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Abstract

Parkinson’s disease is the second most common neurological disease and affects about one percent 

of persons above the age of 60. Due to the lack of approved surrogate markers, confirmation of the 

disease still requires post-mortem examination. Identifying and validating biomarkers are essential 

steps toward improving clinical diagnosis and accelerating the search for therapeutic drugs to 

ameliorate disease symptoms. Until recently, statistical analysis of multi-cohort longitudinal 

studies of neurodegenerative diseases has usually been restricted to a single analysis per outcome 

with simple comparisons between diagnostic groups. However, an important methodological 

consideration is to allow the modeling framework to handle multiple outcomes simultaneously and 

consider the transitions between diagnostic groups. This enables researchers to monitor multiple 

trajectories, correctly account for the correlation among biomarkers, and assess how these 

associations may jointly change over the long-term course of disease. In this study, we apply a 

latent time joint mixed-effects model to study biomarker progression and disease dynamics in the 

Parkinson’s Progression Markers Initiative (PPMI) and examine which markers might be most 

informative in the earliest phases of disease. The results reveal that, even though diagnostic 

category was not included in the model, it seems to accurately reflect the temporal ordering of 

disease state consistent with diagnosis categorization at baseline. In addition, results indicated that 

Specific Binding Ratio (SBR) on striatum and Total Unified Parkinson Disease Rating Scale 

(UPDRS), show high discriminability between disease stages. An extended latent time joint 

mixed-effects model with heterogeneous latent time variance also showed improvement in model 

fit in a simulation study and when applied to real data.
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1. Introduction

Parkinson’s disease (PD) affects nearly 1% of persons above the age of 60. Degeneration 

and death of neurons in the substantia nigra of the brain occurs much earlier than the onset 

of motor symptoms such as slow movement, tremor, and rigidity. Disease progression is 

characterized by the transition from normal, through preclinical, to clinical stages of the 

disease. Confirmation of the disease is only possible through an autopsy. Presence of non-

motor symptoms such as olfactory, sleep and depression help classify patients as prodromal 

since there is currently no available surrogate marker to confirm disease diagnosis. 

Currently, the FDA approves DaTscan, a specialized imaging technique of the brain that 

measures levels of dopamine in the substantia nigra, to evaluate suspected PD. Nonetheless, 

diagnosis of the onset and progression of the disease is often marred by errors due to the 

unavailability of reliable validated diagnostic markers. Identifying and validating biomarkers 

are crucial steps in clinical diagnosis and the search for treatment to ameliorate disease 

symptoms and slow down the progression of PD. Reliable and cost-effective biomarkers for 

the diagnosis of neurodegenerative diseases are more likely to be discovered if multiple 

clinical, biological and imaging assessments are studied simultaneously to provide 

complementary information.

In studies of neurodegenerative diseases such as PD, clinical, biological and imaging 

biomarkers are often collected longitudinally over a short period of time on individuals at 

different stages of disease. Such studies are aimed at accurately characterizing disease 

trajectories and identifying important diagnosis and prognosis biomarkers, and ultimately 

help to accelerate drug discovery. Although studies generally collect multiple outcomes over 

time, it is very common to find studies where researchers focus on the analysis of changes in 

a single outcome. In this regard, the linear mixed-effects model is ubiquitous in studies of 

neurodegenerative diseases. For example, Kennedy et al. (2015) applied linear mixed effect 

models to estimate rate of decline of Alzheimer’s Disease Assessment Scale Cognitive score 

(ADASCog) among AD patients based on Mini Mental State Examination (MMSE). 

Guerrero et al. (2016) reported studies which employ mixed-effect models for the analysis of 

longitudinal AD markers. Mixed-effect models are also commonly applied in the 

Parkinson’s disease literature. Sturkenboom et al. (2014) assessed the effect of occupational 

therapy on Canadian Occupational Performance measure in improving the daily activity of 

PD patients. Klotsche et al. (2011) analyzed changes in health-related quality of life 

(HRQoL) in a longitudinal cohort study of PD patients. Analysis of single longitudinal 

outcomes can be inefficient for studying the progression of the disease since outcomes may 

be correlated and hence may provide complementary insights. Single-outcome analyses may 

also contribute to the lack of strong evidence of symptomatic or disease-modifying treatment 

effects on clinical outcomes. Inference may be improved if all outcomes are modelled 

simultaneously, taking into account the intra- and inter-subject variability and 

accommodating between outcomes associations.

Joint models that simultaneously model two or more outcomes have received relatively less 

attention in the neurodegenerative disease literature. This neglect is likely due to problems in 

interpretation of resulting parameter estimates, or to the computational complexities that 
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arise when the number of outcomes grows or when the outcomes are of mixed types, such as 

binary, count, continuous, or time-to-event. Moreover, in most studies, which do employ 

multivariate models, only two outcomes are modelled at a time (Iddi & Molenberghs (2012); 

Tsiatis & Davidian (2004)). Nevertheless, the multivariate modeling framework offers 

several potential advantages, such as accommodating all sources of variation and correlation 

among outcomes. With the rapid emergence and growing popularity of Bayesian estimation 

methods to handle complex and computationally burdensome models, multivariate 

modelling techniques have become an active area of research in neurodegenerative studies. 

