biosynthesis-targeting agents such as aromatase inhibitors for breast cancer, 

cytochrome P450 family 17 subfamily A member 1 (CYP17A1) inhibitors for prostate 

cancer, and poly(ADP-ribose) polymerase (PARP) inhibitors for ovarian cancer. Agents 

under clinical investigation exploiting synthetic lethality to oncogenes include PARP 

inhibitors in DNA damage repair-deficient prostate cancer48. Other agents are exploiting 

non-oncogene addiction; for example, VLX 1570 inhibits proteasome 19s associated protein 

ubiquitin-specific peptidase 14 (USP14) to exploit 19s addiction in multiple myeloma49. 

Furthermore, many cancer genes are loss of function drivers; in such cases, the gene has 

been deleted or disabled through the genomic aberration, and targeting these genes will 

typically require a synthetic lethality approach. Thus, systematic mapping of disease drivers 

can indicate future therapeutic strategies both by identifying potential targets and by 

highlighting key pathways that can be drugged.

Concluding thoughts and future work

In this article, we have provided an enhanced and updated perspective on the current 

diversity of approved drugs and their targets, with a focus on the trends and changes over the 

past 10 years7. Compiling an accurate and agreed list of drug efficacy targets is not a trivial 

task, and with work from three teams we have made significant progress towards this goal, 

as well as highlighted some of the practical challenges. These challenges include resolving 

the non-trivial relationship between a gene and a drug target, assigning the target, and finally 

establishing a convention to deal with complexes, subunits and splice variants and protein 

isoforms when counting final effective molecular targets — a major factor in the increase in 

the number of protein targets to 667 from the 324 identified in our previous study7. All of 
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this is a prerequisite for analysing the diversity of existing drugs and targets in the light of 

their disease coverage. However, as the literature changes continuously in terms of the 

knowledge available about the mechanisms of action of drugs, these annotations will need to 

be updated frequently. Consequently, this data set will be maintained and made publicly 

accessible. A subset of the merged drug efficacy target data (referred to as Tclin) is currently 

available on the Illuminating the Druggable Genome website; see Further information).

Interestingly, in the 10 years since the publication of our previous enumeration of drug 

targets, privileged families such as rhodopsin-like GPCRs, nuclear receptors and VGICs 

have largely maintained their dominance of the drug target space, underlining the continuous 

utility of protein families endowed with druggable binding sites. The major changes over the 

past decade are in the proportion of protein kinase and protease targets; together these 

previously made up <2% of the total target set, and now represent 6% (protein kinases) and 

4% (proteases) of all targets of approved drugs. Reassuringly, the long tail of single 

exemplar targets from several underrepresented families continues to grow, indicating our 

ability to innovate in drug discovery.

It is interesting to speculate on the relative contribution of phenotypic versus targeted 

screens to the discovery of first in class drugs50,51. The simplest view would be that small-

molecule drugs for which polypharmacology is required for their action, such as sunitinib, 

are more likely to have been discovered through phenotypic rather than targeted screens. 

However, the data may indicate the opposite. Because phenotypic screens are often 

optimized against mechanistic and pharmacodynamic biomarker modulation, there is 

pressure towards more specific pharmacology of drugs discovered in this way. By contrast, 

discovering a small-molecule drug through a target-based screen optimizes the activity of the 

drug against the desired target, and selectivity against a few identified off-targets, without 

properly investigating the broader cellular activity of the agent.

As data on tissue expression and causal models mapping molecular to clinical events 

continue to emerge, the relationship between drug efficacy targets and the tissue localization 

of disease will progressively be accounted for, because drug action is more likely to be 

exerted in the tissue of choice. For example, although the anti-Parkinsonian drug ropinirole 

is more potent at the D3 receptor than the D2 receptor by an order of magnitude, we 

annotate the D2 receptor as the mechanism of action target because D2 receptors, but not D3 

receptors, are expressed in the substantia nigra, the pathologically relevant tissue for anti-

Parkinsonian drugs (see Further information). Future efficacy target annotations are 

anticipated to make extensive use of unambiguous tissue colocalization data for both target 

and disease.

