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Abstract

Genetic variants identified in genome-wide association studies of educational attainment have 

been linked with a range of positive life course development outcomes. However, it remains 

unclear whether school environments may moderate these genetic associations. We analyze data 

from two biosocial surveys that contain both genetic data and follow students from secondary 

school through mid- to late life. We test if the magnitudes of the associations with educational and 

occupational attainments varied across the secondary schools that participants attended or with 

characteristics of those schools. Although we find little evidence that genetic associations with 

educational and occupational attainment varied across schools or with school characteristics, 

genetic associations with any postsecondary education and college completion were moderated by 

school-level socioeconomic status. Along similar lines, we observe substantial between-school 

variation in the average level of educational attainment students achieved for a fixed genotype. 

These findings emphasize the importance of social context in the interpretation of genetic 

associations. Specifically, our results suggest that though existing measures of individual genetic 

endowment have a linear relationship with years of schooling that is relatively consistent across 

school environments, school context is crucial in connecting an individual’s genotype to his or her 

likelihood of crossing meaningful educational thresholds.
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EDUCATIONAL outcomes are “heritable”; they tend to be more similar among more 

genetically similar individuals (for example, siblings as compared to cousins; Branigan, 

McCallum, and Freese 2013; Polderman et al. 2015). Recently, genome-wide association 

study (GWAS) designs have been used to identify molecular genetic correlates of 

educational attainment (Lee et al. forthcoming; Okbay et al. 2016; Rietveld et al. 2013). 

GWAS results can then be used as a scoring algorithm to construct a polygenic score (PGS), 

a summary measurement quantifying genome-wide genetic influence on some target 

phenotype (Dudbridge 2013). Critically, unlike heritability, a PGS is an individual-level 

measurement that can be calculated for a person from his or her DNA, allowing social 

scientists to integrate genetics into standard biosocial models of behavior. A polygenic score 

constructed based on results from a recent educational attainment GWAS explains more than 

10 percent of observed variation in educational attainment (Lee et al. forthcoming) and has 

been replicated in multiple samples spanning several continents (Belsky et al. 2016; Okbay 

et al. 2016; Rietveld et al. 2013, 2014). Further, within-sibling analyses, which use family 

fixed effects to isolate the effects of genetic differences from the effects of environmental 

differences, suggest that the educational attainment PGS does so largely by indexing genetic 

differences that play causal roles (Belsky et al. 2018; Domingue et al. 2015).

Although there is substantial evidence linking the educational attainment PGS directly to 

educational attainment, we are only beginning to understand how this relationship is situated 

within broader educational attainment processes. Educational attainments vary substantially 

across schools, and there is evidence that some of this variation reflects the causal effects of 

school characteristics on students’ educational outcomes (Chetty et al. 2011; Chetty, 

Friedman, and Rockoff 2011). Yet, we know little about the degree to which genetic 

influences on educational and occupational attainment may be moderated by such 

environmental forces. For example, some analyses of heritability suggest that genetic 

differences may be more influential in higher-socioeconomic status (SES) environments 

(Tucker-Drob and Bates 2015; Turkheimer et al. 2003). However, not all evidence suggests 

the same conclusion (Figlio et al. 2017). Given the heterogeneity across school environments 

in the United States, understanding the degree to which there is interplay between one’s 

educational environment and genotype will inform our interpretation of predictions using the 

educational attainment PGS.

Educational attainment is a critically important social outcome, but it is an incomplete 

characterization of social position (Mood 2017); other life course attainments are also 

relevant. In particular, occupation is key to understanding processes of social attainment 

(Jonsson et al. 2009). Although the GWAS results we study here were trained to predict 

educational attainment, they also predict a broader set of socioeconomic attainments net of 

educational attainment, including occupational attainment (Belsky et al. 2016; Papageorge 

and Thom 2016). Thus, we additionally consider heterogeneity in the association between 

individual genotype and educational environment when predicting occupational attainment. 
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We also consider the moderation of the relationship between an individual’s polygenic score 

and his or her probability of crossing specific educational thresholds (i.e., credentialing). We 

specifically focus on enrollment in and completion of postsecondary education.

To explore how the relationship between genotype and educational attainment may vary 

across contexts, we use data from two biosocial longitudinal studies that followed students 

from secondary school through mid- to late life. We test for school-level moderation of the 

association between the educational attainment PGS and both educational and occupational 

attainments. To contextualize findings, we conduct parallel analyses of two established 

predictors of educational attainment: family socioeconomic status and cognitive ability. Our 

analyses suggest that, although the educational attainment PGS is a robust predictor of 

individual outcomes, school-level environmental moderation of the educational attainment 

PGS’s association with educational and occupational attainments is likely to be small. 