Luo & He (2016) analyzed longitudinal outcomes and a time-to-event outcome to assess the 

effect of tocopherol on patients with early PD using a Bayesian Markov Chain Monte Carlo 

(MCMC) method for the efficient estimation of model parameters. Their modeling 

framework applied a multilevel item response theory model for multiple longitudinal 

outcomes and a Cox proportional hazard model for the survival outcome. They demonstrated 

that their joint model led to a better fit to their data than single analyses per outcome. Luo 

(2014) provides an excellent review of recent developments and issues of joint modeling of 

longitudinal and survival data. Li et al. (2017) proposed a latent time joint mixed effect 

model (LTJMM), an extension of the multivariate linear mixed effects model for 

longitudinal data, which accommodates a large number of outcomes to be analyzed together 

and permits unbalanced time measurement of outcomes. A distinctive feature of this model 

is the inclusion of a latent time shift parameter, which captures the degree of an individual’s 

disease progression. The subject-specific latent times shared across outcomes are assumed to 

have a homogeneous variance across all subjects.

In this study, we extended the LTJMM by relaxing the homogeneity assumption on the latent 

times. Heterogeneity was introduced by allowing the latent time to be influenced by subject-

level covariates. To achieve this, we modelled the latent time variance in terms of covariates 

through an exponential function. The heterogeneous latent time joint mixed effects model 

was used to estimate trajectories of biomarkers and determine the sequence of biomarker 

abnormality using data from the Parkinson’s Progression Markers Initiative (PPMI) study. 

Estimation of model parameters was via a Bayesian MCMC framework.

2. Materials and Methods

2.1. Data

The Parkinson’s Progression Markers Initiative (PPMI) is a prospective multi-center study of 

patients at different stages of Parkinson disease (PD) with healthy patients as controls. 

Roughly 35 centers across North America, Europe, Israel, and Australia are involved in this 

ongoing study that has collected data over a period of 6 years. All study sites received 

institutional review board approval before initiating the study, and all study participants 

provided written informed consent for research. Detailed study design, inclusion criteria, 

standard protocols, registration and consent procedures can be found on the study website 

(www.ppmi-info.org). The study is aimed at identifying novel clinical, imaging and biologic 

markers of Parkinson’s disease and to assess their progression in patients. Discovery and 

validation of new biomarkers would be beneficial for use in clinical trials of disease-

modifying drugs. Patients are classified by their disease stage, namely Healthy Controls 
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(HC), Parkinson’s Disease (PD), Scan without evidence of dopaminergic deficit (SWEDD), 

Prodromal, Genetic cohort and Genetic Registry patients. The genetic cohort and registry 

subjects may or may not be affected with Parkinson’s symptoms. The steps involved in 

diagnosing and classifying participants into disease categories are reported in the PPMI 

study protocol.

In this study, we focused on subjects in the HC, PD and Prodromal groups. There were 475 

PD, 238 HC, and 187 Prodromal individuals representing 52.78%, 26.44%, and 20.78% of 

the sample, respectively. Of these participants, 317 (35.22%) were female and 583 (64.78%) 

were male. The proportion of females in the HC, PD and Prodromal groups was 34.87%, 

35.58%, and 34.76% respectively. Visit times were not balanced, as the schedule of 

assessments depended on the group. Healthy controls were followed every 6 months for the 

first year and 12 months thereafter. Before the first 12 months, PD and Prodromal patients 

were followed every 3 months and for every 6 months thereafter.

We considered 17 outcomes and modelled 8 of them using age and gender as covariates. 

Clinical assessments included Tremor, Postural Instability and Gait Difficulty (PIGD), REM 

sleep behavior disorder (RBD), University of Pennsylvania Smell Identification Test 

(UPSIT), Montreal Cognitive Assessment (MOCA), Hopkins Verbal Learning Test (HVLT), 

Geriatric Depression Scale (GDS), Semantic Fluency Test (SFT), Movement Disorder 

Society Unified Parkinson Disease Rating Scale (MDS-UPDRS), Total Scale for Outcomes 

in Parkinson’s (SCOPA), Line Orientation Test (LINEORT), Montreal Cognitive 

Assessment (MOCA) and State Trait Anxiety Index (STAI). UPDRS total includes the 3 

subtests; UPDRS I gauges mentation, behavior, and mood, UPDRS II assesses activities of 

daily living and UPDRS III examines motor. To complement these clinical outcomes, we 

also investigated biologic markers such as cerebrospinal fluid (CSF) alpha-synuclein (α-

syn), CSF Amyloid peptide 42 (Aβ42), CSF phosphorylated tau 181 p (p-tau181) and CSF 

Total tau (t-tau). These outcomes have long been known to be associated with the 

development and progression of Parkinson’s disease. We also included DAT Scan 

summaries of the striatum.

2.2. Statistical Methods

We employed the latent time joint mixed-effect model (LTJMM) to assess the relationship 

between CSF measures, imaging biomarkers, and the clinical outcomes and further explore 

its use to study progression among diagnostic groups. The LTJMM allows for multiple 

outcomes, measured longitudinally for each patient potentially at different visit times. 