As our understanding of the causes of complex disease deepens, we find that such diseases 

involve a combination of environmental factors, genetic and epigenetic dysfunction. Thus, 

will a reductionist approach to targeted therapy still have a role in the future? Regardless of 

the initial cause, most human disease is either initiated or mediated by the aberrant action of 

proteins. Hence, an armoury of mechanistically sophisticated and thoroughly experimentally 

annotated drugs that target this complexity is required, including incorporation of drug 

combinations52, network drugs53 and polypharmacology54. These approaches are of 
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particular importance in cancer and infectious disease, for which heterogeneity and 

evolution under the selective pressure of standard-of care drugs results in the emergence of 

drug resistance.

Medical care has two goals: to properly diagnose the disease and to select the appropriate 

therapeutic. As long as (drug-induced) phenotypic alterations are observed under appropriate 

conditions, it is possible to steer medical care and adjust the therapeutic management for a 

better outcome. Hence, the key to successful drug discovery and application resides in the 

seamless integration of pathological mechanisms of disease (that is, molecular and cellular 

level processes) with diagnoses (clinical embodiments of disease at the organ and/or 

organism level) and therapeutics (that is, modulating clinical manifestations at the molecular 

level via therapeutics).

Drug discovery and targeting remains a complex, costly and at times unpredictable process. 

However, used alongside the new insights into disease and fundamental biology that are 

emerging, we hope that knowledge about the associations between currently successful 

drugs, their efficacy targets, phenotypic effects and disease indications that we have reported 

here can help to contribute to the efficient discovery of a new generation of medicines.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1

Definitions used in the article

Efficacy target

Throughout the paper, we use the term ‘target’ to refer to those proteins or other 

biomolecules (such as DNA, RNA, heparin and peptides) to which the drug directly 

binds, and which are responsible for the therapeutic efficacy of the drug. Biomolecules 

that the drug may also bind to, or be metabolized by, but which are not known to be 

responsible for its therapeutic effect, are not defined as targets. Although the ChEMBL 

database assigns identifiers to multi-chain targets such as protein complexes, with 

annotation of the subunit to which the drug binds (where known), to facilitate the 

comparison of target annotations between multiple data sets, numbers used here reflect 

the individual components comprising these targets (in most cases, proteins) with non-

ligand-binding subunits of protein complexes excluded (where sufficient binding site 

annotations are available). DrugCentral uses the same definition but also requires links to 

bioactivity data.

Drug

The definition of ‘drug’ used here refers to therapeutic ingredients only, and includes all 

the small molecules and biologics that are currently approved (or have previously been 

approved) by the US FDA (before June 2015) to enhance human health, and also 

antimalarial drugs approved elsewhere in the world. The term drug does not include 

imaging agents, nutritional supplements, sunscreens or vaccines. Furthermore, the 

numbers reported in the paper refer to parent compounds after the removal of 

pharmaceutical salts. Identifying an entirely comprehensive set of drugs approved 

anywhere in the world is a highly challenging task owing to the number of different 

regulatory agencies involved and the diversity of the information sources required. 

Moreover, the lack of information is also a challenge; for example, the European 

Medicines Agency does not have approval data before 1995, and the Japan 

Pharmaceutical and Medical Devices Agency has published lists of approved drugs in 

English from 2004 only (see Further information). However, we have additionally 

identified a set of more than 1,200 drugs approved by other agencies but not currently by 

the FDA, and we discuss the novel targets within this set separately.

Prodrug

The definition of ‘prodrug’ used here refers to a drug for which the dosed ingredient is an 

inactive or only mildly efficacious entity, but once in the body it is converted to the active 

ingredient by either a spontaneous or an enzyme-catalysed reaction. It is estimated that 

approximately 10% of drugs fall into this category55. There are examples of different 

prodrugs resulting in the same active ingredient (for example, hydrocortisone is 

formulated as different prodrugs, including hydrocortisone sodium succinate, 

hydrocortisone valerate and hydrocortisone probutate) and also examples of prodrugs 

resulting in multiple active ingredients from a single dosed ingredient (such as 

azathioprine). For simplicity, we assigned efficacy target information to the inactive 
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prodrug (parent), rather than the active ingredient, which is actually the molecule that 

interacts with the therapeutic target.