Nonetheless, the probability that a person with a given value regarding his or her educational 

attainment PGS will make important educational transitions (to postsecondary education and 

subsequent college completion) is moderated by school-level factors, such as school 

socioeconomic status. However, this moderation is driven by changes in the expected 

outcome for a given PGS across social contexts (i.e., horizontal shifts in the distribution) and 

is not due to a change in the linear association between the PGS and outcome across context. 

These findings replicate across multiple data sets and methodologies.

School-Level Moderation of Genetic Effects

A gene-environment interaction (GxE) is the existence of heterogeneous genetic effects 

across different environmental conditions. Knowledge of GxE is important for interpreting 

genetic effects; when GxE exists, efforts to explore how genotype influences phenotype 

must be contextualized. As the intersection of individual-level differences and group-level 

social structures and processes, questions regarding GxE attract substantial interest from 

social scientists studying the genetic influences of social outcomes.

In the following section, we discuss our framework for studying GxE. Before doing so, we 

discuss two methodological challenges relevant to such a pursuit. One challenge that has 

historically plagued the GxE literature is a lack of statistical power (Culverhouse et al. 2017; 

Duncan and Keller 2011). Our study uses polygenic score methods to combine information 

from education-linked genetic loci across the genome, yielding a relatively strong genetic 

predictor. A second challenge is the potential endogeneity of environmental exposures to 

genotypes (Fletcher and Conley 2013). Such endogeneity may arise from gene-environment 

correlations (rGEs), in which environmental exposures are associated with one’s genotype 

(Kendler and Baker 2007; Krapohl et al. 2017; Plomin and Bergeman 1991). As a 

consequence, we limit our inquiry to the investigation of the potential moderation of the 

statistical association between genotype and attainment outcomes, leaving any causal claims 

for future research.

Our Framework for Examining GxE

Previous GxE work has a poor replication record (Duncan and Keller 2011; Young-Wolff, 

Enoch, and Prescott 2011), which has led to skepticism about this line of inquiry (Eaves 
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2006; Munafò and Flint 2009). Further, as the focal estimand is typically an interaction term, 

results from GxE studies are known to be sensitive to model specification decisions (Keller 

2014; Tchetgen and Kraft 2011). Given these previous problems, we attempt to be precise 

about the specific data-generating mechanisms we envision giving rise to GxE (see Section 

A of the online supplement) as well as our power for identifying GxE under different 

scenarios.

The primary challenge is that we lack knowledge of which, if any, school-level 

environmental variables may be moderating the relationship between the PGS and 

educational attainment. To circumvent this problem, we first consider an “indirect” model of 

GxE, wherein we only examine variation in the correlation between the outcome and PGS 

across schools (remaining agnostic about the specific environment that may be driving this 

variation). We then conduct specific tests of GxE based on two candidate environmental 

variables that have been shown to be of interest in previous work (which we discuss in the 

next section).

School Environments and GxE

The effects of schools on student attainments are a core interest of educational research. 

Studies dating back to at least the Coleman report (1968) document how school 

characteristics influence students’ future educational, social, and economic outcomes 

(Barnard 2004; Fonagy et al. 2005; Fuller and Clarke 1994). For example, school SES is a 

reliable correlate of student attainments (Perry and McConney 2010). GxE, however, 

requires the identification of subtler environmental influences (Boardman, Daw, and Freese 

2013). In the traditional study of GxE, the key question is not which environments influence 

student attainments (we have knowledge of numerous environments that do so). Rather, the 

challenge has been to identify environments that restructure the relationship between 

genotype and educational attainment.

It is not immediately obvious which measurable school-level features may moderate the 

association between genotype and educational attainment in this way. Moreover, many 

measurable school environments may simultaneously contribute to moderation; for example, 

theoretical literature suggests that the effects of the genome on life course attainments may 

depend on both resource inequality and social mobility (Adkins and Vaisey 2009). We 

address this uncertainty by first studying variation in school-level associations between the 

educational attainment PGS and outcomes (i.e., equation 2 in the online supplement). Such 

an approach is agnostic as to which of the many school-level environments may matter and 

is analogous to school effect research that focuses on the existence of school-level variation 

in outcomes (Raudenbush and Willms 1995) rather than variation due to an identifiable 

school-level environment. In some circumstances, this strategy may have reduced statistical 

power. Thus, we also conduct tests related to two candidate environmental moderators (i.e., 

equation 3 in the online supplement).

The first candidate environment that we test is an overall measure of school socioeconomic 

status based on parents’ education. It has long been known that school SES is highly 

correlated with other indicators of overall school quality (Baker, Goesling, and LeTendre 

2002; Hoover-Dempsey, Bassler, and Brissie 1987). We anticipate that this environmental 
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measure will be strongly associated with both educational and occupational attainments of 

respondents, but it is not clear a priori that we should expect school SES to moderate the 

returns to an individual’s education-related genotype. The second candidate environment is a 

measure of school stratification. We consider a measure of inequality in parents’ education, 

hypothesizing that schools with high levels of inequality in parental education may be more 

rigidly stratified (e.g., may be more likely to “track” students). In earlier work (Boardman, 

Domingue, and Fletcher 2012), this school environment appeared to moderate the degree to 

which friends were genetically similar. Although not exhaustive of all environments that one 

might wish to measure at the school level, these candidate environments are reflective of the 

types of environments one might use in GxE studies.

