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Abstract

Next generation sequencing of viral populations has advanced our understanding of viral

population dynamics, the development of drug resistance, and escape from host immune

responses. Many applications require complete gene sequences, which can be impossible

to reconstruct from short reads. HIV env, the protein of interest for HIV vaccine studies, is

exceptionally challenging for long-read sequencing and analysis due to its length, high sub-

stitution rate, and extensive indel variation. While long-read sequencing is attractive in this

setting, the analysis of such data is not well handled by existing methods. To address this,

we introduce FLEA (Full-Length Envelope Analyzer), which performs end-to-end analysis

and visualization of long-read sequencing data. FLEA consists of both a pipeline (optionally

run on a high-performance cluster), and a client-side web application that provides interac-

tive results. The pipeline transforms FASTQ reads into high-quality consensus sequences

(HQCSs) and uses them to build a codon-aware multiple sequence alignment. The resulting

alignment is then used to infer phylogenies, selection pressure, and evolutionary dynamics.

The web application provides publication-quality plots and interactive visualizations, includ-

ing an annotated viral alignment browser, time series plots of evolutionary dynamics, visuali-

zations of gene-wide selective pressures (such as dN/dS) across time and across protein

structure, and a phylogenetic tree browser. We demonstrate how FLEAmay be used to pro-

cess Pacific Biosciences HIV env data and describe recent examples of its use. Simulations

show how FLEA dramatically reduces the error rate of this sequencing platform, providing

an accurate portrait of complex and variable HIV env populations. A public instance of FLEA

is hosted at http://flea.datamonkey.org. The Python source code for the FLEA pipeline can

be found at https://github.com/veg/flea-pipeline. The client-side application is available at

https://github.com/veg/flea-web-app. A live demo of the P018 results can be found at http://

flea.murrell.group/view/P018.
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Author summary

Viral populations constantly evolve and diversify. In this article we introduce a method,

FLEA, for reconstructing and visualizing the details of evolutionary changes. FLEA specif-

ically processes data from sequencing platforms that generate reads that are long, but

error-prone. To study the evolutionary dynamics of entire genes during viral infection,

data is collected via long-read sequencing at discrete time points, allowing us to under-

stand how the virus changes over time. However, the experimental and sequencing pro-

cess is imperfect, so the resulting data contain not only real evolutionary changes, but also

mutations and other genetic artifacts caused by sequencing errors. Our method corrects

most of these errors by combining thousands of erroneous sequences into a much smaller

number of unique consensus sequences that represent biologically meaningful variation.

The resulting high-quality sequences are used for further analysis, such as building an evo-

lutionary tree that tracks and interprets the genetic changes in the viral population over

time. FLEA is open source, and is freely available online.

This is a PLOS Computational Biology Software paper.

Introduction

Next generation sequencing (NGS) has become an invaluable tool for studying HIV and other

rapidly evolving viruses by providing direct high resolution measurements of viral genetic

diversity within the host. NGS has been used to study immune escape [1–7], drug resistance

[3, 7–12], transmission bottlenecks [3, 13–15], population structure and dynamics [2, 3, 16–

22], tropism dynamics [23], and multiplicity of infection [24]. It is also used in clinical virology

[25, 26]. For reviews of the promises and challenges of NGS applications in virology, see [27,

28], [29], and [30].

Full-length sequences can resolve features that are difficult to assemble from short

sequences [8, 31]. For instance, Pacific Biosciences SMRT sequences were able to resolve 1.5

kb msg isoforms from Pneumocystis jirovecii, but reads from a 454 instrument could not be

assembled correctly [31]. For tracking evolutionary patterns in viral populations, accurately

resolving these features provides a more accurate history of the population, which becomes

especially relevant when epistatic interactions and linkage between mutations effect pheno-

typic changes in the pathogen [32–34]. For example, studies of HIV env frequently use func-

tional assays to measure the potency with which a given antibody or donor serum neutralizes a

specific env strain [35], which requires knowing the full env sequence.