Suppose yijk represents the outcome k (k = 1, 2, …, p) observed at time j (j = 1, …, q) for 

each individual, i (i = 1, 2, …, n), tij is the time of measurement, and xijk is a set of 

covariates for the ith individual at time j. The model is given by

Yi jk = xi jk
t βk + γk(ti j + δi) + α0ik + α1ikti j + εi jk,

where βk and γk are coefficients corresponding to covariates and time, respectively, α0ik and 

α1ik are subject-specific random intercept and slope components specific to each outcome 

and assumed to follow a multivariate normal distribution with mean 0 and variance-
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covariance matrix, D. A random or “latent” time-shift, δi specific to each subject but shared 

across all outcomes is introduced to quantify the disease progression of an individual relative 

to the population. The δi are assumed to follow a normal distribution with mean 0 and 

variance σδ
2. Finally, the independent random error term, εijk is assumed to follow a normal 

distribution with mean, 0 and variance, σ2. Additionally, δi is assumed to be independent of 

the subject-specific random effects and the pure random errors. However, the subject-

specific random intercepts and slopes are allowed to be correlated to reflect the dependence 

among outcomes. Heterogeneity in the latent time (LTJMM-H) is introduced by modeling σδ
2

as follows:

σδi
2 = exp Zi

tτ ,

where Zi represents a set of covariates for individual i assumed to be a subset of Xi and τ is a 

vector of parameters corresponding to the covariates. With this, we have allowed the 

variability of the latent time to vary across subjects.

To efficiently estimate the model parameters, an MCMC approach was adopted. We assign a 

weakly informative normal prior with zero mean and variance 100 on the regression and γk 

parameters. For the variance components of the time shift and random error term, a weakly 

informative half-Cauchy (0, 2.5) distribution was imposed. For the subject-specific random 

effects, the variance-covariance matrix was first decomposed into variance and correlation 

components. A Cholesky decomposition was then applied to the correlation matrix to ensure 

efficiency and stability. A half-Cauchy(0, 25) prior was placed on the variance part and the 

LKJ prior on the correlation matrix as recommended by Lewandowski et al. (2009). To 

ensure identifiability of the model, we constrained the random intercepts for each subject to 

sum to zero (i.e, ∑k = 1
p α0ik = 0).

3. Simulation Study

A limited simulation study was conducted to study the effect of assuming a homogeneous 

latent time variance when in fact there is between-subject variation in latent time variance. 

We generated data from the LTJMM-H model with uncorrelated random effects as follows:

yi jk = β0k + β1kx1i jk + β2kx2i jk + γk ti j + δi + α0ik + α1ik + εi jk,

where i = 1,2, …, 5, x1ijk~bin(0.5), x2ijk~N(55, 52), α0ik and α1ik are random intercept and 

slope, respectively and assumed to be independent. Further,

log σδi
2 = τ0 + τ1x1i + τ2x2i

The sample size was set to 100 with each individual time, tijk~Uniform(0,6).
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Simulation parameters were set by fitting the LTJMM model to five of the original outcomes 

in the PPMI study. Heterogeneity was introduced by allowing a small effect of x1i and x2i in 

the sub-model. Actual parameter values for both fixed effects and variance components can 

be seen in Table 1. We then simulated 100 datasets and fitted both the LTJMM and the 

LTJMM-H with correlated random-effects to the data. To apply the MCMC algorithm, we 

specified two Markov chains, each run for 2000 iteration including 1000 warm-up iterations, 

which were discarded. Simulation results are presented in Table 1. Both models consistently 

estimated fixed parameters, variance parameters of the random-effects and the random error 

with high coverage probability. However, the LTJMM performed poorly in the estimation of 

the latent-time variance resulting in severe bias and zero coverage probability for the true 

parameters. Also, the LTJMM-H model resulted in smaller WAIC and LOOIC in many of 

our simulations, demonstrating better model fit compared to LTJMM.

4. Analysis of PPMI

4.1. Exploratory Analysis

Table 2 summarizes patient characteristics and outcomes at baseline in the PPMI dataset. 

Using ANOVA, the diagnostic groups at baseline yielded significant difference in means, 

with all p-values < 0.05. The average age was higher in the prodromal group compared to 

HC and PD categories. Tremor, one of the main clinical manifestations of PD, was 

unsurprisingly higher on average among PD patients relative to the other diagnostic groups.

To compare outcomes on a common scale, raw scores were transformed into percentiles 

using a weighted empirical cumulative distribution function. The inverse of the sample 

proportion of diagnostic category for each outcome was used as weights. Table 3 shows 

percentile scores corresponding to selected percentile ranks. Figure 1a shows the boxplot of 

the percentile ranks, representing disease severity, for each outcome in each of the three 

diagnostic categories. From this figure, we observe broad variation in percentile ranks of the 

outcomes for each disease group. There were outlying observations, particularly for the 

motor outcomes, tremor, PIGD and UPDRS total and olfactory measures indexed by UPSIT. 

The median ranks differ among diagnostic groups and were lowest in the HC group. The 

Spearman rank correlations between outcomes are displayed in a heat map in Figure 1b. 

