
REVIEW

Rockefeller University Press https://doi.org/10.1084/jem.20180448 20
J. Exp. Med. 2018 Vol. 216 No. 1 20–40
Rockefeller University Press

Over the past decade, our view of human-associated microbes has expanded beyond that of a few species toward an 
appreciation of the diverse and niche-specialized microbial communities that develop in the human host with chronological 
age. The largest reservoir of microbes exists in the distal gastrointestinal tract, both in the lumen, where microbes facilitate 
primary and secondary metabolism, and on mucosal surfaces, where they interact with host immune cell populations. While 
local microbial-driven immunomodulation in the gut is well described, more recent studies have demonstrated a role for the 
gut microbiome in influencing remote organs and mucosal and hematopoietic immune function. Unsurprisingly, therefore, 
perturbation to the composition and function of the gut microbiota has been associated with chronic diseases ranging 
from gastrointestinal inflammatory and metabolic conditions to neurological, cardiovascular, and respiratory illnesses. 
Considerable effort is currently focused on understanding the natural history of microbiome development in humans in the 
context of health outcomes, in parallel with improving our knowledge of microbiome–host molecular interactions. These 
efforts ultimately aim to develop effective approaches to rehabilitate perturbed human microbial ecosystems as a means to 
restore health or prevent disease. This review details the role of the gut microbiome in modulating host health with a focus 
on immunomodulation and discusses strategies for manipulating the gut microbiome for the management or prevention 
of chronic inflammatory conditions.

The gut microbiome: Relationships with disease and 
opportunities for therapy
Juliana Durack and Susan V. Lynch

Introduction to the field of microbiome research
Over evolutionary time, humans have developed symbiotically 
with a diversity of environmental microbial species (Sender et 
al., 2016). Appreciation of the diversity of human-associated 
microbes, their functional gene capacity, and the breadth of bio-
chemicals they generate in and on the human body has only rel-
atively recently been appreciated, in large part due to advances 
in next-generation, high-throughput sequencing and mass-spec-
trometry platforms (Fig. 1). Sequencing platforms permit assess-
ment of microbiota composition via biomarker gene sequencing, 
for example, sequencing and classification of 16S ribosomal RNA 
or the interspacer region amplicon pools to assess the identity 
and distribution of bacteria or fungi, respectively. These com-
munities may then be interrogated to identify signature micro-
biota features associated with indications of interest. As the field 
moves toward a functional understanding of the human micro-
biome, efforts to investigate the functional gene capacity and 
transcriptional activity of microbiomes have advanced via shot-
gun sequencing of extracted DNA (metagenomics) or RNA (me-
tatranscriptomics/RNA Seq), respectively. In parallel, detection 
and identification of microbiome-associated products, including 
metabolites and proteins, have been facilitated by targeted and 

untargeted mass spectrometry. These advances in high-through-
put technologies have not only facilitated analyses of the compo-
sition and function of human-associated microbiomes, but they 
have also begun to reveal a diverse array of microbial-derived 
products that facilitate interspecies interactions in the human 
host (Rooks and Garrett, 2016; Cohen et al., 2017).

Niche specificity of the microbiome
Through the application of high-throughput assays, it has be-
come apparent that the healthy human superorganism comprises 
a series of niche-specific microbiomes across distinct body hab-
itats (Costello et al., 2009; Caporaso et al., 2011). On the skin, for 
example, factors such as substrate and water availability as well 
as pH strongly correlate with the presence of habitat-specific 
microbiome compositions that are relatively consistent across 
healthy individuals (Oh et al., 2014). This is also true of the gas-
trointestinal (GI) tract, where distinct microbiome assemblies 
exist in various intestinal compartments (Donaldson et al., 2016). 
According to a recent study of infant microbiome development 
at multiple body sites, microbial niche specificity is evident as 
early as 6 wk of age (Chu et al., 2017), implicating early life factors 
in shaping niche-specific microbial assembly in infancy. Among 
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the factors influencing early-life microbiome assembly is pioneer 
microbial colonization, which likely influences niche-specific 
microbiome development via local nutrient utilization and/or 
production of molecules that dictate interspecies compatibility 
and competitive colonization (Livingston et al., 2012; Verster et 
al., 2017; Ferretti et al., 2018).

Microbes are masters at sensing and responding to their 
environment; this is achieved via production of a range of bio-
chemicals, from small diffusible quorum-sensing molecules that 
facilitate microbe–microbe–host communications (Schaefer et 
al., 2008; Papenfort and Bassler, 2016) to complex natural prod-
ucts such as macrolides and polyketides, many of which have po-
tent antimicrobial and immunomodulatory activities (Donia and 
Fischbach, 2015). This biochemical arsenal facilitates microbial 
competitive colonization, selective inclusion or exclusion, and 
modification of the activities of other species in the local envi-
ronment (Fan et al., 2015; Rangan et al., 2016; Thiemann et al., 
2017). This concept was elegantly demonstrated in a recent study 
in which oral supplementation of antimicrobial-treated mice 
with a consortium of four bacterial species (Bacteroides sartorii, 
Parabacteroides distasonis, and Clostridium cluster XIVa mem-
bers Clostridium bolteae and Blautia producta) prevented colo-
nization by vancomycin-resistant Enterococcus faecium (VRE; 
Caballero et al., 2017). Critically, multilevel cooperation between 
bacterial species within this consortium was necessary to sup-
port colonization of the murine intestine with B. producta, the 
species that directly inhibited growth of pathogenic VRE. Such 
instances of microbial competitive colonization may be enhanced 
by microbial manipulation of host immunity, which acts as a re-
inforcing selective pressure on microbes in a given niche. Indeed, 
a recent study of the skin microbiota supports this concept; early 
life introduction of Staphylococcus epidermidis to the developing 
hair follicles of mice induced a wave of regulatory T (T reg) cells 
(Scharschmidt et al., 2015, 2017) and facilitated competitive colo-
nization by S. epidermidis to the exclusion of other bacterial spe-
cies (Naik et al., 2015; Nakatsuji et al., 2017). In healthy humans, 

relatively stable, niche-specific microbiomes have been described 
(Oh et al., 2014; Donaldson et al., 2016; Proctor and Relman, 2017), 
reinforcing the notion that local microenvironmental conditions, 
and perhaps a small number of keystone organisms that induce 
specific nutritional and/or immunological conditions at distinct 
body sites, promote niche-specialized microbiomes.

Variability of the gut microbiome
Although at higher levels of classification, distributions of organ-
isms at specific body sites are highly conserved, there remains 
a high degree of interindividual variability at the species and 
strain level—an important feature rarely captured in biomark-
er-based microbiota profiling studies. Several studies have re-
ported associations between host genetics and the microbiome 
(Blekhman et al., 2015; Bonder et al., 2016; Turpin et al., 2016). 
In mice, the relationships between host genotype and the gut mi-
crobiota have been demonstrated in genetically distinct mouse 
strains, in which independent quantitative trait loci analysis 
revealed 169 joint quantitative trait loci intervals that were sig-
nificantly associated with the abundance of specific microbial 
taxa in the gut (Snijders et al., 2016). However, in humans, the 
relationship between host genotype and the microbiota appears 
less strong. While there is relatively greater similarity in micro-
bial community membership within the intestinal microbiome 
among family members (Schloss et al., 2014; Korpela et al., 2018) 
and in monozygotic, compared with dizygotic, twins (Goodrich 
et al., 2014), this relative similarity may be confounded by com-
mon environmental exposures. Indeed, divergence of micro-
bial functional modules in the gut microbiota (Xie et al., 2016), 
in parallel with changes in immune status (Brodin et al., 2015), 
have been observed when monozygotic twins reside in distinct 
environments. A more recent study of >1,000 subjects corrob-
orated this observation by demonstrating that environmental 
exposures, including diet, dominate genetic factors in shaping 
gut microbiota (Rothschild et al., 2018). Moreover, inclusion of 
microbial factors improved prediction accuracy for many host 

Figure 1. Tools for analyses of the human gut microbiome. Microbiome studies are facilitated by next-generation sequencing (NGS) and liquid/gas chro-
matography (LC/GC) mass spectrometry (MS) platforms that permit analysis of composition, function, and productivity of the microbiome. Ideally, these 
approaches are applied in parallelto provide the most comprehensive view of host microbiomes.
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traits, including glucose and obesity measures, compared with 
models that exclusively used host genetics and environmental 
data (Rothschild et al., 2018). Thus, combinatorial algorithms 
that consider microbial and host genetics in addition to environ-
mental exposures may offer the most prediction accuracy for a 
range of host traits.