We have developed a pipeline for handling long read HIV env sequencing data from

within-host viral populations: the Full-Length Envelope Analyzer (FLEA). FLEA addresses the

specific challenges posed by large volumes of such data, e.g., using the sequencing protocols

we previously described in Laird Smith et al [36], which also contains an overview of a proto-

type of FLEA. Here we describe the full pipeline and experimentally demonstrate its ability to

resolve populations of closely related variants. FLEA uses state-of-the-art tools and methods at

every step and can be accessed through a web browser or on a high-performance cluster.

FLEA is readily extensible to other genes and systems.
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FLEA has recently been used by the authors in two high-profile studies. In [37], we describe

how FLEA was used to process PacBio HIV env data from a clinical trial of monoclonal anti-

body 10-1074. For sequences sampled before and after therapy, FLEA reveals that prior to

antibody therapy low-frequency env variants were present with mutations that typically confer

resistance to 10-1074. Additionally, when resistance emerges, it emerges multiple times,

exploiting many different resistance pathways. FLEA was also used to characterize the longitu-

dinal env population that drove development of a broadly neutralizing antibodies against the

apex of the env trimer, sampled from donor PC64 from the Protocol C primary infection

cohort [38].

There exist dozens of standalone pipelines developed for analyzing HIV and related

sequence data, including longitudinal samples [4, 9, 12, 39]. However, it was necessary to

develop a new tool due to HIV env’s extensive natural indel variation and the high rate of

indels in long PacBio reads, which are especially problematic when any spurious indel in the

2.6kb env amplicon corrupts the reading frame, rendering the sequence uninterpretable. Previ-

ous analysis [36] determined that, for PacBio amplicon sequencing of an Env clone (for the set

of sequencing and filtering conditions employed therein), 4 out of 5 errors are indels, and

these occur more commonly in long homopolymer runs, with the per-base error rate ranging

from 1 in 300 for a homopolymer of length 2, but up to nearly 1 in 50 for a homopolymer of

length 6. On average, the per-base error rate was around 1 in 200, yielding an average of

roughly 13 errors per 2.6kb sequence.

With HIV env, the common strategy of mapping reads to a reference fails because the diver-

sity in variable regions of env, predominantly driven by extensive long insertions and deletions,

means that these regions in sampled reads lack homology to those in any heterologous reference

sequence, causing alignment-to-reference strategies to fail. Instead, FLEA relies on a fine-

grained cluster-and-consensus strategy to remove spurious indels from reads. The task is related

to Liang et al. (2016), but, rather than distinguishing a small number of variants at 81-91% iden-

tity, we must distinguish potentially hundreds of variants that differ by only a handful of bases.

The main contribution of the FLEA pipeline, therefore, is the reconstruction of a popula-

tion, including accurate inference of relative frequencies of closely-related minority variants,

from SMRT sequences alone. In addition, it performs many useful analyses on this population,

such as alignment, phylogenetic reconstruction, and selection inference, and provides interac-

tive visualizations for the results. The full pipeline is available as an online resource, or for local

installation.

Design and implementation

Pipeline

The input to FLEA is a set of FASTQ files from the PacBio RS-II or Sequel. Each set corre-

sponds to one time point, containing circular consensus sequence (CCS) reads, which can be

obtained using the “Reads of Insert” protocol on PacBio’s SMRTportal or SMRTanalysis tools.

Upon completion, the FLEA pipeline produces results as JSON (Javascript Object Notation)

files, a standard format for machine (and human-) readable structured data. The logic of

FLEA is implemented in Nextflow [40], a workflow framework for deploying parallel pipe-

lines to clusters and clouds.