Prescribing information

Prescribing information is a document provided by the company that markets an 

approved drug, and includes consistently presented and detailed information about the 

approved drug, including information on clinical pharmacology, such as the mode of 

action of the drug. This information is provided in the drug label of FDA-approved drugs, 

which is available as a PDF or mark-up document in the Structured Product Labelling 

format. In the European Union, the corresponding document is the Summary of Product 

Characteristics.

ATC code

The Anatomical Therapeutic Chemical Classification System code (ATC code) is 

attributed to a drug by the WHO Collaborating Centre (WHOCC) for Drug Statistics 

Methodology. The ATC code classifies drugs according to the following five levels: level 

1, the organ or anatomical system on which they act; level 2, the pharmacological action; 

levels 3 and 4, the chemical, pharmacological and therapeutic subgroups; and level 5, the 

specific single drug or drug combination. For example, for sildenafil, the ATC code is as 

follows:

Level 1 (G): genito urinary system and sex hormones

Level 2 (G04): urologicals

Level 3 (G04B): urologicals

Level4 (G04BE): drugs used in erectile dysfunction

Level 5 (G04BE03): sildenafil

Owing to the nature of the ATC classification, a drug can have multiple codes, especially 

if it acts on multiple anatomical systems; for example, aspirin has five different ATC 

codes: B01AC06, A01AD05, N02BA01, N02BA51 and N02BA71. A drug can also have 

multiple codes if it is used as a component of a single product combination therapy.
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Box 2

Data collection and analysis methods

Efficacy targets assignment and comparison

A list of all US FDA-approved drugs (small molecules and biologics) and antimalarials 

approved elsewhere in the world was compiled based on the data content of ChEMBL 21, 

DrugCentral and canSAR (see Further information; information accuracy in DrugCentral 

was benchmarked against multiple sources including the NCATS Pharmaceutical 

Collection56 — see table 2 in ref 15). The list was further divided into small molecules 

and biologics. After the removal of pharmaceutical salts and merging the drug lists, 1,419 

unique small-molecule drugs and 250 unique biologic agents were obtained. For each of 

these drugs, the efficacy target was extracted from the current version of the prescribing 

information and complemented with the scientific literature in the cases for which either 

the prescribing information was not available or the mechanism of action was not 

reported. The following guidelines were used when assigning the efficacy targets:

• Identify the target from the “Mechanism of Action” description in the 

prescribing information. If it is available, assign the therapeutic target (or 

targets) to the compound.

• If the information in the prescribing information is ambiguous, complement 

this with a literature search for publications related to the mechanism of 

action of the drug.

• For conflicting cases, look at review articles, either about the biology of the 

disease or the pharmacology of other chemically related drugs, and determine 

the most plausible mode of action.

• For the cases when several subunits or isoforms match the information 

described in the prescribing information, evaluate which is more likely to be 

the real therapeutic target by looking at its expression patterns in relevant 

tissues for the disease.

• If the specific subunit (or subunits) or isoform (or isoforms) cannot be 

identified, assign all of them as targets.

• For pathogen targets, if the prescribing information lists several 

microorganisms against which the drug is effective, pick a representative one 

rather than assigning all of them as targets.

• If the mechanism is still not clear or unknown, and the literature did not 

provide any conclusive information on the molecular target, do not assign any 

target to the compound.

All the external data sets were retrieved in June 2015 and included only drugs approved 

by the US FDA before this date. The mapping of drugs between the data sets was based 

on the drug names provided by each data set and the parent drug name in ChEMBL 21. 

To improve the mapping, synonyms associated with each parent drug name were also 
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taken into consideration, as well as active drug names in case of prodrugs. The mapping 

of targets between the data sets was based purely on UniProt accessions.