The influence of diet on microbiota composition and func-
tion is well established (David et al., 2014; Desai et al., 2016; 
Sonnenburg et al., 2016; Wu et al., 2016; Kamiya et al., 2018). Be-
yond diet, a number of other factors have been associated with 
variability in microbiota composition or function, including sex 
hormones (Fransen et al., 2017), treatment with antibacterial or 
antifungal agents (Reijnders et al., 2016; Wheeler et al., 2016), 
pharmaceuticals such as proton pump inhibitors (Imhann et al., 
2016), xenobiotics (Maurice et al., 2013), environmental toxicants 
(Lu et al., 2014; Allais et al., 2016), and the number of prescrip-
tion drugs consumed (Ticinesi et al., 2017). Emerging evidence 
suggests that these factors collectively shape the gut microbiome 
throughout an individual’s lifespan, resulting in a unique and 
personalized microbial fingerprint (Franzosa et al., 2015).

Development of the human gut microbiome
There is growing evidence that exposure to microbes begins in 
utero, based on studies using DNA-based assays that detected 
bacteria in placental material (Aagaard et al., 2014), amniotic 
fluid (Collado et al., 2016), and meconium, which forms in utero 
(Gosalbes et al., 2013; Nagpal et al., 2016; Durack et al., 2018; 
Ferretti et al., 2018). Although these studies are limited by the 
fact that DNA-based assays do not provide evidence of viable 
microbial cells, they offer initial indications that human–micro-
bial encounters commence during gestation. Following delivery, 
the repertoire of bacteria (Yatsunenko et al., 2012; Durack et al., 
2018; Stokholm et al., 2018) and both prokaryotic and eukary-
otic viruses (Lim et al., 2015) expands, increasing the functional 
gene capacity of the gut microbiome. In parallel, fungal diver-
sity contracts, likely owing to unfavorable selective pressures 
in the developing gut (Fujimura et al., 2016). A number of fac-

tors, including the mode of delivery (Bäckhed et al., 2015; Levin 
et al., 2016; Korpela et al., 2018), early-life diet (Bäckhed et al., 
2015; Bokulich et al., 2016; Stokholm et al., 2016), antibiotic use 
(Bokulich et al., 2016), pet exposure (Fujimura et al., 2016; Levin 
et al., 2016; Durack et al., 2018), sex (Fujimura et al., 2016), and 
maternal health (Chu et al., 2017; Durack et al., 2018; Stokholm 
et al., 2018) have been linked to distinct gut microbiome compo-
sitions at discrete time points and to variation in microbial suc-
cessional trajectories during this critical window of development 
(Fig. 2). Evidence that these early-life microbial colonization pat-
terns and successional trajectories are relevant for subsequent 
health outcomes is growing. For example, 1-mo-old infants with 
altered microbiota composition and metabolic function were 
found to be at significantly higher risk of developing atopy (al-
lergic sensitization) and asthma in childhood (Fujimura et al., 
2016). In addition, delayed gut microbiome diversification over 
the first year of life has been linked to allergy, asthma (Durack et 
al., 2018; Stokholm et al., 2018), and malnutrition (Subramanian 
et al., 2014).

The rapid expansion of bacterial diversity observed in the 
first year of life slows considerably by 3 yr of age (Yatsunenko 
et al., 2012; Vatanen et al., 2016), and by 5 yr of age the composi-
tion of the gut microbiome becomes more stable, attributable, at 
least in part, to a large proportion of stably maintained Bacteroi-
des. Nonetheless, the gut microbiome in children is less diverse 
and functionally distinct from that of healthy adults (Cheng et 
al., 2016). Gut microbiota complexity (number of taxa and func-
tional genes) typically reaches adult levels by preadolescence 
(7–12 yr of age), but microbial communities at this age remain 
taxonomically and functionally distinct from those of adults, 
with relatively lower levels of Bacteroides and higher levels of 
Bifidobacterium (Hollister et al., 2015).

In adulthood, despite the taxonomic uniqueness and personal 
nature of the human gut microbiome (Faith et al., 2013), its func-
tional attributes are relatively consistent across healthy adult 
populations (Turnbaugh et al., 2009). Some of the core functional 
pathways in the adult gut microbiome include those involved in 

Figure 2. The infant gut bacterial microbiome 
rapidly diversifies over the first year of life in 
healthy infants but is delayed in those who 
develop allergy or asthma or who are malnour-
ished. A number of pre-, peri-, and postnatal envi-
ronmental exposures are known to modulate risk 
for childhood disease, e.g., formula feeding, antimi-
crobial use, and exposure to environmental tobacco 
smoke (ETS) or animals. These same exposures also 
relate to gut microbiome composition at discrete 
developmental time points and to successional tra-
jectories in early life.
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carbohydrate and amino acid metabolism, fermentation, and 
oxidative phosphorylation (Turnbaugh et al., 2009; Qin et al., 
2010; Yatsunenko et al., 2012). In the elderly, gut microbiomes 
become compositionally unstable and less diverse (Odamaki et 
al., 2016), a phenomenon that has been linked with increasing 
frailty (Jackson et al., 2016) and declining immune function 
(Claesson et al., 2012). In older populations, low gut microbiota 
richness, a proxy for loss of microbial species and their reper-
toire of functional genes, appears to be a predictor of mortality 
(Ticinesi et al., 2017), whereas enrichment of certain bacteria, 
including Akkermansia and Bifidobacterium, is associated with 
longevity (Biagi et al., 2016). A direct link between age-related 
gut microbiota changes and age-associated systemic inflamma-
tion has been established in a recent study, in which cohousing 
germ-free (GF) mice with old, but not young, microbiome-re-
plete mice increased intestinal permeability and age-related 
inflammation (Thevaranjan et al., 2017). Thus, the evidence to 
date indicates that age-associated changes in the gut microbiome 
parallel fluctuations in immune status (Simon et al., 2015), and 
this represents an important consideration in studies evaluating 
human health or when considering microbiota manipulation for 
prevention or treatment of specific illnesses.

The gut microbiome in immunity and homeostasis
In healthy humans, the gut microbiome has coevolved to exist 
in a state of mutually beneficial symbiosis with its host (Fig. 3) 
and encodes a breadth of functional genes that dwarfs that of 
the human genome. A study cataloging functional genes in the 
human gut microbiome identified as many as 9.9 million unique 
microbial genes across 1,200 healthy subjects on three different 
continents (Li et al., 2014). Among the established microbial 

functions known to be expressed by human gut microbiomes 
are catalytic pathways for the metabolism of complex carbo-
hydrates that produce short chain fatty acids (SCFAs; Table 1), 
anti-inflammatory, anti-proliferative lipids that represent an 
essential energy source for GI epithelial cells (Kelly et al., 2015). 
Other microbial-derived bioactive metabolites include essential 
vitamins, such as K (Karl et al., 2017) and B (Magnúsdóttir et al., 
2015); hormones (Yatsunenko et al., 2012; Yan et al., 2016); neu-
rological signaling molecules, such as serotonin (Yano et al., 2015; 
Romano et al., 2017), which may be derived via microbial metab-
olism of tryptophan (Table 1); and a large suite of other natural 
products, many of which have as-yet-undefined functions (Donia 
and Fischbach, 2015; Guo et al., 2017). Given the increasing ap-
preciation for the diversity of functional genes encoded and bio-
active biochemicals produced by the mammalian coevolved gut 
microbiome, it is unsurprising that critical aspects of physiolog-
ical development have been linked to the microbiome. Indeed, 
juvenile GF mice commonly exhibit stunted growth and reduced 
somatotropic insulin-like growth factor 1 (IGF1) activity, which 
is restored by GI colonization by commensal bacteria (Schwarzer 
et al., 2016).