FLEA consists of multiple sub-pipelines, as shown in Fig 1. Details of the quality and con-

sensus pipelines are depicted in Fig 2. Together, these two pipelines take error-prone CCS

reads and convert them into unique high-quality consensus sequences. The alignment pipeline

generates a multiple sequence alignment, which is used by multiple methods in the analysis

pipeline.
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Quality assurance sub-pipeline

The first steps remove low quality reads and filter out common sequencing artifacts. Parame-

ters given in these steps were chosen for full-length HIV envelope sequences from the RS-II or

Fig 1. Overview of the FLEA pipeline, broken into conceptual sub-pipelines. The Quality and Consensus sub-

pipelines process each time point separately. Duplicate steps in other time points are grayed out. CCS stands for

“circular consensus sequences”; QCS for “quality-controlled sequences”, and HQCS for “high-quality consensus

sequences”.

https://doi.org/10.1371/journal.pcbi.1006498.g001
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Fig 2. Quality and consensus sub-pipelines. These steps are repeated independently on each time point. Numbers are

reported from the analysis of sequences from the first time point (V03) of donor P018, which is three months post

infection. Percentages give the fraction of sequences retained after filtering. Tasks indicate whether they use third-party

tools USEARCH or MAFFT.

https://doi.org/10.1371/journal.pcbi.1006498.g002
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Sequel platforms. Other reads with different properties (error rates, error models, lengths,

homopolymer distributions, etc.) likely require different parameters. All steps are run inde-

pendently per time point.

1. Filter by error rate. The input FASTQ files contain Phred scores for each base, encoding

the probabilities of incorrect base calls. USEARCH [41] is used to remove reads with an

expected error rate greater than 1%, computed as the mean of the per-base error

probabilities.

2. Trim heads/tails. A fraction of reads from the Laird Smith et al. sequencing protocol con-

tain poly-A or poly-T heads or tails (cause unknown), which can be hundreds of bases long

and sometimes contain a small number of other bases.

These heads and tails are trimmed with a hidden Markov model (Fig 3) implemented in

Pomegranate [42]. The emission probabilities of the model were fixed, and the transitions

trained using Baum-Welch. The Viterbi path for each sequence is computed, and bases

emitted by head and tail nodes are removed.

3. Filter long runs. Reads with homonucleotide runs longer than 16 bases are discarded. This

length was chosen to be twice the length of the longest such run in the LANL HIV database

[43].

4. Filter contaminants and trim reads. Sample contamination can introduce non-native

sequences that interfere with subsequent analyses, so these contaminants must identified

and discarded. USEARCH is used to compare reads to a contaminant database and a refer-

ence database using usearch_global. Alignments returned from querying the database

are then used to trim reads to the gene boundaries. Trimming terminal insertions is vital

for the accuracy of downstream tasks, such as length filtering and clustering.

The contaminant database contains HXB2 and NL4-3 env, each ubiquitous in labs working

with env sequences and a common source of sample contamination. Reads that match

with� 98% identity are discarded. Since a 1% error rate cutoff was earlier used, this

parameter conservatively ensures that these contaminants are almost certainly identified.

The reference database contains thirty-eight sequences representing the major HIV Group

M subtypes from the LANL sequence database [43]. Reads with� 70% identity to every

sequence in the reference database are discarded. This cutoff is chosen to retain reads

Fig 3. Hidden Markov model used for trimming poly-A and poly-T heads and tails. A head and tail states have a

small (p = 0.01) probability to emit non-A bases, and similarly for T. The body state emits all four bases with equal

probability. The start, and stop states emit nothing.

https://doi.org/10.1371/journal.pcbi.1006498.g003
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remotely similar to HIV Group M while excluding contaminants such as human or bacte-

rial genome reads. If a sample is from SIV, or from a non group-M HIV+ donor, then more

appropriate reference sequences should be added to the database.

5. Filter by length. By default, sequences shorter than 90% or longer than 110% of the length

of the reference sequence are discarded. However, sequences with large deletions are fre-

quently observed in HIV. These likely represent replication incompetent envelopes, and

their reduced length can cause them to be dramatically oversampled due to PCR length

bias. Users who want to include these species in their analyses should modify these

parameters.