Mapping of drugs to the ATC code

For each drug, the respective WHO Anatomical Therapeutic Chemical Classification 

System code (ATC code) or codes was extracted from ChEMBL 21 or DrugCentral, and 

assigned to either its respective dosed ingredient (if applicable) or the parent ingredient 

itself. For the 1,669 drugs, 1,462 could be mapped to current ATC codes and the 

remaining 207 were labelled “Unclassified”.

Target classification

The protein target classification was made using the existing classification in ChEMBL 

21. Both level 1 and 2 were attributed to each of the human and pathogen efficacy targets. 

For simplicity, all the entries with level 1 labelled as “Cytosolic other”, “Secreted”, 

“Structural” and “Surface antigen” were all renamed to “Protein other”.

Efficacy targets, orthologues and ATC code mapping

The UniProt IDs of the human protein efficacy targets were mapped to Ensembl Gene 

IDs and Ensembl Protein IDs through Biomart57. Orthologues of Canis lupus familiaris 
(dog), Sus scrofa (pig), Rattus norvegicus (rat), Mus musculus (mouse), Danio rerio 
(zebrafish), Drosophila melanogaster (fruitfly), Caenorhabditis elegans (nematode) and 

Saccharomyces cerevisiae (yeast) were extracted from Ensembl Compara version 82 

57,58. The remaining orthologues among Homo sapiens (human), Plasmodium 
falciparum and Escherichia coli were extracted from InParanoid version 8.0 59 and 

mapped via Ensembl Protein IDs. The UniProt IDs of the pathogen protein efficacy 

targets, composed of a representative set of E. coli proteins, were used to extract the 

orthologues of H. sapiens, C. l. familiaris, R. norvegicus, M. musculus, D. rerio, D. 
melanogaster, C. elegans, S. cerevisiae and P. falciparum from InParanoid version 8.0.

Each drug was clustered in an ATC level 4 category, and for each category the 

orthologues of the protein efficacy targets for those drugs were accounted for. If, within a 

certain ATC level 4 category, not all protein efficacy targets had orthologues, this would 

be reflected in the final plot in figure 5 by colouring their presence in a way that it 

reflects the percentage of efficacy targets with orthologues in a certain species.
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Box 3

Additional details on data classification and analysis

Clinical success

A list of non-approved compounds was compiled based on the data content of ChEMBL 

20. Specifically, all of the compounds, the maximum development phase of which differs 

from phase IV and which have been tested against a human protein, were retrieved from 

ChEMBL 20. In this context, the protein target was defined as a target whose target type 

was equal to the following: “single protein”, “protein complex”, “protein complex group” 

or “protein family”. Compounds were further filtered based on the source of the assay, 

and only compounds whose activity profile was extracted from the medicinal chemistry 

literature (assay source equal to 1) were retained for analysis and linked to the protein 

classification level 2. After the removal of pharmaceutical salts, the total number of non-

approved compounds was 382,910. The number of unique compounds associated with a 

particular protein target class was counted and used to obtain the distribution of tested 

compounds per family classes. Protein targets whose level 2 classification was null or 

unclassified were grouped into one single target class named “Other”. Additionally, the 

following families were also grouped and labelled as “Other” owing to the lower number 

of tested compounds against members of these families: “Ion channel TRP”, “Ion 

channel KIR”, “Ion channel SUR”, “Ion channel RYR”, “Ion channel ASIC”, “Ion 

channel IP3”, “Ion channel K2P”, “Membrane receptor 7tmfz”, “Membrane receptor 

7tmtas2r”, “Toll-like membrane receptor”, “Ligase” and “Aminoacyltransferase”.

The same procedure was used to count the distribution of approved drugs per family 

classes. Briefly, all drugs, the target of which is a human protein, were linked to the 

protein classification level 2. After the removal of pharmaceutical salts, the total number 

of drugs was 1,194. The number of unique drugs associated with a particular protein 

target class was counted and used to obtain the distribution of successful drugs per family 

class.

