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Abstract

The presence of Alzheimer’s disease (AD)-related neuropathology among cognitively normal 

individuals has been well documented. It has been proposed that these individuals may represent a 

pre-clinical AD population. Previous studies have demonstrated a negative association between the 

presence of both amyloid-β (Aβ) plaques and neurofibrillary tangles with ante-mortem cognitive 

performance, a relationship which is likely influenced by a number of factors including age and 

APOE ε4 carrier status. The present study determined whether the presence of neuritic plaques 

(NPs) and diffuse plaques (DPs) are associated with performance in a number of cognitive 

domains after accounting for APOE ε4 carrier status and neurofibrillary tangle presence in a 

cohort of 123 older participants from the Rush Religious Order Study who died with a premortem 

clinical diagnosis of no cognitive impairment (NCI). After adjusting for age at death, education, 

gender, Braak stage, and APOE ε4 carrier status, the presence of NPs was associated with lower 

performance in the cognitive domains of Global Cognition (p = 0.002), Episodic Memory (p = 

0.03), Semantic Memory (p = 0.009), and Visuospatial performance (p = 0.006), while DPs 

showed no association with any cognitive domain examined. These results suggest that decreases 

in cognition in elderly NCI individuals are associated with an increase in NPs and not DPs when 

age at death, education, gender, APOE ε4 status, and Braak stage are taken into consideration.
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INTRODUCTION

The presence of Alzheimer’s disease (AD)-related neuropathology among cognitively 

normal individuals has been well documented [1–7]. These individuals may represent a pre-

clinical disease stage based on the presence of AD neuropathology at autopsy despite a lack 
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of clinically significant cognitive impairment premortem [8, 9]. However, studies have 

demonstrated a negative association between the presence of both amyloid-β (Aβ) plaques 

and neurofibrillary tangles (NFTs) with ante-mortem cognitive performance [7, 10–14], 

suggesting that individuals in the pre-clinical stages of AD are already demonstrating 

disease-related cognitive decline, despite the fact that their performance on cognitive tests is 

still within normal limits at the time of the assessment. The relationship between AD 

pathology and cognition is likely a multifactorial process. Factors such as APOE ε4 carrier 

status, age-related brain changes, gender, and education may have mediating or direct effects 

on AD pathology and cognition [4, 15, 16].

APOE ε4 carrier status has been reported to have differential effects on the presence of both 

tau and amyloid plaque pathology [17]. For example, the presence of tau pathology among 

ε4 carriers was associated with greater amyloid load, although ε4 and ε2 alleles were not 

related with tau pathology in the absence of Aβ pathology [17]. Others have reported that 

APOE genotype effects the distribution of cortical plaque and tangle pathology across brain 

regions [18] and that age and APOE-related tangle associations are mediated by the presence 

of neuritic plaques (NPs) [15].

Several studies suggest that cognition is impacted primarily by NPs and not diffuse plaques 

(DPs) [11, 19, 20]. Previously, our group found that increases in hippocampal NPs 

correlated with decreased episodic memory and global cognitive performance and that 

increases in the combined hippocampal/entorhinal cortex Aβ load was associated with 

greater NFT pathology [21]. However, this investigation did not find an association between 

cognition and NFT pathology [21]. Although research using amyloid imaging found that 

21% of cognitively normal individuals displayed significant cortical amyloid deposition, 

there were no significant differences in cognitive performance between those classified as 

Aβ-positive and Aβ-negative [22]. By contrast, a recent meta-analysis concluded that there 

is a small, but significant negative association between increased Aβ deposition and 

cognitive performance among cognitively normal individuals [14]. Since Aβ imaging tracers 

are not specific to DPs or NPs [23], it is possible that the in vivo associations between Aβ 
deposition and cognition are confounded by the presence of DPs. NPs are thought to have a 

stronger association with cognition [11, 19, 20, 24].

The aim of the present study was to determine whether the presence of NPs and DPs are 

associated with performance in a number of cognitive domains after accounting for age at 

death, education, gender, APOE ε4 carrier status and NFTs in a cohort of older people who 

came to autopsy with an ante-mortem clinical diagnosis of no cognitive impairment (NCI).