Reads that pass this quality assurance phase have low expected error rates and no homonu-

cleotide runs, are within 70% identity of at least one reference sequence, are (after trimming)

no more than 10% different in length than a reference sequence, and do not match the con-

taminant database. We refer to these sequences as quality-controlled sequences (QCS).

Consensus sub-pipeline for variant identification. Even for highly diverse populations,

unique reads in a sequencing run outnumber the true unique variants, predominantly due to

sequencing errors. The problem is far more significant in long reads than in short reads, pre-

cluding the use of amplicon denoising strategies used to reduce error rates in short read

sequencing [44]. To accommodate this effect, the next phase of the FLEA pipeline clusters and

combines QCS reads, attempting to infer the true variants in each time point. It also attempts

to detect and correct frameshift errors.

All of the following tasks are run separately for each time point, yielding sets of unique in-

frame consensus sequences. We refer to these sequences as high-quality consensus sequences

(HQCS).

1. Cluster. USEARCH is used with the cluster_fast command to generate clusters with

99% nucleotide identity. This parameter approximates the 1% error cutoff used in the error

rate filtering step, so that pairwise distances of sequences in the same cluster are consistent

with the sequencing error. cluster_fast runs in a single pass, so it is sensitive to input

order. Sequences are sorted from lowest to highest quality according to expected error rate;

experiment suggests that this order yields better results (Tables A, B, and C in S1 Text).

2. Select and subsample clusters. Clusters with fewer than three members are discarded,

because they are too small to de-noise by majority consensus. Clusters with more than 50

members are subsampled to the top 50 with the lowest expected error rate to speed up the

multiple sequence alignment step.

3. Align and consensus. MAFFT [45] is used to align each cluster. The consensus sequence of

each alignment is computed.

4. Frame correction In-frame consensus sequences from all time points are collected into a

USEARCH database for frame correction. usearch_global is then used to align each

out-of-frame sequence to its top hit. The nucleotide alignment is used to correct incomplete

codons: short insertions (1 or 2 base pairs) are discarded, and single deletions are replaced

with the aligned base. Sequences with longer insertions or deletions are discarded. All

changes are logged, so that the user can identify the sequences that have been corrected.

5. Uniqueness Non-unique consensus sequences are dereplicated using

usearch --fastx_uniques.

6. Copy numbers The number of sequences per cluster provides an estimate of the relative

abundance of that HQCS in the population. Those numbers are further augmented by adding

Full-Length Envelope Analyzer (FLEA): A tool for longitudinal analysis of viral amplicons
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sequences orphaned by cluster filtering and HQCS dereplication. usearch_global is

used to assign each QCS to its nearest HQCS. The number of sequences accrued by each

HQCS is interpreted as its copy number.

Alignment sub-pipeline. The HQCSs from all time points are combined into a single file,

translated to protein sequences, and aligned using MAFFT. A Python script then transfers the

gaps from each aligned protein sequence to the corresponding nucleotide sequences to pro-

duce a codon-level nucleotide multiple sequence alignment of all unique variants from all time

points.

Analysis sub-pipeline. The analyses used in FLEA take as input the two outputs of the

alignment phase: a codon multiple sequence alignment of all unique HQCS sequences from

all time points, and their associated copy numbers. These data are used for the following

analyses.

1. Time point metrics. HyPhy [46] scripts are used to compute evolutionary metrics (total,

dN, and dS divergence and diversity) and phenotypic metrics (protein length, potential N-

linked glycosylation sites, isoelectric point) for each annotated region (e.g., V1, MPER) in

the amplicon for each time point.

2. Early consensus. The early consensus is inferred by taking the copy-number-weighted

codon consensus of the codon-aligned HQCSs from the earliest time point. By including

gaps, this consensus sequence is already aligned with the rest of the multiple sequence align-

ment. This strategy is acceptable for primary infection studies from single founders with

very low early diversity, in which case the consensus sequence should closely match the

most recent common ancestor.