Antipsychotics

The list of central nervous system drugs was compiled by combining information from 

the WHO Anatomical Therapeutic Chemical Classification System code (ATC code) and 

the United States Pharmacopeial Convention (USP) system60. In summary, a drug with 

an ATC level 3 code equal to “N05A” and classified as antipsychotic or psychotic by the 

USP system60 was considered to be an antipsychotic.

pXC50 calculation

Mean potency (pXC50; negative logarithm of XC50) values were calculated as described 

in Gleeson et al.61, but with minor changes. In summary, bioactivity data for the 

antipsychotics (shown in Supplementary information S1) were extracted from ChEMBL 

20 and filtered to include only XC50 values from assays in which the target was a human 

protein, and the standardized activity type was flagged as Ki, IC50, EC50, Kd, XC50, 

AC50 or potency. In the ChEMBL database, standardization of activity data reported in 

different units to nanomolar units and conversion of logged data, such as pKi and pIC50, 
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to the non-log format has been performed. This standardization enables the maximum 

comparable bioactivity data to be extracted from the database for use in this analysis. 

XC50 values not standardized to nanomolar units or reported as “greater than” or “less 

than” were excluded. In a few cases, the target information in the original publication did 

not specify the isoform or subunit of the receptor or protein complex. In these cases, the 

data were kept and analysed independently, not being merged with the data for which the 

individual proteins were explicitly mentioned. Having extracted the data, XC50 values 

recorded against the same target and compound were averaged and converted to the 

pXC50 values.

Image software

All of the figures were produced using a combination of the following programs: R 

Project for Statistical Computing version 2.15 (see Further information), Circos62 and 

Inkscape (see Further information).
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Figure 1. 
Major protein families as drug targets.

(a) Distribution of human drug targets by gene family. (b) distribution by the fraction of 

drugs targeting those families; the historical dominance of four families is clear. (c) Clinical 

success of privileged protein family classes. Distribution of non-approved compounds in 

ChEMBL 20 (extracted from the medicinal chemistry literature, with bioactivity tested 

against human protein targets) per family class, and distribution of approved drugs (small 

molecules and biologics) per human protein family class. 7TM, seven transmembrane 

family; GPCR, G protein-coupled receptor; LGIC, ligand-gated ion channel; NTPase, 

nucleoside triphosphatase; VGIC, voltage-gated ion channel.
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Figure 2. 
Innovation patterns in therapeutic areas. Each node in the inner ring corresponds to a drug 

represented by its ATC code(s). The inner ring corresponds to the level 1 of the ATC code 

(see Table 2) scaled to the number of drugs in that category. The outer ring represents the 

level 3 of the ATC code. Each of the subsequent histograms illustrates the number of drugs 

(small molecules and biologics) distributed per year of first approval per level 3 of the ATC 

code. Max histogram scale: 100. The approval year refers to the first known worldwide 

approval date, if available, otherwise the first FDA approval date.

Santos et al. Page 24

Nat Rev Drug Discov. Author manuscript; available in PMC 2019 January 02.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 3. 
Innovation patterns in privileged protein classes. Histogram depicting the number of drugs 

(small molecules and biologics) that modulate the four privileged families, distributed per 

year of first approval. On top of each bar, the total number of approved drugs is shown, 

together with the number and percentage of drugs approved since 2011 in respect to the total 

drugs modulating these four families. A spreadsheet view of this data is provided in 

supplementary information S6 (table). 7TM1: G-protein coupled receptor 1 family; Ion 

channel: Voltage-gated ion channel and Ligand-gated ion channel. Drugs without an ATC 

code (U – Unclassified) were excluded from this analysis.
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Figure 4. 
Promiscuity of privileged protein family classes. Each node in the outer ring corresponds to 

a drug represented by its ATC code(s). The outer ring corresponds to the level 1 of the ATC 

code (see Table 2) scaled to the number of drugs in that category. The inner ring represents 

the level 2 of the ATC code. A node is connected to another when two drugs have an 

efficacy target that belongs to the same target class. (a) Footprint of privileged family classes 

modulated by organic small-molecule drugs across disease. (b) Footprint of privileged 

family classes modulated by biologic drugs across disease. G-protein coupled receptor 1 

family (blue); Voltage-gated ion channel (orange); Ligand-gated ion channel (green); Kinase 

(black). Drugs without an ATC code (U – Unclassified) were excluded from this analysis.
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Figure 5. 
Protein efficacy targets availability across several model organisms. (a) Each node in the 

outer ring corresponds to a drug represented by its ATC code(s). The outer ring corresponds 

to the level 1 of the ATC code (see Table 2), scaled to the number of drugs in that category. 