Methods

Data

We deploy two data sets in studying whether schools moderate the influence of the 

educational attainment PGS: The Wisconsin Longitudinal Study (WLS) (Herd, Carr, and 

Roan 2014) and The National Longitudinal Study of Adolescent to Adult Heath (Add 

Health) (Harris 2013; Harris et al. 2013). Following the assay of biospecimens, genome-

wide data are available for approximately 9,100 WLS members and for approximately 9,500 

Add Health members. PGS analysis in diverse samples is currently not feasible (Martin et al. 

2017), so we focus on subsamples of respondents of European ancestry given that such 

samples were the training data in the original GWAS. There exists a paucity of longitudinal 

data sources that have both molecular genetic data and clusters of respondents in common 

schools. We use the innovative approach of combining the WLS (N = 8,494) and Add Health 

(N = 4,915) to study the interaction of school environments and individual genotypes. 

Additional details on these data are available in Section B1 of the online supplement.

Measures

We briefly describe the key measures used in this study here. Additional details on their 

construction and characteristics are included in Section B2 of the online supplement.

Outcomes.—Given that the educational attainment PGS is associated with a variety of life 

course attainments (Belsky et al. 2016; Papageorge and Thom 2016), we consider the 

outcomes related to time in school and job status. We consider educational attainment, 

which is measured as the years of completed education when the Add Health respondents 

were aged 24 to 32 and the WLS respondents were in their mid-40s. We also consider 

indicators of whether they engaged in any postsecondary schooling (>12 years of education) 

and were college graduates (≥16 years of education). Finally, we consider a measure of job 

status (Hauser and Warren 1997) based on jobs reported by respondents in 2008 for Add 

Health and 1992 for the WLS.

Predictors.—We focus primarily on a polygenic score constructed to predict educational 

attainment based on the most recently available GWAS for this phenotype (Lee et al. 

forthcoming). Alongside the educational attainment PGS, we examine household 

socioeconomic status and early-life cognitive functioning as additional individual-level 
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measures related to life course attainments. We use results from these analyses as 

benchmarks for evaluating the magnitude of the relationships observed with the PGS.

Candidate environments.—We consider two candidate school environments. The first, 

the mean percentage of mothers with at least a high school diploma, is meant to represent 

school status. The second, the Gini coefficient in reported levels of parental education, is 

meant to represent school stratification. In both data sets, we construct these measures for 

those schools with at least 10 students for whom we have data. We interpret our measures as 

noisy proxies for the true environments of interest and explore the consequences of this 

possible measurement error in our power analysis.

Analysis

As discussed in the section on school environments and GxE, we first examine the 

possibility of school-level GxE using an approach that is agnostic as to which specific 

feature of the environment may be relevant. We do this via the estimation of a random 

effects model; in particular, we examine a model of the form (where individual i is in school 

j):

Indirect : Outcomei j = β0 + μ j + (β1 + δ j) PGSi j + X′β + ϵi j . (1)

We additionally assume that (μj, δj) ~ multivariate normal[0,Ω]. The focal parameter here 

will be the variation in δj as captured by estimates of the covariance matrix Ω (i.e., σδ). To 

the extent that estimates of this quantity are near zero, this suggests that the effect of the 

PGS is relatively constant across all schools observed in our data. We also consider a 

modified version of equation 1 wherein we first mean center years of education (or other 

outcomes) in each school and thus do not include the random intercept term μj. In all 

analyses, the focal predictors and outcomes are standardized, and we include sex and birth 

year as covariates. For the WLS, we also include a family-specific random effect to account 

for sibling relatedness.

Evaluations of nearness to zero as they pertain to estimates of variance components, such as 

σδ, need to be made carefully. To aid our interpretations of estimates of equation 1, we rely 

upon a variation of a Fisher exact test (Athey and Imbens 2017) wherein respondents are 

randomly assigned to the set of schools in the data (i.e., we ignore actual school 

assignment). A Fisher exact test is a form of randomization inference that involves 

comparing an observed distribution of outcomes to many simulated distributions under a 

null hypothesis; here, the null hypothesis is that there is no school-level moderation of the 

educational attainment PGS. Utilizing such a test allows for the detection of statistically 

significant variation of association between the PGS and educational attainment at the 

school level. We evaluate the magnitude of our observed Ω relative to the distribution of 

simulated Ωr. Specifically, we focus on the quantile rank of elements of Ω relative to the 

distribution of Ωr after repeated randomizations. We examine one minus the mean quantile 

rank, which we treat as a p value for the implied randomization test.