3. Reference coordinates. MAFFT is used to assign HXB2 [47] coordinates to the gapped

early consensus sequence, which are then transferred to the full multiple sequence

alignment.

4. Infer phylogeny. A maximum-likelihood phylogenetic tree is inferred with FastTree2 [48,

49] under the general time reversible model. The tree is rooted on the early consensus

sequence.

5. Ancestral sequence reconstruction. HyPhy is used to infer ancestral sequences at the

internal nodes of the phylogeny, using joint maximum likelihood reconstruction and the

generalised time-reversible model (GTR) [50].

6. Multidimensional scaling. A distance matrix is computed for all HCQC sequences using

the Tamura Nei 93 distance [51]. Metric multidimensional scaling [52] (implemented in

scikit-learn [53]) is used to find a two-dimensional embedding of the sequences that

approximates their pairwise distances. This embedding with this evolutionary distance is

meant to show relationships that cannot be represented in a phylogenetic tree, because of

recombination.

7. FUBAR. Site-specific selection rates are inferred using FUBAR [54], implemented in

HyPhy.

8. Position-specific changes. Entropy and Jensen-Shannon divergence are computed for each

position in each time point.

The results of these analyses are provided to the user in an interactive web application,

described next.
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Web application

The FLEA web app is built using modern web design principles. It consists of two parts: a Java-

script client-side app, written using the Ember.js [55] framework, and a server-side REST

(REpresentational State Transfer) service for serving JSON-formatted data. There are two

main benefits to using this decoupled pattern for scientific web applications. First, the client-

side code only needs to be downloaded once, at the start of the session. The data are requested

from the server and cached as needed. Once everything is loaded, the visualizations run

entirely in the browser with no delays for page loads. Second, the REST service may be reused

by other apps and third-party tools.

The web app presents the results of the FLEA analysis as a series of interactive visualiza-

tions. The report is organized into the following sections.

Multidimensional scaling. A two dimensional embedding of the HQCSs is visualized as a

bubble plot, showing changes in population structure over time, as shown in Fig 4. This visual-

ization has been especially useful for investigating populations with superinfection, or with

multiple founders, where aggressive recombination between vastly different env variants pre-

cludes the use of phylogenies.

Evolutionary trajectory. The evolutionary trajectory viewer plots evolutionary and phe-

notypic metrics for each time point and multiple regions in the amplicon, giving a high-level

Fig 4. Screenshot of the multidimensional scaling plot. The embedding in two dimensions preserves pairwise

evolutionary distances between HQCSs. Node area is proportional to copy number, and color corresponds to time

point. The increasing genetic diversity of the population is visible as time goes on.

https://doi.org/10.1371/journal.pcbi.1006498.g004
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overview of population dynamics over time. Fig 5 shows the plot for the entire gp160 region of

HIV Env, which is generated with the D3.js plotting library [56].

Sequences. The multiple sequence alignment of all the HQCS sequences is the foundation

for all subsequent analyses. It is displayed in the amino acid sequences viewer, which contains

a custom alignment browser and an interactive motif dynamics plot, as shown in Fig 6.

Protein structure. The protein structure viewer maps evolutionary metrics to an interac-

tive three-dimensional structure of the protein, customized from PDB ID 5FUU, a recently

resolved cryo-EM structure [57], and rendered using pv [58]. Missing residues are rendered

as spheres which are positioned by Bézier curve interpolation. dN/dS ratios, Jensen Shannon

divergence, and entropy may all be mapped to the protein structure, as shown in Fig 7. The

same metrics are also plotted in one dimension for each time point, as shown in Fig 8. The pro-

tein visualization interacts with the sequence viewer by showing alignment positions and

highlighting the residues in the selected sequence motif.