Of equal importance to the microbiome’s effects on host phys-
iology is its role in the development and maintenance of local 
(Hooper et al., 2001; Levy et al., 2015) and systemic innate and 
adaptive immune function (Schirmer et al., 2016). Immune dys-
function is increasingly identified as a component of a range of 
chronic diseases, including obesity (Winer et al., 2016), metabolic 
syndrome (Richard et al., 2017), multiple sclerosis (MS; Kallaur 
et al., 2017), and autism spectrum disorders (ASD; Careaga et 
al., 2017), among others. Notably, all of these disorders have also 
been shown to associate with perturbations of the gut microbi-

Figure 3. In healthy adults, the gut microbiome exists in a state of mutual symbiosis with its host. The environment of the gut dictates both the 
composition and functional productivity of the adult gut microbiota, which may interact with the host through presentation of various ligands such as patho-
gen-associated molecular patterns (PAMPs) and production of metabolites, e.g., SCFAs. These molecules modulate immune homeostasis in the GI tract and at 
remote mucosal surfaces and organs via their entry into the circulation.
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Table 1. Examples of gut microbiota–derived metabolites and their beneficial effects on human health

Metabolite/pathway Microbial agent Health benefits

Butyrate (carbohydrate metabolism) Clostridia (clusters IV and XIVa) Increased intestinal barrier function (Kelly et al., 2015; Zheng et al., 2017)

F. prausnitzii Modulate intestinal macrophage function (Chang et al., 2014)

Eubacterium spp. Regulation of colonic T reg cell homeostasis (Furusawa et al., 2013; Smith 
et al., 2013)

Roseburia spp. Induction of tolerogenic DCs that polarize naive CD4+ T cells toward IL-10–
producing T reg cells (Kaisar et al., 2017)

Coprococcus catus Suppression of colonic inflammation (Singh et al., 2014; Simeoli et al., 
2017)

Anaerostipes hadrus Improvements in insulin sensitivity (Khan and Jena, 2016)

Propionate (carbohydrate metabolism) Bacteroides spp. Regulation of colonic T reg cell homeostasis (Furusawa et al., 2013; Smith 
et al., 2013)

Blautia obeum Suppression of colonic inflammation (Tong et al., 2016)

C. catus Decreased innate immune responses to microbial stimulation (Ciarlo et al., 
2016)

Roseburia inulinivorans Protection from allergic airway inflammation (Trompette et al., 2014)

P. copri Improvements in insulin sensitivity and weight control in obese mice (den 
Besten et al., 2015)

Alistipes putredinis

Dialister invisus

A. muciniphila

Eubacterium hallii

Indole (tryptophan metabolism) A variety of bacteria possessing 
tryptophanase, including:

Lactobacillus spp. Maintenance of host–microbe homeostasis at mucosal surfaces via IL-22 
(Zelante et al., 2013)

B. longum Increased barrier function (Bansal et al., 2010)

B. fragilis Modulation of host metabolism (Chimerel et al., 2014)

P. distasonis

Clostridium bartlettii

E. hallii

E. coli

I3A (tryptophan metabolism) Lactobacillus spp. Maintenance of mucosal homeostasis and intestinal barrier function via 
increased IL-22 production (Zelante et al., 2013)

Protection against intestinal inflammation in mouse models of colitis 
(Lamas et al., 2016)

IPA (tryptophan metabolism) Clostridium sporogenes Maintenance of intestinal barrier function and mucosal homeostasis 
(Venkatesh et al., 2014)

Increased production of antioxidant and neuroprotectant products (Hwang 
et al., 2009)

HYA (lipid metabolism) Lactobacillus spp. Maintenance of intestinal barrier function (Miyamoto et al., 2015)

Decreased inflammation (Kaikiri et al., 2017)

Increased intestinal IgA production (Kaikiri et al., 2017)

CLA (lipid metabolism) Lactobacillus spp. Decreased inflammation (Viladomiu et al., 2016)

Bifidobacterium spp. Reduced adiposity (Segovia et al., 2017)

F. prausnitzii Improved insulin sensitivity (Garibay-Nieto et al., 2017)

CLA, conjugated linoleic acid; HYA, 10-hydroxy-cis-12-octadecoate (linoleic acid derivative); I3A, indole-3-aldehyde; IPA, indole-3-propionate.
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ome, generally associated with loss of microbial diversity and, 
particularly, with depletion of specific bacteria, including Ak-
kermansia and Faecalibacterium, that are thought to promote 
immune tolerance (Sokol et al., 2008; Schneeberger et al., 2015; 
Rossi et al., 2016; Ottman et al., 2017). Evidence for the key role 
of microbes in shaping immune function is illustrated in stud-
ies of GF mice, which have underdeveloped innate and adaptive 
immune systems (Khosravi et al., 2014) and reduced expres-
sion of antimicrobial peptides (Natividad et al., 2013) and IgA 
(Hapfelmeier et al., 2010) necessary for clearance of pathogenic 
microbes from the gut lumen (Moor et al., 2017). Additionally, GF 
animals possess fewer T reg cells (Atarashi et al., 2011; Ohnmacht 
et al., 2015), lack regulatory gut CD4+CD8αα+ double-positive 
intra-epithelial lymphocytes (Cervantes-Barragan et al., 2017), 
have compromised innate lymphoid cell function (Hepworth et 
al., 2013), and are more susceptible to microbial infections. Thus, 
the confluence of data from human and murine studies indicates 
that the gut microbiome plays a key role in promoting appropri-
ate physiological and immune development.

Both the diversity and redundancy in immune system ac-
tivation by human gut microbial symbionts is well accepted 
(Geva-Zatorsky et al., 2017). A variety of gut bacteria, including 
Bifidobacterium adolescentis and segmented filamentous bac-
teria, have been identified as key modulators of GI T helper 17 
(Th17) cells (Ivanov et al., 2009; Tan et al., 2016; Geva-Zatorsky 
et al., 2017), instrumental in the maintenance of barrier func-
tion and protection against pathogenic microbes (Pandiyan et al., 
2011; Wang et al., 2014b). Clostridium species, including those 
belonging to clusters IV, XIVa, and XVI​II, induce CD4+Foxp3+ T 
reg cells, via production of SCFAs (Atarashi et al., 2013; Sefik et 
al., 2015; Geva-Zatorsky et al., 2017). Surface polysaccharide A of 
Bacteroides fragilis has been shown to bind to Toll-like receptor 2 
on dendritic cells (DCs), which then induce the production of the 
anti-inflammatory cytokine IL-10 by T reg cells (Dasgupta et al., 
2014) and promote immune tolerance (An et al., 2014). Although 
the field is still nascent, it is already clear that a broad range of 
microbial species and their associated products modulate dis-
crete features of adaptive and innate immunity, which offers a 
novel opportunity for microbial-based approaches for prevention 
or treatment of inflammatory conditions.

Early-life microbiome and immune maturation
The evidence that microbes are important symbiotic modulators 
of physiological, metabolic, and immunological function in the 
mammalian host has expanded over the past decade (Lloyd-Price 
et al., 2016). Thus, the early-life gut microbiome has formed the 
focus of intense research (Chung et al., 2012; Schnupf et al., 2015; 
Gensollen et al., 2016; Ferretti et al., 2018; Pan et al., 2018). Recent 
data indicate that the developing gut microbiota of human in-
fants affects the progression of intestinal mucosal IgA responses 
(Planer et al., 2016), and perturbations to these nascent microbial 
communities cause long-lasting metabolic and immunological 
dysregulation (Ruiz et al., 2017; Lynn et al., 2018). For instance, 
macrolide treatment of conventional, neonatal mice perturbs 
their gut microbiota, with depletion of Bifidobacterium and seg-
mented filamentous bacteria, resulting in decreased numbers of 
intestinal CD4+IL-17A+ lymphocytes and fecal IgA concentrations, 

persistent features not observed in neonatal GF or conventional 
adult mice (Ruiz et al., 2017).