METHODS

Data came from 123 older deceased and autopsied persons with a premortem clinical 

diagnosis of NCI, no coexisting clinical or neurological condition judged to contribute to 

cognitive impairment at their last clinical evaluation [25, 26], and who agreed to annual 

clinical evaluations and signed an informed consent and an Anatomic Gift Act donating their 

brains at time of death. Data from these subjects have been used in numerous clinical 

pathological studies supported by our ongoing NIA program project grant entitled the 
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“Neurobiology of Mild Cognitive Impairment in the Elderly” (P01AG14449). At the time of 

these studies, individuals were chosen from all available Rush Religious Orders Study 

(RROS) cases that came to autopsy during a rolling admission [2]. Neuropathological 

procedures used to determine these conditions have been reported [2, 25, 26]. In addition, 

those taking anticholinesterases or medication for depression were also excluded. The 

Human Investigation Committee of Rush University Medical Center approved the study.

Clinical evaluation

Participants underwent a uniform, structured, clinical evaluation, self-reported medical 

history was obtained by a team led by a neurologist, and cognitive function was determined 

by a trained neuropsychological test technician [2, 25]. Medications used by the subjects 

within the previous fourteen days of the examination were reviewed and classified. After 

review of all clinical data and examination of the participant, a clinical diagnoses was made 

by a board certified neurologist or geriatrician with expertise in the evaluation of elderly 

persons with dementia. Clinical diagnostic classification of NCI was performed as described 

previously [2, 25]. A neurologist reviewed the medical history, medication use, neurologic 

examination, results of cognitive performance testing, and the neuropsychologist’s opinion 

of cognitive impairment and dementia. Each participant was evaluated in their home, 

emphasizing findings deemed clinically relevant.

Tissue preparation and neuropathological diagnosis

Brain accruement and processing was described previously [25, 27]. Briefly, each brain was 

cut into 1 cm thick coronal slabs using a brain slice apparatus and hemisected. One 

hemisphere was immersion fixed in 4% paraformaldehyde (24–72 h) and cryoprotected 

(10% glycerol and 2% dimethyl sulfoxide in phosphate buffer solution) until processing for 

immunohistochemistry.

Diagnostic blocks (mid-frontal, superior temporal, entorhinal cortex, hippocampus, inferior 

parietal cortex, basal ganglia, thalamus, and substantia nigra) from the opposite hemisphere 

were paraffin embedded and cut at 6 µm. Examination for cerebral infarctions was 

conducted as described previously [28]. Bielschowsky silver stain was used to visualize NPs, 

DPs, and NFTs. Sections were also immunostained for Aβ using antibody M0872 (1 : 100; 

Dako, CA) raised against Aβ1−40 and Aβ1−42. Paired helical filament tau (AT8; 1 : 800, 

Covance) immunohistochemistry [24] was also used to label NFTs. Neuropathological 

diagnoses were determined according to CERAD [29] and Braak staging [30] as 

recommended by the NIA-Reagan criteria [31]. Exclusion criteria included AD, Lewy body 

disease, mixed dementias, Parkinson’s disease, frontotemporal dementia, argyrophilic grain 

disease, vascular dementia, hippocampal sclerosis, and stroke.

Pathologic quantitation

A board-certified neuropathologist or trained technician, blinded to all clinical data, counted 

total number of NPs, DPs, and NFTs revealed by Bielschowsky silver stain in one square 

mm area (100× magnification) per cortical region as reported previously [27, 32]. Since the 

distribution of plaques and tangles was not normally distributed, standardized plaque and 

tangle counts from each area were converted to standard scores by dividing the standard 
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deviation (SD) of mean raw counts per marker and region from the entire deceased cohort. 

Scaled scores for NPs and DPs derived from the mid-frontal, mid-temporal, inferior parietal, 

entorhinal, and hippocampal CA1 regions were summed to develop a summary count score 

of NPs and DPs for each subject.