Trees. The tree viewer renders a tree browser with phylotree.js [59], as shown in

Fig 9. Leaf nodes are scaled to the copy number of their sequence. The tree zoom level, layout,

and coloring is interactively modifiable. Motifs selected in the sequence viewer are mapped to

the tree. Ancestral nodes are colored by motif, allowing inferred changes to be tracked through

the entire phylogeny.

Results

The entire pipeline was run on HIV env reads from donor P018, which are available from the

NCBI Sequence Read Archive under BioProject PRJNA320111, and were sequenced as part of

[36] on the RS-II instrument, using the older generation P5/C3 PacBio sequencing chemistry.

The full dataset contains 58,468 CCS reads. The reads are split across six time points, which

Fig 5. Screenshot of the evolutionary trajectory report. Four evolutionary metrics (dS divergence, dN divergence, total divergence, and total diversity) and two

phenotype metrics (length and possible N-linked glycosylation sites) are shown for gp160.

https://doi.org/10.1371/journal.pcbi.1006498.g005
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are coded as V03, V06, V12, V22, V33, and V37, where Vx corresponds to a visit x months

post infection. The number of reads per time point ranges from 7,530 in V33 to 11,806 in V06.

Results on simulated data

The true sequences and copy numbers are not known for the P018 data. In order to assess the

accuracy of our inferred sequence population, we used the HQCSs from a previous FLEA run

to simulate a gold standard dataset on which to assess the FLEA pipeline.

The simulation procedure starts with the HQCSs and copy numbers from the FLEA results

on P018, then augments them with additional mutated sequences to create a gold standard set

of templates. Mutated sequences were added because our clustering strategy may artificially

merge similar templates. For each template, noisy reads with a SMRT-style error profile were

sampled. Full details of the simulation process appear in the supporting information. These

simulated reads were sent through the FLEA pipeline, both with and without frame

correction.

The resulting QCS and HQCS sequences were compared to the ground truth using Earth

Mover’s Distance (EMD), using normalized copy numbers for the population weights and edit

distance for the distance matrix. The fully constrained EMD has units that can be directly

interpreted as the average change per nucleotide necessary to transform one sequence popula-

tion into another. We also calculate two variants of EMD for further insight into how well the

Fig 6. Screenshot of amino acid sequences viewer. Sequences are grouped by identity, with aggregate copy number and population percentage shown to the right. An

overview of the amplicon, optionally annotated with region names, provides fast access to different locations of the alignment. Selecting columns of the alignment

interactively updates the amino acid dynamics plot, showing the dynamics of the selected motif over time. In this case, the trajectory shows changes in the N332 glycan

supersite. Sites inferred by FUBAR to be undergoing positive selection are selectable.

https://doi.org/10.1371/journal.pcbi.1006498.g006

Full-Length Envelope Analyzer (FLEA): A tool for longitudinal analysis of viral amplicons

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006498 December 13, 2018 11 / 19

https://doi.org/10.1371/journal.pcbi.1006498.g006
https://doi.org/10.1371/journal.pcbi.1006498


Fig 7. Screenshots of the interactive three-dimensional Env structure, colored according to JS divergence (left) and dN/dS values (right). Positions imputed to be

undergoing more positive selection (dN/dS> 1) are darker red, and positions undergoing more purifying selection (dN/dS< 1) are darker blue. The right structure

also shows motif positions highlighted in the sequence viewer.

https://doi.org/10.1371/journal.pcbi.1006498.g007

Fig 8. Screenshot of dN/dS values mapped to protein positions and separated by time point.

https://doi.org/10.1371/journal.pcbi.1006498.g008
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inferred population B estimates the sequences in the ground truth population A. EMDFP

removes the constraint on A, allowing any amount of flow from A to B. It is a measure of false

positives because it grows when B contains extra sequences distant from any in A. Similarly,

EMDFN removes the constraint on B. It grows when B fails to recapitulate sequences in A, and

therefore is a measure of false negatives.