Development of the gut microbiome in early life appears to 
adhere to ecological principles of primary succession, in which 
the initial (pioneer) organisms colonize a previously pristine 
habitat, influence ecosystem conditions, and dictate subsequent 
accumulation of species in the niche via competitive coloniza-
tion. Initial colonization by distinct microbial species in the 
nascent human gut may thereby induce discrete immune and 
physiological conditions (Fig.  2) that affect health outcomes 
later in life. Support for this concept comes from recent studies 
showing, for example, that risk of childhood atopy and asthma 
was linked to the composition and metabolic activity of the gut 
microbiome at 1 mo of age (Fujimura et al., 2016). Longitudinal 
birth cohort studies, such as a large study of Swedish mother–in-
fant dyads, have also indicated that infants delivered by cesarean 
section and formula-fed in early life exhibit distinct neonatal gut 
microbiome features that persist throughout the first year of life 
(Bäckhed et al., 2015) and significantly reduce vertical transmis-
sion (Korpela et al., 2018) compared with infants born vaginally. 
The observation that cesarean section and formula-fed babies de-
velop along a distinct microbial successional trajectory suggests 
that founder microbial populations that develop in utero could 
be usurped by more competitive microbial strains encountered 
in early postnatal life, whose colonization is reinforced by the 
selective effects of diet. Likewise, babies at high risk for asthma 
development exhibit distinct bacterial microbiota in their meco-
nium and delayed diversification of their gut microbiota over the 
first year of life (Durack et al., 2018). Encouragingly, this delayed 
diversification was partially remedied with daily, postpartum 
Lactobacillus rhamnosus supplementation, which was associated 
with a restructured gut microbiota composition and metabolic 
output more consistent with that of low-risk infants (Durack et 
al., 2018), providing evidence that gut microbiota development 
and metabolism may be reengineered via microbial intervention. 
However, this commercially available probiotic does not engraft 
in the human gut microbiome, and the beneficial effects of sup-
plementation were lost upon cessation of probiotic administra-
tion. Although a relatively new concept in terms of applicability 
to the human microbiome, recent data in the field suggest that 
ecological principles may offer a useful theoretical framework 
to understand human microbiome development in early life. 
Improved understanding of microbial competitive colonization, 
engraftment, and succession during specific stages of human 
development may inform rational design of microbiome-tar-
geted therapeutics aimed at reengineering microbial community 
composition and metabolic output, and ultimately at preventing 
chronic disease in later life.

Microbiome perturbations, immune dysfunction, and 
chronic disease
Inflammatory bowel disease (IBD)
Perturbations to the composition and function of bacterial and 
fungal gut microbiota have been implicated in various forms of 
IBD, including Crohn’s disease (CD) and ulcerative colitis (UC; 
Sokol et al., 2008, 2017; Kudelka et al., 2016; Lamas et al., 2016; 
Mar et al., 2016; Schirmer et al., 2018). Both conditions exhibit loss 
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of enteric bacterial diversity (Gevers et al., 2014; Mar et al., 2016) 
and expansion of specific bacterial clades such as Enterobacteri-
aceae (Gevers et al., 2014). Expansion of Enterobacteriaceae has 
been associated with new-onset CD, and targeted depletion of this 
bacterial family ameliorates intestinal inflammation in mice (Zhu 
et al., 2018). Additionally, loss of certain symbiotic taxa such as 
Faecalibacterium prausnitzii has been related to recurrence of 
CD, and supplementation of mice with this organism reduced in-
flammation in a model of chemically induced colitis (Sokol et al., 
2008), suggesting an anti-inflammatory role for this mucosal-as-
sociated enteric symbiont. More recently, a bioactive microbial 
anti-inflammatory molecule was identified in supernatant of 
cultured F. prausnitzii (Quévrain et al., 2016) and is thought to be 
responsible, at least partly, for reducing intestinal inflammation. 
Indeed, supplementing mice with Lactococcus lactis expressing 
the F. prausnitzii microbial anti-inflammatory molecule allevi-
ated intestinal inflammation (Quévrain et al., 2016; Breyner et 
al., 2017). A number of studies have indicated that helminth infec-
tion abrogates IBD (Broadhurst et al., 2010), including one study 
showing that helminth infection promotes the diversification of 
gut microbiota and enrichment of anti-inflammatory Clostridi-
ales in mice genetically predisposed to disease (Ramanan et al., 
2016). Although there is limited evidence that helminth intro-
duction ameliorates IBD in humans, these observations support 
the concept that enteric bacterial microbiota manipulation holds 
potential for the management or prevention of IBD.

Microbial-derived products found in stool of patients with UC 
have been shown to promote inflammation. Human DCs stimu-
lated with fecal water from the stool of patients with UC increased 
the ratio of Th2 to Th1 cells upon coculture with autologous naive 
T cells (Mar et al., 2016). The degree of Th2 induction was related 
to the specific fecal microbiota composition and to the degree of 
disease severity (Mar et al., 2016). Specifically, microbiota asso-
ciated with the most severely ill patients exhibited expansions 
of Bacteroides and Candida (Mar et al., 2016), which were asso-
ciated with a distinct profile of microbial ligands and metabolic 
products in the fecal microbiome of these patients. Additionally, 
independent studies have indicated that both the gut microbiota 
of patients with IBD and that of colitis-susceptible Card9−/− mice 
exhibit reductions in the concentration of tryptophan-derived 
indole derivatives that act as aryl hydrocarbon receptor ligands 
and promote IL-22 production (Lee et al., 2011; Lamas et al., 
2016). Transfer of feces from IL-22−/− (Zenewicz et al., 2013) or 
Card9−/− mice to wild-type GF recipients increased their suscep-
tibility to colitis (Lamas et al., 2016), and supplementation with 
three Lactobacillus strains capable of metabolizing tryptophan, 
or treatment with an aryl hydrocarbon receptor agonist, restored 
intestinal IL-22 production and attenuated intestinal inflamma-
tion (Lamas et al., 2016). The protective effect of Lactobacillus 
was also observed in another experimental model of colitis, in 
which Lactobacillus murinus enrichment was associated with 
expansion of T reg cells and protection (Tang et al., 2015). Hence 
dysbiosis associated with loss of intestinal bacteria capable of 
modulating intestinal inflammation further suggests that micro-
biome manipulation, particularly supplementation with strains 
that restore depleted microbial functions in diseased patients, 
represents a plausible avenue of therapeutic intervention.

Persistent antibiotic-induced colitis
Antibiotic-induced alterations in the gut microbiome and its as-
sociated metabolome reduce colonization resistance against the 
spore-forming, toxin-producing pathogen Clostridium difficile 
(Theriot et al., 2014), a causative agent of antibiotic-associated 
colitis. Germination and overgrowth of this pathogen are thought 
to be facilitated by a reduction of microbiota-derived secondary 
bile acid metabolites that inhibit spore germination (Buffie et 
al., 2015). Using mathematical modeling guided by analysis of 
the microbiota of hospitalized patients, a recent study identified 
Clostridium scindens as an intestinal bacterial species that dehy-
droxylates bile acid 7α, thereby mediating colonization resistance 
against C. difficile (Buffie et al., 2015). These results are encour-
aging first steps for exploring novel preventive strategies, such 
as prophylactic microbial-based supplements, for populations at 
risk of developing antibiotic-associated colitis.