Cognitive composite scores

Composite scores are based on the results of 17 individual cognitive tests divided into five 

domains of cognition [2, 27, 33, 34]. Mini-Mental State Examination (MMSE) described the 

cohort but not used in the composite scores. Briefly, episodic memory was evaluated with 

tests including immediate and delayed recall of story A from Logical Memory and of the 

East Boston Story, and Word List Memory, Recall, and Recognition from the Consortium to 

Establish a Registry for AD (CERAD). Semantic memory was assessed with three tests 

including a 15-item version of the Boston Naming Test, Verbal Fluency, which involves 

naming examples of semantic categories (i.e., animals, vegetables) in 1-min trials; and a 

reading test that involves reading single words aloud and a 10-item reading test. Scores on 

the three tests are converted to a standard scale and averaged to get the composite score. 

Working memory was assessed using Digit Span Forward and Backward and Digit Ordering. 

Two tests of perceptual speed included Symbol Digit Modalities Test, and Number 

Comparison. Finally, two tests of visuospatial ability included a 15-item version of 

Judgment of Line Orientation and a 9-item version of Standard Progressive Matrices [34]. 

For each test, raw scores were converted into z-scores based on the mean and standard 

deviation of the sample. The z-scores from the individual tests were averaged to create 

individual domain composite scores. The Global Composite Score (GCS) is an average of 

the 17 individual test z-scores.

Statistical analysis

The association between the presence of DPs and NPs with cognition was assessed using a 

series of linear regression models. The first series of models used the presence (>0) or 

absence (= 0) of DPs as the predictor with each of the cognitive domain scores as outcome 

variables while adjusting for Braak stage, APOE ε4 carrier status, age at death, education, 

and gender. The second series of models used the presence or absence of NPs as the 

predictor with each of the cognitive domain scores as outcome variables while adjusting for 

Braak stage, APOE ε4 carrier status, age at death, education, and gender. A third series of 

models used the presence or absence of both DPs and NPs as the predictor with each 

cognitive domain score as outcome variables while adjusting for Braak stage, APOE ε4 

carrier status, age at death, education, and gender. Cohen’s d was used to estimate the effect 

size for group differences (Small = 0.00–0.49, Medium = 0.50–0.79, Large = ≥0.80). 

Spearman rank correlation was used to assess the relationship between Braak stage and total 

plaque scores. The Wilcoxon sign-rank test was used to determine whether DP and NP 

scores were significantly different within each Braak stage. Logistic regression was used to 

examine the association of Braak stage with the presence or absence of DPs and NPs. 

Separate analyses for DPs and NPs were run which adjusted for age, education, gender, 

APOE ε4 status, and the interaction of Braak stage and APOE ε4 status. When necessary, 

the false discovery rate was used to correct for multiple comparisons in order to maintain a 

significance level of ≤0.05.
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RESULTS

Demographic and descriptive statistics

The cohort was comprised of 63 males and 60 females with an average age at death of 83.90 

± 6.12 years and a mean of 18.29 ± 3.59 years of education. The average duration between 

last clinical assessment and autopsy was 0.73 ± 0.79 years and average postmortem interval 

was 7.59 ± 7.40 h. The average MMSE score was 28.29 ± 1.37. Twenty-one individals were 

APOE ε4 carriers and 101 were non-ε4 carriers (APOE was not available for one 

individual). Among the non-carriers, 16 exhibited APOE ε2/3 and 85 were ε3/3. Of the 21 

ε4 carriers, only one was APOE ε4/4 homozygous and none were APOE ε2/4. Of the cases 

examined meeting NIA-Reagan criteria, 56% (95% Confidence Interval (CI): 47%, 65%) 

were categorized with a low likelihood of AD and 40% (95% CI: 31%, 49%) with an 

intermediate likelihood of AD. CERAD criteria revealed 41% as no AD (95% CI: 32%, 

50%), 13% as possible (95% CI: 8%, 20%), 36% as probable (95% CI: 28%, 45%), and 11% 

as definite AD: (95% CI: 6%, 18%).