To see the effect of sequencing runs of different depths, the experiment was repeated for

300, 1,000, 3,000, and 10,000 reads per time point. The results, which appear in Table 1, show

the benefit of FLEA’s approach of reducing sequence errors via clustering and consensus. The

QCS sequences, although they have few false negatives (EMDFN = 0.0782) for n = 10, 000, are

dominated by false positives (EMDFP = 8.3). However, adding the consensus sub-pipeline vir-

tually eliminates false positives (EMDFP = 0.0336), at the cost of only a 2.4x increase in false

negatives, for a 8.6x improvement in EMD to 1.0549. The frame correction step further

improve both EMDFP and EMDFN because it turns false positives into true positives.

The full-length env sequencing protocol yields approximately 10,000 reads per run; the

P018 data averaged 9,744 reads per time point. Therefore, these results with n = 10, 000 suggest

that FLEA is capable of taking a full sequencing run of CCS reads from a diverse viral popula-

tion with an average of 9.56 errors per sequence and inferring HQCSs with an average of 1.01

errors per sequence, which corresponds to an average error rate of 0.038%. Moreover, these

error rates are mostly caused by low-abundance sequences in both the true population and the

Fig 9. Screenshot of the phylogenetic tree viewer. Leaf node size corresponds to sequence copy number. Node color corresponds

to time point. Since ancestral sequences have been inferred, ancestral nodes are colored according to the selected motif, which in

this case is the N332 glycan supersite.

https://doi.org/10.1371/journal.pcbi.1006498.g009
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inferred FLEA sequences. Fig 10 shows that FLEA perfectly recovers all sequences from all

time points that account for at least 1.6% of the population. An in-depth breakdown of the

false negatives appears in Table D and Fig. M in S1 Text.

Results on real data: Donor P018

FLEA was run directly on the P018 sequences, and the results are summarized here. The full

results of this run are available to view at http://flea.murrell.group/view/P018.

Fig 2 shows the number of sequences from the V03 time point that make it to each stage of

the quality and consensus pipelines. At three months post infection, the majority amino-acid

sequence variant is shared by 52.1% of the population, and the next most common variants

accounts for just 8.66%. This relative lack of diversity is consistent with early infection

Table 1. EMD metrics for various numbers of reads, averaged across all time points. “mean errors” gives the average number of errors in the reads, estimated from the

simulated Phred scores.

n mean errors consensus type EMD EMDFP EMDFN

300 9.63 QCS 12.3769 8.3418 2.8956

HQCS 7.1570 0.4050 5.4271

HQCS (corrected) 6.4752 0.3020 4.5533

1000 9.63 QCS 10.5433 8.3686 1.2551

HQCS 2.8279 0.0610 1.1453

HQCS (corrected) 2.7557 0.0666 1.0405

3000 9.6 QCS 9.5053 8.2837 0.3908

HQCS 1.6432 0.0146 0.4322

HQCS (corrected) 1.5168 0.0045 0.2925

10000 9.56 QCS 9.0734 8.3080 0.0782

HQCS 1.0549 0.0336 0.1735

HQCS (corrected) 1.0146 0.0073 0.1463

https://doi.org/10.1371/journal.pcbi.1006498.t001

Fig 10. Comparison of true sequence abundances versus copy numbers inferred by FLEA for each time point of the simulated P018 data. Each node represents

one sequence, with the area denoting its relative abundance in the population. The true population (top) is colored green. For each true sequence, the matching HQCS

sequences appears below it in blue. Red nodes denote false negatives and positives. The most common false negative for each time point is annotated with its

abundance.

https://doi.org/10.1371/journal.pcbi.1006498.g010
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dynamics. By 37 months post infection there is much more diversity: the most common vari-

ant accounts for only 3.96% of the population.

Donor P018 shows signs of potential N332 glycan specificity, as shown by the motif trajec-

tories in Fig 6. The glycan supersite, centered around N332 in V3, is a common target for

broadly-neutralizing antibodies [60] because these sites are often conserved, so mutations in

these regions are associated with escape [61]. A year into sampling (V12), mutations 328R and

330H dominate, and the majority of sequences also contain 339N from 22 months (V22)

onwards.