Atopic asthma
The rapid increase in asthma prevalence in industrialized na-
tions over the past several decades, particularly among pediatric 
populations, cannot be explained by genetic risk factors alone 
and is thought to be related to altered environmental exposures 
associated with Western lifestyles. A number of validated epide-
miological observations have implicated early life environmental 
exposures in increased risk for childhood asthma. Many of these 
exposures are known to shape the nascent gut microbiome, in-
cluding cesarean birth (Dominguez-Bello et al., 2010; Jakobsson 
et al., 2014; Bäckhed et al., 2015; Stokholm et al., 2016; Chu et 
al., 2017), antimicrobial administration (Johnson et al., 2005; 
Korpela et al., 2016; Ahmadizar et al., 2017; Yamamoto-Hanada 
et al., 2017), formula feeding, exposure to furred pets, and envi-
ronmental toxins (Levin et al., 2016; O’Connor et al., 2018).

Further evidence for an intricate relationship between envi-
ronmental exposure, the gut microbiome, and allergic airway 
disease comes from an expanding body of work (Fujimura and 
Lynch, 2015; Durack et al., 2016), particularly those utilizing ex-
perimental animal models. For example, treating neonatal mice 
with vancomycin was shown to diminish gut microbial diversity, 
alter metabolite profiles, exacerbate Th2 responses, and increase 
susceptibility to allergic lung inflammation (Russell et al., 2012; 
Cait et al., 2018). Supplementation with SCFAs ameliorated air-
way inflammation in these mice, with the mechanism attributed 
to decreased activity of T cells and DCs, decreased numbers of 
IL-4–producing CD4+ T cells, and reduced levels of circulating IgE 
(Cait et al., 2018). Oral supplementation of mice with house dust 
from homes with dogs also reduced allergic airway sensitization 
to cockroach antigen (Fujimura et al., 2014), consistent with the 
observation that children who grow up with dogs are less likely 
to develop atopy (Ownby et al., 2002). The gut microbiota in mice 
treated with dog-associated house dust was found to be enriched 
with Lactobacillus johnsonii, and oral supplementation with this 
species protected mice against airway allergen challenge and re-
spiratory viral infection, with reduced airway concentrations of 
IL-4, IL-5, IL-13, and IL-17 and increased numbers of T reg cells 
(Fujimura et al., 2014). More recently, protection mediated by 
oral L. johnsonii supplementation was linked to alterations in cir-
culating immunomodulatory metabolites, including anti-inflam-
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matory ω-3 fatty acids, such as docosahexanoic acid (Fonseca et 
al., 2017). That study attributed protection in part to reduced 
activation of DCs, as DCs exposed to serum from Lactobacil-
lus-supplemented, respiratory syncytial virus–infected mice (or 
to docosahexanoic acid) dampened cytokine production by the 
DCs upon viral infection (Fonseca et al., 2017). Reduced allergic 
airway inflammation is also seen in mice fed a high-fiber diet, 
which is exclusively metabolized by microbes to produce SCFAs, 
with evidence for functional reprogramming of hematopoietic 
cells (Trompette et al., 2014). Collectively, these observations 
indicate that the gut microbiome is plastic and that its related 
metabolic products have the capacity to suppress inflammation 
at distal mucosal sites, such as the lungs, and to reprogram bone 
marrow–derived immune cells.

Early-life microbiota dysbiosis has also been observed in in-
fants at risk for asthma development later in life. Bacterial deple-
tion and fungal expansion were observed in the gut microbiome 
of at-risk infants at 1 mo of age, with a fecal metabolic profile 
characterized by depletion of ω-3 fatty acids and prostaglandin 
precursors (Fujimura et al., 2016). The soluble products of the 
gut microbiota from these high-risk infants induced Th2 cell 
expansion, increased IL-4 expression, and decreased T reg cell 
populations ex vivo, the latter attributed in part to enrichment of 
the oxylipin, 12,-13-DiHOME (Fujimura et al., 2016). The concept 
that microbial products associated with a disease-susceptible 
microbiome drive heritable immune dysfunction was supported 
by a study showing that fecal microbiota transfer from infants at 
high risk for asthma into GF mice resulted in exacerbated allergic 
lung inflammation in their adult offspring (Arrieta et al., 2015). 
Lung inflammation was alleviated when the offspring mice were 
supplemented with bacterial taxa depleted in the microbiota of 
high-risk infants, suggesting a causal role of these bacteria in 
averting allergic inflammation (Arrieta et al., 2015).

Observations from independent, geographically distinct birth 
cohorts encompassing various socioeconomic and racial groups 
consistently report depletion of symbiotic bacterial taxa, such as 
Faecalibacterium, Akkermansia, and Lachnospira, in infants at 
risk of developing atopy or asthma (Arrieta et al., 2015; Fujimura 
et al., 2016; Durack et al., 2018; Stokholm et al., 2018). These 
studies add to the mounting evidence that the early-life gut mi-
crobiome contributes to risk of childhood asthma development, 
highlighting the neonatal period as an opportune time for pre-
ventive microbial interventions in high-risk infants.

Behavioral disorders
The gut microbiota has recently emerged as an important me-
diator of biochemical signaling between the GI tract and the 
central nervous system, more commonly referred to as the gut–
brain axis (Fung et al., 2017). As such, a number of behavioral 
disorders have been associated with perturbed enteric microbi-
ota, including ASD in children (Li et al., 2017; Strati et al., 2017). 
ASD-associated gut microbiota exhibit increased bacterial diver-
sity (Finegold et al., 2010) and enrichment of Collinsella, Coryne-
bacterium, and Lactobacillus and the fungal pathobiont Candida 
relative to unaffected siblings (Strati et al., 2017). These micro-
bial perturbations are associated with an altered fermentative 
profile, with significantly higher concentrations of SCFAs and 

ammonia (Wang et al., 2012), metabolites that at high concen-
trations are considered neurotoxic and may promote the adverse 
neurological effects associated with ASD (Morland et al., 2018).

Given that gut microbiota development in infancy has been 
linked to maternal health (Chu et al., 2017; Durack et al., 2018; 
Stokholm et al., 2018), it is perhaps unsurprising that mater-
nal immune activation (Hsiao et al., 2013; Brown et al., 2014; 
Lee et al., 2015; Kim et al., 2017) and obesity (Buffington et al., 
2016) during pregnancy are associated with features of ASD in 
offspring, with murine studies suggesting that these processes 
are governed by the maternal intestinal microbiota (Kim et al., 
2017). Feeding pregnant mice a high-fat diet (HFD) induces 
behavioral alterations in their offspring, in which a number 
of bacterial taxa including Lactobacillus reuteri are depleted 
from the gut microbiota, and levels of oxytocin in the hypothal-
amus are decreased (Buffington et al., 2016). These behavioral 
changes could be reversed by cohousing the affected mice with 
those fed a regular diet or by supplementing them with L. reuteri 
(Buffington et al., 2016), a species that promotes oxytocin levels 
(Poutahidis et al., 2013).

Chronic stress, which is associated with despair behavior 
in mice, also alters gut microbiota composition. Chronically 
stressed mice show reduced fecal peroxide levels, L. reuteri 
depletion in their microbiota, and profound changes in serum 
metabolites, particularly those involved in the tryptophan– 
kynurenine metabolism pathway (Marin et al., 2017). These mice 
also have increased intestinal expression of IDO1, the main en-
zyme responsible for metabolizing tryptophan to kynurenine 
and thus preventing its conversion to serotonin. Supplemen-
tation with L. reuteri relieved signs of depression and restored 
fecal peroxide levels in stressed animals (Marin et al., 2017). An 
exploratory study in which fecal transfer was used to restore the 
perturbed gut microbiota in children with ASD showed promis-
ing improvements in GI and behavioral symptoms (Kang et al., 
2017), although these effects need to be validated in larger trials. 
Collectively, these findings point to an important role for the gut 
microbiota in neuro-behavioral modulation and hint at the po-
tential efficacy of microbial restoration as a means of treating or 
preventing behavioral disorders. However, much more work is 
needed to elucidate the underlying mechanisms before manipu-
lation of the gut microbiota can be considered for prevention or 
management of these disorders.