Total tau was highly correlated with CSF alpha-synuclein (r = 0.74). PIGD was also strongly 

associated with UPDRS total (r = 0.71). Generally, motor outcomes were highly correlated. 

CSF biomarkers were also generally correlated with each other but weakly associated with 

clinical outcomes. A cognitive outcome, MOCA, was moderately positively correlated with 

verbal working memory assessment indexed by HVLT (r = 0.53), and depression (GDS) was 

moderately correlated with anxiety (STAI) with r = 0.62.

Figure 2 displays the individual profiles for each outcome for 50 randomly selected 

participants. Tremor, PIGD, UPDRS total, MOCA, Specific Binding Ratio (SBR) on 

Striatum, GDS and STAI were first measured prior to baseline (at screening). For all 

participants, UPSIT score was taken only at baseline because it does not change with disease 

progression. While there was considerable variation between patients, individual trajectories 

also appear to show a slight progression (increase) over time.
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4.2. Statistical Analysis

Figure 1a demonstrates that some of the outcomes more clearly distinguished between HC 

and PD than others. These measures were likely to carry more information related to latent 

time. Hence, our statistical analysis was limited to 8 of these outcomes namely, PIGD, SBR 

Striatum, SCOPA, Tremor, UPDRS, UPSIT, CSF synuclein and REM sleep behavior 

disorder. An analysis with all 17 outcomes is included in the Appendix.

We analyzed the data using the model described in Section 3 with three Markov chains, each 

run for 8000 iterations, including a warm-up of 4000 iterations, which is discarded. The 

LTJMM and the proposed LTJMM-H were implemented and the best model was selected 

according to two model selection criteria, the Widely Applicable Information Criterion 

(WAIC) and the Leave-One-Out Cross-validation Information Criterion (LOOIC). The 

LTJMM-H was chosen over the LTJMM since it produced lower WAIC and LOOIC values 

of 61054.8 and 62158.01 as compared to 61203.94 and 62290.43 for the homogeneous 

version, respectively. For the analysis of all 17 outcomes, WAIC and LOOIC for the 

LTJMM-H were 117860 and 120166.7, which was lower compared to the LTJMM values of 

143431.9 and 145055.2, respectively.

Posterior means with corresponding 95% posterior credible intervals are reported in Table 4 

for the selected model. Figure 3 shows the density plot of estimated random latent time 

shifts by diagnostic categories. Although diagnostic category was not included in the model, 

the model seemed to accurately reveal the temporal ordering of disease state consistent with 

the diagnosis groups and biology of PD. The distribution of latent time overlapped much 

more between HC and prodromal compared to HC and PD groups. This was not surprising 

since HC shared with both prodromal and PD some non-motor features (sleep disturbances, 

constipation, olfactory deficits, depression), but HC shared fewer features with PD than 

prodromal. Thus, the latent time shift estimates provided a continuous alternative to 

diagnosis, which was objectively derived from a comprehensive joint model of longitudinal 

measures of disease progression (Li et al., 2017). Comparing results from the two sets of 

outcomes, Table 4 and Table A.1 show that the model was generally robust to the inclusion 

of less informative outcome measures, but density plots, in Figure 3 and Figure A.1, show 

that latent time was more successful in parsing out the diagnosis groups when the less 

informative outcomes were omitted.

Figure 4 (and Figure A.2 for all outcomes) shows the correlation of random slopes between 

pairs of outcomes. Consistent with the observed correlation matrix in Figure 1b, we 

observed that the slopes for PIGD were correlated with UPDRS Total. Similarly, 

GDSSHORT and STAI showed moderate association. In general, we observed that the 

biological markers shared a stronger association amongst markers compared to their 

association with clinical markers.

Figure 5 shows the subject-level predicted severity versus age for ten randomly selected 

participants. The model reasonably predicted the trend and direction of individual 

trajectories albeit with some variation. For subjects with more time points, the predicted 

trajectories appeared to perform better, with some reduction in the difference between the 

observed and predicted trajectories compared to subjects with fewer time points. Placed 
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side-by-side in Figure 6a and b are the observed and predicted subject-level trajectories 

against age. The two sets of trajectories appeared similar giving an indication that the model 

was predicting reasonably well. In addition, SBR striatum and Total UPDRS in Figure 6a 

and b clearly showed the discriminability of these measures between disease stages in the 

observed and predicted trajectories.

Figures 7 displays the average long-term population trajectories for females with progressive 

disease. To generate these plots, it was necessary to “calibrate” the independent variables 

age and latent time by assigning the latent time for any given age. For the purposes of these 

plots, we assumed the estimated median latent time among HCs (−13 years) at the average 

age for the entire sample (61 years). This figure indicates that PIGD and tremor reached the 

50th percentile later in the disease progression compared to UPDRS, which occurred much 

earlier. We also fitted the model treating the UPDRS subtests I, II and III as separate 

outcomes (see supplemental material, Figure A.3b). We found that UPDRS I (mental) 

reached the 50th percentile level first on average, followed by UPDRS III (motor) and II 

(activities of daily living) in close succession. Due to the strong gender effect, as can be 

observed from the table of estimates, a similar plot for males will position SCOPA 

differently in the ordering (see Figure 8).