The error rates of PacBio CCS sequences are usefully predicted by the QV scores provided

by the instrument [36]. We show (Fig. G through Fig. L in S1 Text that the effective number of

bases that are corrected in each CCS read (as measured by the difference between that CCS

and the HQCS to which it contributes) was extremely well predicted (Spearman’s rho from

0.69 to 0.76) by the QV scores. This result is especially encouraging given that our pipeline

does not currently exploit these QV scores beyond the initial filtering step. Further, PacBio

sequences have higher indel than substitution rates, and this was recapitulated in the number

of corrected indels vs substitutions, although this ratio appeared to vary from one time point

to the next.

Availability and future directions

A public instance of FLEA is hosted at http://flea.datamonkey.org. The Python source code for

the FLEA pipeline can be found at https://github.com/veg/flea-pipeline. The client-side appli-

cation is available at https://github.com/veg/flea-web-app. A live demo of the P018 results can

be found at http://flea.murrell.group/view/P018, with an explanatory page at: http://murrell.

group/FLEAexplained/.

The FLEA pipeline analyzes longitudinal full-length env sequences and provides visualiza-

tions of the results. Using simulations, we show that FLEA is capable of inferring accurate

HIV env consensus sequences and population frequencies. Despite each CCS read containing

an average of ten errors, our approach distinguishes variants that differ by as little as one base

from an amplicon with high indel variation. It uses those high-quality consensus sequences to

generate a codon-aware multiple sequence alignment of all time points, estimate ancestral

sequences, infer the phylogenetic tree, and perform many other population-level analyses with

high accuracy. These results are presented in a visualization suite that is highly general and

applicable to many related sequencing problem.

While we provide a web application that should suffice for sequencing most standard Env

samples from HIV-1 group M, we recommend that those who frequently engage in such

sequencing, or who wish to sequence less straightforward samples (eg. SIV or SHIV), install

FLEA locally. This provides a range of customization and tuning options, such as the filtering

parameters and the set of reference sequences.

While our USEARCH-based clustering and consensus strategy for denoising long PacBio

amplicons performs well when error rates are< 1%, there is a clear need for more sophisti-

cated long-read de-noising algorithms that exploit the additional depth of lower quality reads

that we currently discard. This will be especially beneficial for longer PacBio amplicons,

because the CCS read quality distribution degrades with length. For example, while we can

currently obtain around 15,000 CCS reads< 1% from a P6/C4 RS-II run of our 2.6kb env
amplicon; this read count drops to * 1, 000 for full-length 9kb HIV genomes. Additionally,

FLEA does sometimes erroneously collapse sequences from very similar templates, and more

sophisticated approaches to amplicon denoising could likely improve upon this.
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Both the pipeline and client-side visualizations are under development, with many

improvements planned, including a novel clustering algorithm that reduces false positives and

a novel consensus algorithm that uses quality scores and performs frame correction. We plan

to integrate epitope prediction into the FLEA pipeline and add appropriate visualizations for

the case when users have IC50 values available for their sequences. Finally, FLEA will be

expanded to support other amplicons.

Supporting information

S1 Text.

(PDF)

Author Contributions

Conceptualization: Kemal Eren, Sergei L. Kosakovsky Pond, Ben Murrell.

Data curation: Kemal Eren, Melissa Laird Smith, Ben Murrell.

Funding acquisition: Sergei L. Kosakovsky Pond, Ben Murrell.

Investigation: Kemal Eren, Ben Murrell.

Methodology: Kemal Eren, Sergei L. Kosakovsky Pond, Ben Murrell.

Project administration: Ben Murrell.

Software: Kemal Eren, Steven Weaver, Robert Ketteringham, Morné Valentyn, Venkatesh
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