Fifty-seven percent (n = 72) of the sample displayed both DPs and NPs while 32% (n = 39) 

had no plaque pathology. Five individuals had only NPs and seven only had DPs. 

Demographic, cognitive, and neuropathological results for those with and without DPs and 

NPs are shown in Table 1. For both DP and NP groups, individuals who had plaques were 

significantly older than those lacking plaques at autopsy (DPs and NPs, p < 0.001). No 

significant differences were noted for education, postmortem interval, brain weight, time 

between last clinical assessment and death, and MMSE for the presence or absence of either 

DPs or NPs. Females had a greater frequency of NP presence compared to males (p = 0.02), 

but not for the presence of DPs (p = 0.09). Further investigation of the differences in the 

presence or absence of NPs between gender found that females were more than twice as 

likely to display NPs compared to males [OR = 2.50, (1.17, 5.33), p = 0.02].

Diffuse and neuritic plaque association with cognition

Associations between the cognitive domains and the presence or absence of DPs and NPs 

are shown in Table 2. GCS (p = 0.001), Episodic Memory (p = 0.03), Semantic Memory (p = 

0.008), and Visuospatial (p = 0.004) domains were significantly lower among NCI 

individuals displaying NPs (Fig. 1A). These associations remained significant after adjusting 

for multiple comparisons. The effect size for the GCS was larger than that seen for the 

Episodic Memory, Semantic Memory, and Visuospatial effect sizes. None of the cognitive 

domains examined showed significant differences between individuals with and without DPs 

(Fig. 1B). Group differences for the combined presence of NPs and DPs for the cognitive 

domains examined were nearly identical to the analysis using only NPs (see Table 2).

Diffuse and neuritic plaque association with Braak stage

Total NP score was moderately correlated with Braak stage (rho = 0.52, p < 0.001; Fig. 2A) 

while total DP score showed a weak correlation (rho = 0.35, p < 0.001) with Braak stage 

(Fig. 2B. Total DP score was significantly greater than total NP score in Braak stages I (p = 

0.02), II (p = 0.02), and III (p = 0.04) while there were no significant plaque score 

differences in the 0, IV, and V Braak stages (Fig. 3). Braak stage was not associated with the 
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presence of DPs [OR = 1.22, (0.82, 1.83), p = 0.33] after adjusting for age at death, 

education, gender, APOE ε4 status, and the interaction of Braak stage and APOE ε4 status. 

However, higher Braak stage was significantly associated with the presence of NPs [OR = 

1.84, (1.19, 2.83), p = 0.006] after adjusting for age at death, education, gender, APOE ε4 

status, and the interaction of Braak stage and APOE ε4 genotype. In each of these models 

older age at death was significantly associated with an increased likelihood of plaque type 

(DP: [OR = 1.17, (1.07, 1.27), p < 0.001]; NP: [OR = 1.10, (1.01, 1.19), p = 0.03]).

Follow-up analysis of Braak V NCI cases

For the five NCI cases classified in Braak stage V, we carried out an additional analysis to 

compare their NP and DP pathology with that of AD cases that were Braak stage V. The five 

NCI cases were matched on age, gender, education, and APOE genotype to AD Braak V 

cases that came from the same study cohort [2]. NP, DP, and NFT scores for each of the 

cortical areas examined are shown in Table 3. After adjusting for multiple comparisons no 

significant differences in NP, DP, or NFT pathology were noted between the Braak V NCI 

subjects and the Braak V AD cases.