Figure 8, a “positional variance diagram”, shows the estimated variation in the ordering of 

marker abnormalities for female and males. Figure 8 was derived by slicing Figure 7 

horizontally at the 50th percentile and observing the order of markers as they appear from 

left to right. We used the posterior distribution to evaluate the uncertainty in these estimated 

orderings. For each draw from the posterior distribution, we generated curves similar to 

Figure 7 and sliced horizontally at the 50th percentile to determine the ordering of marker 

abnormalities for that posterior sample. The diagram represents the distribution (proportion 

of MCMC samples) of the outcome orderings. The bolder the color of the cell, the higher the 

certainty of the ordering for that outcome. In Figure 9, we display the positional diagram 

based on subject-level predictions. For each subject in the sample, we ordered the outcomes 

based on the age the 50th percentile of the outcome is attained. As one might expect, there 

was greater variation in the orderings from subject-to-subject (Figure 9) compared to the 

average ordering for the sample (Figure 8)

5. Discussion

In this paper, we applied a joint mixed effect model with latent time to analyze the various 

stages of PD included in the PPMI study. We found that although diagnostic category was 

not included in the model, it seems to accurately reveal the temporal ordering of disease 

state consistent with diagnosis categorization at baseline. In other words, the distribution of 

the estimates of the latent time reflected the subjective assessment of patient disease status at 

baseline.

In addition, the association between estimated random-effects revealed that biological 

markers share stronger pair-wise association but a weaker association with clinical markers. 

The biomarkers not being very informative (greater variance and lower signal-to-noise) 

probably explains this weak association with clinical outcomes. It is worth mentioning that, 
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the role of γ-amyloid and tau protein as biomarkers in PD is not well established, but a 

number of publications report altered CSF Aβ1-42, t-tau or p-tau in patients with PD with or 

with-out dementia compared with HC (Brockmann et al., 2015). Clinical markers also tend 

to be correlated among each other. Posture Instability and Gait Difficulty (PIGD) and Total 

Unified Parkinson Disease Rating Scale (UPDRS), and Geriatric Depression Scale (GDSS) 

and State Trait Anxiety Index (STAI) sharing strong to moderate associations. Inspection of 

observed and predicted severity shows that SBR striatum and Total UPDRS can provide 

better discrimination between disease stages.

Long-term population level trajectories were also derived from the proposed model. The 

results indicated late manifestation of PIGD and tremor but earlier Total Scale for Outcomes 

in Parkinson’s (SCOPA) and Total UPDRS abnormalities. The SCOPA and UPDRS include 

non-motor features that appear at prodromal disease stages (earlier in the course of the 

illness). The positional variance diagram provided an ordering consistent with that from the 

population trajectories. Similar trajectories can be obtained for any sub-group of the 

population with ease using our modeling approach. It should be kept in mind that the data 

used to develop the models are restricted to short-term follow-up after enrollment (median < 

4 years), which might limit predictive accuracy when evaluated over longer periods of 

disease progression.

We also demonstrated through a limited simulation study that allowing heterogeneity in the 

variance of latent time can improve LTJMM fit. The variance of the latent time was modeled 

in terms of observed baseline covariates. Particularly, the simulation indicated that 

estimation of parameters is consistent with the LTJMM model except that the between-

subject latent time variance is severely biased. Given the importance of the subject-specific 

latent time as a data-driven alternative to categorical disease status, it is critical that the 

latent-time variance is accurately estimated. Violation of the homogeneous latent time can, 

therefore, be detrimental. We encourage the exploration of different sub-models to determine 

which baseline covariates are significant in explaining the between-subject latent time 

variation. In the application of the two models to the PPMI study, both WAIC and LOOIC 

favored the extended LTJMM model with heterogeneous latent time.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
(a) Box-plot

(b) Correlation matrix

Box-plot and Correlation Matrix: The left panel shows box-plots of the observed quantiles 

of each outcome by disease category. The right panel shows Spearman’s correlation between 

the outcomes.

Abbreviations: PIGD, Posture Instability and Gait Difficulty; RBD, REM sleep behavior 

disorder; UPSIT, University of Pennsylvania Smell Identification Test; MOCA, Montreal 

Cognitive Assessment; HVLT, Hopkins Verbal Learning Test; GDS, Geriatric Depression 

Scale; SFT, Semantic Fluency Test; SCOPA, Scale for Outcomes in Parkinson’s; LINEORT, 
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Line Orientation Test; UPDRS, Unified Parkinson Disease Rating Scale; STAI, State Trait 

Anxiety Index; PD, Parkinson Disease; HC, Healthy Control.
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Figure 2: 
Observed subject-specific profile showing the profiles for 50 randomly selected subjects per 

out-come and by disease category.