Obesity and type 2 diabetes mellitus (T2DM)
Obesity and T2DM are interrelated and associated with dysbiotic 
gut microbiota (Qin et al., 2012; Karlsson et al., 2013; Le Chatelier 
et al., 2013; Forslund et al., 2015) and with significantly reduced 
bacterial complexity (Turnbaugh et al., 2009; Karlsson et al., 
2013; Le Chatelier et al., 2013). A decrease in the relative abun-
dance of Bacteroides spp. is particularly striking in obesity (Ley 
et al., 2005; Andoh et al., 2016). A causal role for the gut micro-
biome in obesity is supported by studies showing that GF mice 
reconstituted with feces from monozygotic twins discordant for 
obesity recapitulates the metabolic phenotype (including obesity 
status) of the donor (Ridaura et al., 2013). Bacterial species (spe-
cifically Bacteroides spp.) associated with the lean phenotype 
seemed to dominate over those associated with obesity, as co-
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housing mice harboring “lean” microbiota with those harboring 
“obese” microbiota prevented weight gain and obesity-associated 
metabolic phenotypes in the latter. Similarly, transplantation of 
fecal microbiota from healthy lean donors to obese patients re-
sulted in improved insulin sensitivity (Vrieze et al., 2012). Insulin 
resistance has been linked to differences in the gut microbiome 
and microbe-associated increases in serum concentrations of 
branched-chain amino acids (Pedersen et al., 2016).

Conversely, an abundance of a mucin-degrading gut bacteria, 
Akkermansia muciniphila, is associated with increased metabolic 
health in obese patients (Dao et al., 2016) and in mice fed a HFD 
(Schneeberger et al., 2015). Supplementation with A. muciniph-
ila of HFD-induced obese mice reduced circulating LPS levels, 
enhanced lipid oxidation (Everard et al., 2013), improved glu-
cose tolerance, and reduced systemic inflammation (Shin et al., 
2014). Prebiotic plant polyphenols that enrich for A. muciniphila 
showed similar beneficial effects (Anhê et al., 2015). The benefits 
of A. muciniphila supplementation have been attributed in part 
to a bacterial outer membrane protein that interacts with Toll-
like receptor 2 and restores gut barrier function (Plovier et al., 
2017). However, such activity is very likely strain-specific and 
dependent on the local environment and coassociated microbial 
peers, since enrichment of A. muciniphila has also been observed 
in diabetic Chinese patients compared with healthy controls 
(Qin et al., 2012).

Lastly, prebiotic fermentable dietary fiber has been shown 
to protect mice against HFD-induced metabolic syndrome in a 
microbiota-dependent manner (Schroeder et al., 2018; Zou et 
al., 2018) that was not dependent on SCFAs (Zou et al., 2018) but 
rather on microbiota-mediated restoration of IL-22 production 
and enterocyte function (Zou et al., 2018), leading to reduced in-
testinal permeability (Schroeder et al., 2018). Interestingly, sup-
plementation of HFD-fed mice with Bifidobacterium longum also 
reversed mucus abnormalities by stimulation of mucin secretion 
(Schroeder et al., 2018), suggesting that probiotic and prebiotic 
treatments may prevent distinct HFD-induced defects in the in-
testinal mucus layer. Nondigestible fiber has been shown to in-
duce clinically relevant metabolic improvements, coupled with 
expansion of SCFA-producing enteric microbial species, in Asian 
patients with T2DM (Zhao et al., 2018).

Cardiovascular disease
Microbial metabolism of dietary choline and carnitine, which 
comprise a large component of a Western diet, has been shown to 
increase risk of cardiovascular disease (Iqbal et al., 2008; Estruch 
et al., 2018). Metabolism of these compounds produces trime-
thylamine (TMA), which is oxidized in the liver to trimethyl-
amine-N-oxide, an amine oxide associated with development of 
atherosclerosis (Wang et al., 2011, 2015; Koeth et al., 2013; Zhu et 
al., 2016). The production of TMA is catalyzed by microbial TMA 
lyase (Koeth et al., 2013), and inhibition of this enzyme reduced 
atherosclerotic plaque development in susceptible Apoe−/− mice 
(Wang et al., 2015). Additionally, supplementation of atheroscle-
rosis-prone mice with A. muciniphila protected against athero-
sclerosis development induced by feeding a Western diet (Li et 
al., 2016a). Indeed, mice harboring high levels of choline-metab-
olizing bacteria are more susceptible to diet-induced metabolic 

disease (Romano et al., 2017). Modulation of microbial metab-
olism through dietary intervention or direct supplementation 
might therefore provide an effective strategy, either alone or in 
combination with established therapies, for prevention of car-
diovascular diseases.

Autoimmunity
The frequency of autoimmune conditions has increased over the 
past several decades (Patterson et al., 2009; Hunter et al., 2017; 
Magyari and Koch-Henriksen, 2017). Molecular mimicry of 
human antigens by the microbiota is one potential mechanism 
by which the immune system is reprogrammed, resulting in au-
toimmune tissue damage (Cusick et al., 2012). Variation in micro-
bial LPS immunogenicity has been proposed as one alternative 
facet that contributes to type 1 diabetes mellitus (T1DM) patho-
genesis. In a study of Northern European infants, enrichment of 
Bacteroides spp., particularly Bacteroides dorei, was observed 
in the first three years of life in Finnish and Estonian infants, 
who exhibit a high prevalence of T1DM compared with Russian 
infants (Vatanen et al., 2016). Within this cohort, a positive cor-
relation between the abundance of these bacteria at the phylum 
level and serum insulin autoantibody levels was observed. This 
association was attributable to the unique structure of LPS from 
genus Bacteroides that inhibited immune stimulation induced 
by Escherichia coli LPS, which the authors suggest might inter-
fere with normal immune education and increase susceptibil-
ity to autoimmunity (Vatanen et al., 2016). In an independent 
human study, intestinal microbiota alterations, including loss of 
bacterial diversity, preceded the onset of metabolic symptoms 
associated with T1DM (Kostic et al., 2015). Additionally, antibi-
otic-induced dysbiosis altered microbial lipid metabolism and 
suppressed enteric Th17 and T reg cell populations, leading to 
increased incidence of T1DM-like disease in nonobese diabetic 
mice (Livanos et al., 2016).

Rheumatoid arthritis (RA) is a systemic autoimmune in-
flammatory condition that manifests in joint damage. The 
observation that GF mice are protected from development of 
experimental arthritis (Wu et al., 2010) suggests a possible role 
for the microbiome in the pathogenesis of this disease. Patients 
with RA show expansion of enteric Prevotella copri (Scher et al., 
2013), and autoantigens in these patients exhibit high homology 
to Prevotella-associated peptides (Pianta et al., 2017). Molecular 
mimicry of RA-associated antigens by the gut microbiota has also 
been reported in a metagenomic study of RA patients (Zhang et 
al., 2015). However, whether precision editing of the microbiota 
could alleviate clinical symptoms in patients with RA remains 
to be elucidated.

Gut microbiota perturbation has also been described in 
adult (Cekanaviciute et al., 2017) and pediatric (Tremlett et al., 
2016b) patients with MS. In pediatric MS patients, bacterial 
microbiota richness was positively associated with circulating 
pro-inflammatory Th17 cells, whereas the relative abundance 
of SCFA-producing Bacteroidetes inversely correlated with sys-
temic inflammatory markers (Tremlett et al., 2016a). GF mice 
humanized with fecal microbiota from MS patients developed 
more severe experimental autoimmune encephalomyelitis asso-
ciated with lower frequencies of T reg cells (Cekanaviciute et al., 
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2017). These initial observations implicate the gut microbiome 
in disease pathogenesis, but additional studies are necessary to 
delineate the specific microbial strains and products that confer 
these phenotypes.