The next ring represents the level 4 of the ATC code. Each of the subsequent rings represents 

a different species, as indicated in the legend, and each section of the ring is coloured 

according with the presence or absence of orthologues of the efficacy targets of the drugs in 
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that ATC level 4 category. The dark blue sections indicate the species of the protein efficacy 

targets. (b) An expanded portion of section J of the chart.
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Figure 6. 
Overlap of cancer drug targets with cancer drivers. We grouped the cancer drugs into the 

three categories: broadly cytotoxic agents such as platinum complexes and DNA 

intercalating agents; cytotoxic agents that act through a protein, such as tubulin inhibitors, 

that do not have biological selectivity; and targeted agents that act through clear protein 

function-modulating mechanisms such as kinase inhibitors and nuclear hormone receptor 

antagonists. When we compared the targets of agents in the third group to a consensus 

reference list on cancer driver genes43 we observe only a small overlap between cancer 

drivers and current cancer drug targets.
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Table 1

Molecular targets of FDA approved drugs

Targets Drugs

Drug target Class Total targets Small-molecule drug targets Biologic drug target Total drugs Small molecules Biologics

Human Protein 667 549 146 1194 999 195

Pathogen Protein 189 184 7 220 215 5

Other human biomolecules 28 9 22 98 63 35

Other pathogen biomolecules 9 7 4 79 71 8
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Table 2

Therapeutic areas of FDA approved drugs

This list also includes antimalarial drugs approved elsewhere in the world. ATC; WHO Anatomical 

Therapeutic Chemical Classification System.

ATC category Therapeutic area Number of small molecules Number of biologics

A Alimentary tract and metabolism system 158 32

B Blood and blood forming organs 33 28

C Cardiovascular system 200 5

D Dermatologicals 141 5

G Genito urinary system 94 5

H Hormonal system 44 31

J Anti-infectives for systemic use 194 10

L Antineoplastic and immunomodulating agents 142 67

M Musculo-skeletal system 62 6

N Nervous system 239 1

P Antiparasitic products, insecticides and repellents 38 1

R Respiratory system 118 4

S Sensory organs 143 11

V Various 30 12

U Unclassified 156 51
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Table 3

Drug efficacy targets unique to non FDA approved drugs

Tipiracil is an adjuvant used in the treatment of colorectal cancer to potentiate the action of trifluridine. ATC; 

WHO Anatomical Therapeutic Chemical Classification System, NA; not applicable

Target Name UniProt Accession Number Example drug ATC class Indication

Aldose reductase P15121 Tolrestat A10XA Diabetic complications

Melanocyte-stimulating hormone receptor Q01726 Afamelanotide D02BB Erythropoietic Protoporphyria

P2Y purinoceptor 2 P41231 Diquafosol NA Dry eye

Rho-associated protein kinase 1 Q13464 Ripasudil NA Glaucoma

Rho-associated protein kinase 2 O75116 Ripasudil NA Glaucoma

Transthyretin P02766 Tafamidis N07XX Amyloidosis

Troponin C, slow skeletal and cardiac 
muscles

P63316 Levosimendan C01CX Congestive heart failure

Thymidine phosphorylase P19971 Tipiracil NA Colorectal cancer

Nat Rev Drug Discov. Author manuscript; available in PMC 2019 January 02.


	Abstract
	Complexities in defining efficacy targets
	Drugs, targets and therapeutic areas
	Worldwide drug approvals
	Orthologues in animal models
	Cancer drivers and cancer targets
	Concluding thoughts and future work
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Table 1
	Table 2
	Table 3