DISCUSSION

In a cohort of cognitively non-impaired aged individuals, we found that subjects who 

displayed NPs had significantly lower cognitive test performance across several domains of 

cognition while DPs were not associated with differences in cognition. This finding is 

supported by a recent study showing that cognitively normal individuals who progressed to 

MCI or AD had significantly lower cognitive test scores across several domains when 

compared to individuals who remained cognitively normal [35]. Others have also found 

strong associations between the presence of NPs and decreased performance in several 

cognitive domains [11]. We also found that NPs had a stronger correlation with Braak stage 

than DPs and that the latter plaque type was more prevalent in Braak stages I, II, and III even 

when adjusted for age, APOE ε4 carrier status, and Braak stage, all of which are factors 

related to Aβ deposition [15, 17, 18, 36]. The present significant association between NPs 

and cognition even after adjusting for APOE ε4 carrier status and Braak stage support 

previous findings [11, 19, 20, 24]. The significant differences between DPs and NPs within 

Braak stages is novel and shows that DPs are more prevalent than NPs in early Braak stages 

(I, II, III). In the present investigation, however, NPs tended to increase and were nearly 

equal to DPs in later Braak stages (IV, V). Others have reported that neuritic pathology but 

not diffuse amyloid deposits significantly affect cognition in AD supporting a difference 

between NP and DP deposition on cognitive ability [37]. It should be noted that DPs are a 

common, non-specific lesion among cognitively normal older adults that are not associated 

with APOE ε4 genotype [38]. Moreover, the observation of a significant increase in NPs, but 

not NFTs, in patients with mild AD compared with normal control cases further suggests 

that NPs play a key role in the earliest onset of AD symptoms [39]. Although others report 

that amyloid load was not related to cognitive status [7, 26], these studies did not 

differentiate plaque types making a direct comparison with other findings difficult.
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The analyses using Braak stage as a predictor of the presence or absence of NPs and DPs 

provide additional evidence supporting the observation that NFT pathology is associated 

with NPs and not DPs. Although it has been suggested that NPs mediate the association 

between APOE status and NFT pathology, other age-related non-amyloid process may also 

play a role in NFT pathology [15]. In this regard, NPs display extracellular Aβ, tau [24], and 

cholinergic, noradrenergic, and other types of neurites [40–44] suggesting that the 

association between NPs and cognition is likely due to an interaction of multiple axonal 

defects [24, 36, 41]. In addition, complement receptor 1 (CR1) has been shown to be 

significantly associated with decline in several cognitive domains after controlling for 

several factors, including APOE genotype [45]. Although this association is thought to be 

mediated by both DPs and NPs, NFTs were not associated with CR1 and cognitive decline 

suggesting that immunological mechanisms may also play a significant role in the 

relationship between cognition and plaque pathology [45].

Several studies have noted that increased Aβ deposition is associated with APOE ε4 carrier 

status in pre-clinical AD [46–49], which supports the rationale for ongoing AD prevention 

trials using anti-Aβ agents as disease-modifiers [50, 51]. Although, the hypothesis that 

increased deposition of Aβ1‒42 precedes NFT accumulation [52] has also been used to 

support the rationale for anti-Aβ therapies, others have suggested that these therapies may 

not be effective once tau-related neurodegeneration has been initiated [53]. Although tau 

hyperphosphorylation is thought to be a downstream effect of Aβ deposition [54], it is 

currently being investigated as a therapeutic target [53, 55]. As the conduct of AD clinical 

trials has shifted to a paradigm of prevention in asymptomatic individuals at risk for 

developing AD [56], the relationship between pathological changes and subsequent 

cognitive decline has taken on greater importance. The observation in the present study of a 

significant inverse association between cognition and NPs suggests that the desired clinical 

benefits of anti-Aβ therapies may be achieved through increased binding specificity to NPs. 

However, this assumes that a therapy initiated early in the disease process would prevent the 

onset of tau-related degenerative processes induced by Aβ deposition. Bilousova et al. [57] 

found that oligomeric Aβ deposition within synaptic terminals within the parietal cortex 

drives the deposition of phosphorylated tau and is associated with the onset of AD, 

suggesting that therapeutic agents targeting synaptic Aβ oligomers early in the disease 

process may slow disease onset and trajectory. Moreover, this study also revealed high levels 

of Aβ oligomers in early AD compared to non-demented cases with histopathologic signs of 

AD-related pathology suggesting that dementia arises when Aβ oligomers within synaptic 

terminals reach a certain level [58]. In the present study, we found that NPs affected 

cognitive domain performance more than DPs and that NPs were related to higher Braak 

scores, suggesting that the development of NPs may coincide with higher levels of Aβ 
oligomers and tau phosphorylation at the synapse even before frank dementia occurs.