Abbreviations: PIGD, Posture Instability and Gait Difficulty; RBD, REM sleep behavior 

disorder; UPSIT, University of Pennsylvania Smell Identification Test; MOCA, Montreal 

Cognitive Assessment; HVLT, Hopkins Verbal Learning Test; GDS, Geriatric Depression 

Scale; SFT, Semantic Fluency Test; SCOPA, Scale for Outcomes in Parkinson’s; LINEORT, 

Line Orientation Test; UPDRS, Unified Parkinson Disease Rating Scale; STAI, State Trait 

Anxiety Index; PD, Parkinson Disease; HC, Healthy Control.
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Figure 3: 
Distribution of estimate of time shift, δ ι by disease status.

Abbreviations: PD, Parkinson’s Disease; HC, Healthy Control.
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Figure 4: 
Correlation between random slopes for pair of outcomes.

Abbreviations: PIGD, Posture Instability and Gait Difficulty; RBD, REM sleep behavior 

disorder; UPSIT, University of Pennsylvania Smell Identification Test; SCOPA, Scale for 

Outcomes in Parkinson’s; UPDRS, Unified Parkinson Disease Rating Scale; PD, Parkinson 

Disease; HC, Healthy Control.
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Figure 5: 
Subject-level prediction for random subjects. Each color represents the predicted profile of a 

randomly selected individual.

Abbreviations: PIGD, Posture Instability and Gait Difficulty; REM Sleep, Rapid Eye 

Movement Sleep behavior disorder; UPSIT, University of Pennsylvania Smell Identification 

Test; SCOPA, Scale for Outcomes in Parkinson’s; UPDRS, Unified Parkinson Disease 

Rating Scale; PD, Parkinson Disease; HC, Healthy Control.
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Figure 6: 
(a) Observed severity

(b) Subject-level predicted severity

The left panel shows observed trajectories. The right panel shows the predicted profile for all 

subjects by outcome.

Abbreviations: PIGD, Posture Instability and Gait Difficulty; REM Sleep, Rapid Eye 

Movement Sleep behavior disorder; UPSIT, University of Pennsylvania Smell Identification 
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Test; SCOPA, Scale for Outcomes in Parkinson’s; UPDRS, Unified Parkinson Disease 

Rating Scale; PD, Parkinson Disease; HC, Healthy Control.
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Figure 7: 
Population level predicted severity for female with mean age and median latent time of a 

healthy control. The legend is ordered by the age at which the predicted severity level for 

each outcome is 0.5 (sliced horizontally).

Abbreviations: PIGD, Posture Instability and Gait Difficulty; REM Sleep, Rapid Eye 

Movement Sleep behavior disorder; UPSIT, University of Pennsylvania Smell Identification 

Test; SCOPA, Scale for Outcomes in Parkinson’s; UPDRS, Unified Parkinson Disease 

Rating.

Iddi et al. Page 21

Neurodegener Dis. Author manuscript; available in PMC 2019 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Iddi et al. Page 22

Neurodegener Dis. Author manuscript; available in PMC 2019 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8: 
(a) Female.

(b) Male.

Positional variance diagram of the central ordering. The x-axis is the event position. 

Difference in ordering may be attributed to the strong effect of gender on some of these 

outcomes.

Abbreviations: PIGD, Posture Instability and Gait Difficulty; REM Sleep, Rapid Eye 

Movement Sleep behavior disorder; UPSIT, University of Pennsylvania Smell Identification 

Test; SCOPA, Scale for Outcomes in Parkinson’s; UPDRS, Unified Parkinson Disease 

Rating Scale; PD, Parkinson Disease; HC, Healthy Control.
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Figure 9: 
Positional variance diagram of the central ordering.

Abbreviations: PIGD, Posture Instability and Gait Difficulty; REM Sleep, Rapid Eye 

Movement Sleep behavior disorder; UPSIT, University of Pennsylvania Smell Identification 

Test; SCOPA, Scale for Outcomes in Parkinson’s; UPDRS, Unified Parkinson Disease 

Rating Scale; PD, Parkinson Disease; HC, Healthy Control.
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Table 1:

Simulation study results. One hundred simulated data sets were generated under model LTJMM (independent 

random effects). Both LTJMM-Het and LTJMM models with correlated random effects were fit to all 

simulated data sets. The best performance was determined by the lowest WAIC and LOOIC between the two 

models for each data and summarized as “% best” over the 100 simulations. Bias and 95% Coverage 

Probabilities are also reported for each parameter.