Gut microbiota in cancer immunotherapy
Recent evidence has emphasized the importance of enteric mi-
crobiota in modulating response to various forms of cancer im-
munotherapy (Roy and Trinchieri, 2017; Zitvogel et al., 2018). 
Cancer patients who responded to anti–programmed cell death 
protein 1 (PD1) therapy have been shown to harbor more diverse 
gut microbiota compared with nonresponders (Gopalakrishnan 
et al., 2018; Routy et al., 2018), who were consistently depleted for 
bacterial taxa generally associated with health, including Akker-
mansia, Faecalibacterium, and Bifidobacterium (Gopalakrishnan 
et al., 2018; Matson et al., 2018; Routy et al., 2018). Improved ef-
ficacy of anti-PD1 treatment, with increased antitumor T cell 
responses, was seen in mice transplanted with fecal microbiota 
from responding patients (Matson et al., 2018) and in mice sup-
plemented with bacterial taxa depleted in nonresponders (Routy 
et al., 2018). Although preliminary, these observations suggest 
that the gut microbiota might offer the opportunity to identify 
patients who are more likely to respond to treatment, to enhance 
existing therapeutics, and to develop novel therapeutic strategies.

The microbiome as therapeutic target
Given the tight interplay between enteric microbial symbionts 
and host immunity, efforts have focused on implementing vari-
ous strategies targeting the gut microbiota to manage or prevent 
chronic inflammatory disease. Clinical approaches to modify gut 
microbiota generally focus on depleting overabundant members 
or overall microbial load using antibiotics or antifungal agents, 
modulation through diet manipulation, or supplementation with 
live microbes (single or mixed species). More recently, fecal mi-
crobial transplantation (FMT) has been used in a range of infec-
tious, neurological, and GI conditions, with promising outcomes. 
Although antimicrobial drugs are not generally considered ap-
propriate for long-term management of chronic conditions, 
given the need for repeat dosing and concerns about emergence 
of antimicrobial resistance, early data indicate that administra-
tion of antimicrobial drugs, as a means to perturb pathogenic mi-
crobiomes before FMT or microbial supplementation, enhances 
engraftment of beneficial species and improves treatment effi-
cacy (Keshteli et al., 2017).

Dietary interventions
Although diet strongly shapes the composition and function of 
the gut microbiota, only a small number of controlled clinical 
dietary intervention studies targeting the human gut microbi-
ota have been reported (Cotillard et al., 2013; Brahe et al., 2015; 
Thompson et al., 2017). Recently, a diet rich in fiber was shown 
to significantly improve glucose control and promote a health-
ier metabolic profile in T2DM patients (Zhao et al., 2018). Other 
studies showed marked interindividual variation in postprandial 
glycemic responses after consumption of identical meals (Zeevi 
et al., 2015). Consideration of microbial composition alongside 
known T2DM risk factors (e.g., body mass index, fasting glucose 

levels) enabled accurate glucose response prediction, thus al-
lowing design of more effective, personalized diets for improved 
glycemic control (Zeevi et al., 2015).

 Multispecies microbial supplements
Despite encouraging evidence from animal models in which 
inflammatory conditions were successfully treated via gut mi-
crobiota manipulation (Table 2), data from human trials is less 
conclusive. Findings from recent work showed that the ability of 
an introduced microbe to successfully colonize the gut depends 
on the structure of the resident gut microbiota (Zhang et al., 
2016; Zmora et al., 2018), a factor that has so far been overlooked 
in microbial intervention–based clinical trials and that might ex-
plain discrepancies in animal models and human trials.

Nonetheless, intervention with a multispecies consortium of 
bacteria was shown to be effective in the induction and main-
tenance of remission in patients with UC (Mimura et al., 2004; 
Sood et al., 2009), but not in those with CD (Fedorak et al., 2015). 
Four months of daily supplementation with the same consortium 
led to significant improvements in fatty liver disease severity, 
reductions in body mass index, and increases in glucagon-like 
peptide levels in children with obesity (Alisi et al., 2014). Me-
ta-analysis of intervention trials in which various combinations 
of bacterial strains were administered to adults with T2DM 
showed moderate improvements in hyperglycemia (Samah et 
al., 2016). Moreover, probiotic supplementation during the first 
27 d of life reduced risk of islet autoimmunity in a large multi-
center prospective cohort study of children at high genetic risk 
for T1DM, compared with no supplementation or supplementa-
tion later in infancy (Uusitalo et al., 2016).

Reduced allergic sensitization was also demonstrated in a me-
ta-analysis of randomized trials of early-life oral microbial in-
terventions (Elazab et al., 2013). Additionally, in a recent follow 
up of a trial in which children with peanut allergies were ran-
domized to receive either placebo or oral peanut immunotherapy 
combined with daily L. rhamnosus GG (LGG) for 18 mo, 67% of 
children in the immunotherapy/probiotic group remained de-
sensitized to peanuts 4 yr after the intervention compared with 
4% in the placebo group (Hsiao et al., 2017). This observation pro-
vides promising results for the long-term efficacy of a combined 
intervention approach in preventing food allergies; however, as 
the trial lacked control groups that received either oral immu-
notherapy or microbial supplementation alone, it remains to be 
determined whether the observed beneficial effect is attributable 
to the immunotherapy, the microbial supplementation, or both. 
Nevertheless, these observations are encouraging and warrant 
further controlled trials.

Despite promising outcomes of early-life oral microbial sup-
plementation on reduction of atopic sensitization in children, 
trials have not shown benefits on development of atopic asthma 
or wheeze (Elazab et al., 2013). A recent study examining the 
effect of early-life (birth to 6 mo of age) LGG supplementation 
in infants at high risk for asthma found no significant effect of 
LGG on the development of asthma at 3 yr of age (Cabana et al., 
2017). However, a subsequent analysis showed that LGG supple-
mentation partially abrogated delayed gut microbiota bacterial 
diversification and resolved metabolic dysfunction observed in 
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placebo-supplemented high-risk infants (Durack et al., 2018). 
Furthermore, the associated products of LGG-supplemented 
fecal microbiomes induced significantly more T reg cells ex 
vivo. However, LGG colonization and associated benefits of met-
abolic reprogramming were not sustained (Durack et al., 2018), 
perhaps suggesting the need for longer-term or earlier (e.g., 
during pregnancy) intervention or use of a multispecies micro-
bial cocktail with enhanced capacity for competitive coloniza-
tion of the neonatal gut to achieve long-term efficacy. Despite 
the negative outcome of this trial, it verifies the plastic nature 
of the early-life gut microbiome, demonstrates that microbial 
supplementation is safe and well tolerated in infancy, and pro-
vides encouraging data suggesting that gut microbiome–medi-
ated metabolism may be reengineered to promote induction of 
immune tolerance.

Intervention studies involving live microbial supplementa-
tion have shown encouraging results, although more attention 
to microbial strain selection based on functional attributes, de-
fined timing or duration of supplementation, and/or tailoring of 
the supplemented organisms to the endogenous gut microbiome 
of the recipient may significantly improve efficacy in future 
studies. Ongoing studies are focused on understanding the basis 
of microbe–microbe interactions in order to identify discrete 
gut microbiomes that more readily respond to specific micro-
bial interventions.