Recently, we reported that medial temporal lobe NFT pathology does not correlate with 

cognitive test performance in older persons without cognitive decline [21], suggesting that 

tangle pathology alone is not necessary or sufficient to induce impairments in cognition. In 

this regard, neuropathological observations have shown that amyloid pathology begins in the 

frontal cortex and spreads caudally within the cortex [30], whereas tau pathology is initiated 

in the medial temporal lobe [30], suggesting a discordance between the location of amyloid 
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and its action as a putative initiator of NFT tau pathology. However, it is possible that 

oligomeric amyloid initiates tau signaling via either an antero- or retrograde transneuronal 

seeding process similar to the regional propagation of tau in human disease and animal 

models [58, 59] as Aβ first appears in neocortical regions that have extensive reciprocal 

connections with the medial temporal lobe [60, 61]. Levels of dimeric Aβ derived from AD 

cortex are sufficient for the induction of tau phosphorylation and dystrophic axonal profiles 

[38]. Together these findings lend support to the concept of a prion-mediated mechanism of 

AD disease pathogenesis [62]. It remains to be determined whether synaptic Aβ oligomers 

expression is increased and if this change would be associated with cognitive performance in 

the current cohort of cases.

Amyloid pathology is not always a pathogenic trigger for tau pathology. For example, 

primary age-related tauopathy (PART) is a neuropathological entity that can be distinguished 

from AD based on minimal, or complete absence of Aβ burden in individuals with 

significant NFT pathology [63]. However, others have suggested that PART represents a 

portion of the AD spectrum and is not distinguishable from AD [64]. Cases meeting 

neuropathologic criteria for PART display more advanced age at death and more severe 

forms of PART (higher Braak stage) display significantly lower cognitive scores [65]. PART 

is one example among many non-AD tauopathies without amyloid deposition suggesting 

that NFT pathology is not consistently a downstream effect of Aβ deposition in all 

tauopathies [66]. Tau pathology can be attributed to other factors not related to AD such as 

central nervous system infections, metabolic dysfunction, and physical injury (e.g., 

concussion) [67].

Another key factor that may play a role in the lack of frank cognitive impairment in the face 

of amyloid deposition in our population is the concept of brain reserve or cognitive reserve 

[18, 63]. Brain reserve suggests that some older individuals have a greater quantity of either 

neurons or synapses at disease onset allowing the continued performance of cognitive tasks 

[18, 63]. On the other hand, cognitive reserve involves the recruitment of other brain areas 

not severely affected by the disease process to aid in task performance [68]. Education level 

is a factor that may affect brain/cognitive reserve and the onset of dementia [69, 70]. In fact, 

Roe and colleagues [16] found a significant interaction between education level and NP 

densities for risk of dementia. When their sample was divided into three education levels (0–

12 years, 13–16 years, ≥17 years), individuals with high levels of education and high levels 

of NP density (Frequent) were more likely to have dementia compared to those with the 

same education level at lower levels of NP density (Moderate and Sparse). From a clinical 

perspective, higher levels of education are also associated with better performance in a 

number of cognitive domains [71] suggesting that the protective effect that education confers 

upon the brain can be observed psychometrically. However, our sample had a relatively high 

education level regardless of the presence of DPs or NPs. Perhaps cases with a lower level of 

education and amyloid would have shown a greater degree of cognitive impairment. Our 

analysis of NCI cases but with high NFT pathology (Braak stage V) showed that these 

individuals displayed NPs, DPs, and NFT pathology at levels comparable to clinical AD 

subjects. This finding suggests that brain/cognitive reserve may play a role early in delaying 

the onset of AD up to a point but it is not able to offset cognitive impairment in patients with 

more advanced pathology suggesting the involvement of other factors.
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The underlying mechanisms and pathways that drive the formation AD pathology are not 

completely understood and the likelihood of interactions adds a significant layer of 

complexity when trying to understand how these factors affect cognition. Whether Aβ 
deposition marks the onset of clinical AD or whether it is a by-product of other 

neurodegenerative processes has been debated in the field [72]. A number of proposed 

pathways that may play a role in the deposition of Aβ include inflammation [73], insulin 

resistance [74], and vascular dysfunction [75]. In fact, vascular disease strongly correlates 

with the onset of AD [76, 77]. The cases examined here were screened for vascular defects 

that would have effected cognition and not included in this study.