Model Parameters True Values

LTJMM-Het Model LTJMM Model

Bias Coverag Bias Coverage

β0 −31.7 1.6929 0.86 1.7119 0.86

β1 −2.06 0.1139 0.94 0.0957 0.98

β2 0.12 −0.0314 0.9 −0.0312 0.88

β0 −30.70 0.8346 0.93 0.8408 0.93

β1 0.52 0.0138 0.97 0.0072 0.95

β2 0.06 −0.0156 0.93 −0.0154 0.92

β0 −7.60 1.3147 0.97 1.3778 0.98

β1 3.90 0.3746 0.95 0.3227 0.98

β2 0.28 −0.031 0.98 −0.0304 0.96

β0 17.20 −0.5776 1.00 −0.399 1.00

β1 −1.56 1.1918 0.98 1.0105 0.98

β2 0.08 −0.0145 1.00 −0.0114 1.00

β0 −36.20 8.2043 0.74 8.2752 0.73

β1 −1.40 0.3505 0.97 0.2837 0.97

β2 0.18 −0.1564 0.68 −0.1553 0.74

γ1 0.15 0.0106 0.96 0.0105 0.97

γ2 0.09 0.0064 0.98 0.0063 0.98

γ3 0.60 0.0461 0.96 0.0457 0.94

γ4 2.20 0.1588 0.97 0.1576 0.95

γ5 0.80 0.0577 0.98 0.0573 0.97

σα01 3.20 −0.0548 0.96 −0.0574 0.96

σα02 1.60 −0.021 0.97 −0.0203 0.97

σα03 5.60 −0.0224 0.95 −0.0218 0.95

σα04 7.10 0.0800 0.96 0.0781 0.95

σα11 0.60 −0.007 0.90 −0.0054 0.9

σα12 0.47 0.0209 0.93 0.0214 0.94

σα13 1.17 0.0022 0.96 0.0033 0.97

σα14 3.70 −0.1244 0.92 −0.1267 0.91

σα15 5.70 0.0657 0.96 0.0657 0.96

σ1 3.10 0.0198 0.93 0.0200 0.93

σ2 1.60 0.0229 0.97 0.0226 0.95
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Model Parameters True Values

LTJMM-Het Model LTJMM Model

Bias Coverag Bias Coverage

σ3 4.80 0.0556 0.95 0.0552 0.97

σ4 5.80 0.0601 0.94 0.0602 0.94

σ5 1.60 −6e-04 0.96 −2e-04 0.97

τ0 3.60 −0.1314 0.95 2.1513 0.00

τ1 −1.50 0.0131 0.97 - -

τ2 0.05 2e-04 0.95 - -

% best WAIC 61%

% best LOOIC 63%
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Table 2:

Summary measures at baseline.

Diagnostic Category Variable n Min Max Mean SE

HC Age 199 30.54 83.87 60.79 0.80

CSF Abeta 42 190 88.80 879.50 377.62 8.22

CSF Alpha-synuclein 190 592.56 8608.91 2201.26 78.86

CSF p-Tau181P 190 5.10 73.30 18.22 0.85

CSF Total tau 188 18.40 223.10 52.48 1.98

GDSSHORT 199 0.00 15.00 1.29 0.15

HVLT 198 15.00 35.00 26.02 0.32

LINEORNT 198 4.00 15.00 13.14 0.14

PIGD 198 0.00 0.80 0.02 0.01

REM Sleep 198 0.00 11.00 2.86 0.17

SCOPA 197 0.00 35.00 8.10 0.52

SFT 198 22.00 80.00 51.90 0.80

STAI 196 40.00 105.00 57.08 1.00

Tremor 197 0.00 0.64 0.03 0.01

UPDRS Total 197 0.00 20.00 4.63 0.32

UPSIT 199 10.00 40.00 33.89 0.36

Prodromal Age 64 58.37 82.12 68.75 0.73

HVLT 63 9.00 33.00 21.79 0.67

LINEORNT 62 3.00 15.00 11.97 0.29

PIGD 63 0.00 0.60 0.10 0.02

REM Sleep 63 1.00 14.00 7.54 0.48

SCOPA 64 1.00 39.00 15.50 1.22

SFT 63 26.00 75.00 45.00 1.37

Tremor 63 0.00 0.45 0.08 0.02

UPDRS Total 63 0.00 31.00 12.32 0.99

UPSIT 61 7.00 35.00 17.18 0.84

PD Age 430 33.63 84.71 61.57 0.47

CSF Abeta 42 416 129.20 796.50 370.82 4.91

CSF Alpha-synuclein 416 332.93 6694.55 1847.87 38.72

CSF p-Tau181P 414 4.70 94.10 15.74 0.50

CSF Total tau 412 14.40 121.00 44.80 0.91

GDSSHORT 428 0.00 14.00 2.32 0.12

HVLT 426 9.00 36.00 24.47 0.24

LINEORNT 426 5.00 15.00 12.78 0.10

PIGD 411 0.00 1.40 0.23 0.01

REM Sleep 416 0.00 13.00 4.50 0.14

SCOPA 430 0.00 71.00 12.55 0.45

SFT 426 20.00 103.00 48.79 0.57
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Diagnostic Category Variable n Min Max Mean SE

STAI 425 40.00 137.00 65.25 0.89

Tremor 411 0.00 1.82 0.50 0.02

UPDRS Total 406 7.00 76.00 32.52 0.67

UPSIT 427 1.00 40.00 22.29 0.40

Abbreviations: PIGD, Posture Instability and Gait Difficulty; RBD, REM sleep behavior disorder; UPSIT, University of Pennsylvania Smell 
Identification Test; MOCA, Montreal Cognitive Assessment; HVLT, Hopkins Verbal Learning Test; GDS, Geriatric Depression Scale; SFT, 
Semantic Fluency Test; SCOPA, Scale for Outcomes in Parkinson’s; LINEORT, Line Orientation Test; UPDRS, Unified Parkinson Disease Rating 
Scale; STAI, State Trait Anxiety Index; PD, Parkinson Disease; HC, Healthy Control; SE, Standard Error.
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Table 3:

Percentiles and percentile ranks of outcomes.