There is also a great need for tailored interventions that con-
sider the microbiological individuality of the recipient. Such ap-
proaches are likely to result in a transition away from historically 
used probiotic strains, which are frequently poorly adapted to 
the enteric microenvironment, toward personalized multispe-

Table 2. Evidence for gut microbiota modulation strategies in preventing chronic inflammatory conditions derived from animal models

Bacterial strain Chronic inflammatory condition

A. muciniphila Ameliorates HFD-induced obesity and insulin resistance (Everard et al., 2013; Plovier et al., 2017)

Protects against atherosclerosis by decreasing gut permeability and preventing endotoxemia-induced 
inflammation (Li et al., 2016a)

Improves efficacy of anti-cancer immunotherapy (Routy et al., 2018)

B. fragilis Restores the integrity of the intestinal barrier and ameliorates autistic-like behavior (Hsiao et al., 2013)

Suppresses neuro-inflammation in experimental model of MS (Wang et al., 2014a)

B. adolescentis Ameliorates HFD-induced colitis (Lim and Kim, 2017)

Bifidobacterium animalis spp. lactis Restores the integrity of the intestinal barrier, thus reducing bacterial translocation and insulin 
sensitivity (Amar et al., 2011)

B. animalis spp. lactis and LGG Improves HFD-induced obesity and insulin resistance (Alard et al., 2016)

B. longum Reduces anxiety-like behavior in a mouse model of chemically induced colitis (Bercik et al., 2011)

Restores the integrity of colonic mucus layer impaired by HFD (Schroeder et al., 2018)

Bifidobacterium pseudocatenulatum Reduces weight gain, body fat, fasting glucose, and insulin resistance in mice with HFD-induced obesity 
(Zhao et al., 2018)

Christensenella minuta Reduces weight gain in mice inoculated with obese human fecal samples (Goodrich et al., 2014)

C. scindens Protects against antibiotic-induced C. difficile colitis (Buffie et al., 2015)

F. prausnitzii Alleviates inflammation in chemically induced models of colitis (Sokol et al., 2008; Quévrain et al., 
2016; Breyner et al., 2017)

L. johnsonii Provides airway protection against allergen challenge and respiratory virus infection (Fujimura et al., 
2014; Fonseca et al., 2017)

L. murinus Protects from dextran sodium sulfate–induced colitis by promoting increase in T reg cells in the colon 
(Tang et al., 2015)

L. plantarum Recovers growth stunting in juvenile GF mice associated with somatotropic axis signaling (Schwarzer 
et al., 2016)

Lowers fasting blood glucose and triglyceride levels (Toshimitsu et al., 2017)

L. reuteri Restores social behavior in offspring of dams fed HFD (Buffington et al., 2016)

Restores despair behavior induced by exposure to chronic stress via suppression of tryptophan/
kynurenine metabolism (Marin et al., 2017)

L. reuteri, L. murinus, and Lactobacillus 
taiwanensis

Attenuates intestinal inflammation in experimental model of colitis (Lamas et al., 2016)

LGG Ameliorates ASD-like behavior by modulating the expression of GABA receptors in the brain (Bravo et 
al., 2011)

Lactobacillus sakei Improves HFD-induced obesity and hyperglycemia by reducing inflammation and increasing the 
expression of colon tight junction proteins (Lim et al., 2016)
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cies microbial consortia sourced from healthy human enteric 
ecosystems. To further enhance efficacy of microbial supple-
mentation, nutritional support in the form of targeted dietary 
modifications, tailored to the specific substrate requirements of 
the supplemented microbes, should also be considered. Such an 
integrated approach to microbiome-based therapeutics (Fig. 4), 
built on independent observations in the field of gut microbi-
ome research, may offer more effective, predictable, and sustain-
able microbial restitution in cases of chronic disease in which 
microbiome perturbation and functional gene loss are prom-
inent features.

FMT
FMT has proven effective in >90% of patients with recurrent an-
tibiotic-resistant C. difficile infection (van Nood et al., 2013). The 

success rate of FMT administration for other chronic intestinal 
inflammatory conditions such as IBD, however, is more modest, 
with clinical remission being less predictable (Colman and Rubin, 
2014). More recently, FMT has been applied to chronic inflam-
matory conditions affecting organs distal to the GI tract. A small 
trial of children aged 7–16 yr diagnosed with ASD showed that 
FMT improved both GI and ASD behavioral symptoms, in con-
cert with changes to their gut microbiota composition, which was 
sustained 2 mo after intervention (Kang et al., 2017). In a sepa-
rate study, FMT from lean donors improved insulin sensitivity in 
obese men with metabolic syndrome, and this improvement was 
linked to changes in plasma metabolites, in particular increased 
gamma-aminobutyric acid (GABA), tryptophan, and phenylala-
nine (Kootte et al., 2017). GABA has been associated with regula-
tion of metabolism in mouse models (Meng et al., 2016) and with 

Figure 4. A strategic framework for a personalized integrated approach to microbiome manipulation. Due to microbial heterogeneity across populations, 
personalized nutrition in combination with the administration of live, functionally defined microbial strains to reengineer microbiome composition, functional 
gene capacity, and metabolic output may prove most effective in rehabilitating perturbed gut microbiomes for effective disease prevention or management.
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successful (albeit short-lived) engraftment of lean-donor FMT 
and improved health in men with metabolic syndrome (Kootte 
et al., 2017), suggesting a role for GABA in glucose metabolism 
in humans. Studies focused on understanding the dynamics of 
donor microbiota colonization following single-donor FMT have 
demonstrated varying degrees of microbial transfer in different 
recipients (Li et al., 2016b), which was later shown to depend on 
the abundance and composition of bacteria in both the donor and 
pre-FMT recipient (Smillie et al., 2018). These results suggest 
that, as for other organ transplants, gut microbiome compatibil-
ity is an important, but currently overlooked, factor that needs 
to be considered in future trials.

The risks associated with FMT are not completely defined. 
Donor material is prescreened for known infectious agents, but 
there remains a risk of transferring to the recipient phenotypes 
that are clinically silent in the donor. For this reason alone, the 
FMT approach may not be feasible for infants at high risk for de-
veloping chronic conditions, and alternative interventions with 
quality-controlled microbes from human sources may prove 
more appropriate for such vulnerable populations. In a recent 
proof-of-principle study, the gut microbiota of cesarean sec-
tion–delivered infants was manipulated to more closely resemble 
that of vaginally delivered newborns by swabbing the neonate 
with gauze inoculated with the mother’s vaginal microbiota 
(Dominguez-Bello et al., 2016). These results demonstrate that 
vaginal microbes typically underrepresented in babies delivered 
by cesarean section can be partially and safely restored at birth, 
although the long-term health consequences of these interven-
tions remain to be determined.

Microbial transplantation is proving useful as a means of ma-
nipulating the gut microbiome for management or prevention 
of certain illnesses or disorders, although many more well-de-
signed studies are needed. More importantly, early studies have 
provided insights into the critical organisms and biomolecules 
that mediate efficacy and those that impede it. As the field pro-
gresses, it is likely that this approach will be surpassed by more 
precise and integrated multispecies microbial/diet-based inter-
ventions tailored to the individual and their specific microbial 
perturbation (Fig. 4).

Summary and perspectives
Sequencing, mass spectrometry, and a variety of in vitro and in 
vivo model approaches have led to the observation that gut mi-
crobiome perturbation is evident in a variety of human diseases 
that manifest either locally in the gut or remotely at discrete organ 
and mucosal sites. In specific cases, gut microbiome perturbations 
are evident years in advance of disease development, offering bio-
markers for early detection of disease risk and opportunities for 
preventive interventions. Paramount to all of these observations is 
the increasing evidence for microbial causality in disease develop-
ment and identification of specific mechanisms of pathogenesis, 
the latter identifying novel microbial targets for therapeutic de-
velopment. Positive results have been observed for some disease 
indications following efforts to rehabilitate perturbed gut mi-
crobiota via dietary intervention, microbial supplementation, or 
FMT. These efforts provide proof of principle that the gut microbi-
ome represents a viable therapeutic target, with the opportunity 

to develop more refined and integrated approaches for disease 
management, prevention, or cure. Despite the promise, the gut 
microbiome field has much to do, including large and longitudinal 
integrative studies of humans to include all (bacterial, fungal, 
and viral) members of the gut microbiome and their products in 
the context of objective immune and physiological measurements 
and clinical outcomes. Complementing such investigations with 
mechanistic studies is critical to move the field beyond description 
and toward a molecular understanding of how microbe–microbe–
host interactions influence human health over the course of life 
and is key to realizing the full potential of the field.
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