There are some limitations to this study. Subjects were from a community-based group of 

highly educated retired clergy who had excellent health care and nutrition and were used in 

multiple clinical pathological [78] and epidemiological investigations [33]. Individuals who 

volunteer may introduce bias by decreasing pathology but this is partially mitigated by high 

follow-up and autopsy rates [28]. None of the cases evaluated were Braak stage VI, which is 

highly associated with AD-dementia [30]. Although subtle changes in neuropsychological 

testing may not detect cognitive changes in non-demented people [79], our cognitive tests 

are standard in the dementia field [25]. Another limitation is the relatively small number of 

APOE ε4 carriers, particularly homozygous individuals and the impact this may have on the 

associations we reported. Future studies with a greater balance of APOE ε4 carriers and 

non-carriers will extend the results reported here. Strengths include uniform premortem 

clinical and postmortem pathological evaluation and that the final pathologic classification 

was performed without knowledge of clinical evaluation.

The results of this study found that alteration in cognitive performance seen in our NCI 

subjects is likely attributed to increases in NPs and not DPs when age, education, APOE ε4 

status, and Braak stage are taken into consideration. With regard to NFT pathology, NPs 

show a stronger association with Braak stage than DPs. These results suggest that NPs 

confer a negative impact on both NFT pathology and cognition relative to DPs and may 

represent a more specific therapeutic target for therapies in preclinical AD.
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Fig. 1. 
Cognitive domain differences for neuritic (A) and diffuse (B) plaques. ∗p ≤ 0.05.
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Fig. 2. 
Correlation of Braak stage with total neuritic (A) and total diffuse (B) plaque scores.
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Fig. 3. 
Total diffuse and neuritic plaque scores by Braak stage. ∗p ≤ 0.05 for neuritic versus diffuse 

in each Braak stage.
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Table 3

NCI Braak V cases compared with age-, gender-, education-, and APOE genotype-matched AD Braak V cases

NCI (n = 5) AD (n = 5) p-value

Midfrontal Cortex NPs 8 [5–18] 32 [14–48] 0.03

Midtemporal Cortex NPs 15 [5–29] 28 [8–93] 0.17

Inferior Parietal Cortex NPs 8 [4–19] 23 [8–57] 0.09

Entorhinal Cortex NPs 8 [1–20] 15 [3–43] 0.53

Hippocampal CA1 NPs 11 [4–23] 12 [6–37] 0.75

Midfrontal Cortex DPs 11 [5–35] 22 [6–68] 0.17

Midtemporal Cortex DPs 20 [6–21] 31 [2–48] 0.35

Inferior Parietal Cortex DPs 8 [4–16] 21 [6–61] 0.17

Entorhinal Cortex DPs 13 [4–24] 3 [0–17] 0.11

Hippocampal CA1 DPs 1 [0–50] 6 [0–11] 0.46

Midfrontal Cortex NFTs 0 [0–1] 1 [0–10] 0.42

Midtemporal Cortex NFTs 5 [4–43] 9 [6–18] 0.46

Inferior Parietal Cortex NFTs 1 [0–2] 4 [0–20] 0.16

Entorhinal Cortex NFTs 32 [3–66] 36 [18–53] 0.92

Hippocampal CA1 NFTs 20 [0–29] 30 [7–47] 0.14

NPs, neuritic plaques; DPs, diffuse plaques; NFTs, neurofibrillary tangles; median [range]; group differences were analyzed using the Mann-
Whitney test; significance level is p ≤ 0.005 after correcting for multiple comparisons.
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