Outcomes Min 25th 50th 75th Max

Tremor 0.00 0.05 0.12 0.43 2.36

PIGD 0.00 0.07 0.14 0.25 4.00

UPDRSI 0.00 1.96 4.35 7.73 36.00

UPDRS II 0.00 0.67 2.12 6.17 40.00

UPDRS III 0.00 1.00 6.21 19.22 86.00

UPDRS Total 0.00 4.64 12.53 30.21 156.00

MOCA 2.00 24.70 26.76 28.30 30.00

UPSIT 1.00 15.26 23.82 33.26 40.00

SBR Striatum 0.10 1.21 1.86 2.44 4.24

CSF Alpha-synuclein 332.93 1372.50 1865.90 2450.67 8608.91

CSF Abeta 42 88.80 312.24 372.85 435.31 879.50

CSF p-Tau181P 4.70 9.84 13.35 20.59 94.10

CSF Total tau 14.40 33.50 42.35 55.23 223.10

HVLT 4.00 19.63 23.62 27.92 36.00

REM Sleep 0.00 1.52 3.54 7.12 17.00

GDSSHORT 0.00 0.52 1.10 2.73 15.00

LINEORNT 0.00 10.55 12.52 13.81 15.00

SFT 7.00 39.79 47.83 55.92 103.00

STAI 40.00 47.70 58.07 71.06 150.00

SCOPA 0.00 5.12 9.79 19.51 83.00

Abbreviations: PIGD, Posture Instability and Gait Difficulty; RBD, REM sleep behavior disorder; UPSIT, University of Pennsylvania Smell 
Identification Test; MOCA, Montreal Cognitive Assessment; HVLT, Hopkins Verbal Learning Test; GDS, Geriatric Depression Scale; SFT, 
Semantic Fluency Test; SCOPA, Scale for Outcomes in Parkinson’s; LINEORT, Line Orientation Test; UPDRS, Unified Parkinson Disease Rating 
Scale; STAI, State Trait Anxiety Index.

Neurodegener Dis. Author manuscript; available in PMC 2019 August 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Iddi et al. Page 30

Table 4:

Results of posterior estimates of parameters and corresponding 95% credible interval for model with 8 

outcomes from the Parkinson’s Progression Markers Initiative (PPMI).

Parameter Posteri or Mean 95% Credible Interval Parameter Posteri or Mean 95% Credible Interval

CSF Alpha-synuclein SCOPA

Intercept 0.8976 (0.4341,1.3793) Intercept −2.3726 (−2.7089,−2.0074)

Age −0.0123 (−0.0200,−0.0050) Age 0.0336 (0.0279,0.0387)

Female −0.1160 (−0.2745,0.0401) Female 0.5104 (0.3944,0.6296)

Latent time, γ1 0.0274 (0.0190,0.0363) Latent time, γ5 0.0406 (0.0338,0.0486)

Error Variance, σ1 0.4288 (0.4023,0.4552) Error Variance, σ5 0.4683 (0.4559,0.4819)

PIGD Tremor

Intercept −1.9367 (−2.6663,−1.1232) Intercept 0.3527 (−0.3759,1.1549)

Age 0.0114 (−5e-04,0.0226) Age −0.0174 (−0.0295,−0.0064)

Female 0.0866 (−0.1579,0.3315) Female −0.1660 (−0.3967,0.0813)

Latent time, γ2 0.1415 (0.1225,0.1621) Latent time, γ6 0.1236 (0.1084,0.1404)

Error Variance, σ2 1.1573 (1.1347,1.1788) Error Variance, σ6 0.8108 (0.7962,0.827)

REM Sleep UPDRS Total

Intercept 0.2397 (−0.1764,0.6504) Intercept −0.2535 (−0.6679,0.176)

Age −0.0053 (−0.0118,8e-04) Age 0.0059 (−8e-04,0.0123)

Female −0.1052 (−0.2437,0.0494) Female −0.0364 (−0.1758,0.0979)

Latent time, γ3 0.0446 (0.0364,0.053) Latent time, γ7 0.0880 (0.0769,0.0999)

Error Variance, σ3 0.5806 (0.5646,0.5968) Error Variance, σ7 0.3494 (0.343,0.3559)

SBR Striatum UPSIT

Intercept −0.8843 (−1.2600,−0.5038) Intercept −1.2072 (−1.6254,−0.7688)

Age 0.0157 (0.0098,0.0215) Age 0.0206 (0.0138,0.0275)

Female −0.0677 (−0.2017,0.0604) Female −0.2175 (−0.348,−0.0731)

Latent time, γ4 0.0599 (0.0502,0.0697) Latent time, γ8 0.0511 (0.0418,0.0615)

Error Variance, σ4 0.2118 (0.2002,0.2237) Error Variance, σ8 0.3688 (0.0688,0.6602)

Heterogeneous parameters Model criteria

τ1 5.1320 (4.4178,5.8806) WAIC 61054.80

τ2 −0.0071 (−.018,0.0033) LOOIC 62158.01

τ3 −0.0184 (−0.2247,0.1919)
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