Trejo et al. Page 6

Sociol Sci. Author manuscript; available in PMC 2019 January 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We then turn to analyses that focus on two candidate environments: school status and school 

stratification. For analyses based on the these candidate school environments Ej, we estimate 

the following:

Direct : Outcomei j = β0 + u j + β1PGSi j + β2E j + β3PGSi jE j + X′β + ϵi j . (2)

Note that we allow differences in mean school outcomes via the inclusion of the random 

effect uj. Interest resides in estimates of β3. To guard against spurious findings of GxE 

(Keller 2014), the X′ β term also includes interactions between the key predictors (PGSij 

and Ej) and other control variables (sex and birth year).

Results

Gene–Environment Correlation

The school a child attends is not independent of genotype; subsequent findings will need to 

be interpreted in light of this selection process. Specifically, 6.5 percent of the variation in 

the educational attainment PGS is between schools in Add Health compared to 2.1 percent 

in the WLS (see Table S1 in online supplement). These findings are consistent with those 

previously observed between school types in the United Kingdom (Smith-Woolley et al. 

2018). However, the educational attainment PGS is clustered within schools to a much lesser 

degree than other individual-level predictors. Approximately 17 to 27 percent of the 

household SES and 7 to 10 percent of the cognitive functioning variation is between schools. 

One consequence of this clustering is that we observe an association between the school-

mean educational attainment PGS and school status. Figure 1 shows the school-mean 

educational attainment PGS as a function of our environmental measure related to school 

status (i.e., the proportion of mothers who finish high school in the school). In Add Health, 

these figures are highly correlated (r = 0.52), but even in the WLS, there is an observable 

gradient (r = 0.12). To address this potential source of bias, we focus interpretation on a 

model in which the outcome is school centered in our indirect GxE analyses.

Power Analysis

Power curves for the detection of a single environmental moderator are shown in Figure 2 

(see details in Section C of the online supplement). If we observe the environmental 

moderator without error (black line), then we have sufficient power to detect interactions 

using the direct approach when the interaction coefficient is approximately one-fifth the size 

of the main genetic effect (power of 0.8 is obtained when interaction coefficients are around 

0.04 in Add Health and 0.03 in the WLS). Note that these correspond to small amounts of 

additional explained variance; observed r2 values are less than 0.005 (see top panels in 

Figure 2). Our indirect approach (red line) has less power; we can only detect interactions 

that are roughly twice as large as in the direct approach. We also consider power based on 

noisy observations of the environmental moderator; here, direct analysis based on an 

environmental moderator measured with a great deal of noise (e.g., α = 0.4) still offers 

superior power to the indirect approach in the WLS but not in Add Health.
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Evidence from Indirect Analyses

Educational attainment.—Focusing first on the models with random intercepts, 

increases in the educational attainment PGS are associated with additional educational 

attainment (in standardized units, b = 0.31 in Add Health and b = 0.24 in the WLS [see left 

half of Table 1]; in raw years of educational attainment, 0.67 years in Add Health and 0.55 

years in the WLS). The estimated SD of slopes, σδ, is 0.033 in Add Health and 0.060 in the 

WLS. Illustrations of this type of variation can be found in Figure 3; the increased variation 

in slopes in the WLS relative to Add Health is apparent. In particular, note that there is a 

concentration of all trajectories around 12 years of schooling in the WLS. As we discuss 

later, this is largely because most of the respondents in the WLS had to complete 12 years of 

education to be eligible for the study.

In Add Health, the magnitudes of the variance components related to the educational 

attainment PGS are largely consistent with estimates derived from randomization analyses in 

which there is no school-level moderation of the PGS’s effect (p = 0.199; see Table 1). In the 

WLS, there is some weak initial evidence for moderation (p = 0.048). However, we interpret 

this result cautiously. There is a strong estimated correlation (σμδ) between the slopes and 

intercepts, suggesting that the effect of the PGS on educational attainment is highest in 

schools with the highest average levels of educational attainment. In contrast to what we 

observe with respect to variation in the slopes, we observe large variation in the intercepts, 

as measured by σμ, in both data sets. All data sets with students randomly assigned to 

schools produce much smaller variation in the intercepts than what is estimated in either 

empirical data set; we elaborate on this point below.

To further examine the implications of the strong correlation between random slopes and 

intercepts, we estimate a version of equation 1 that does not include random intercepts using 

data for which the outcome is centered within the school. Estimates of the effect of the PGS 

are similar to those noted above (b = 0.28 in Add Health and b = 0.22 in the WLS; see right 

half of Table 1 as well as Table S2 in the online supplement). The estimated variation in 

slopes, σδ, is now larger in Add Health than in the WLS. In both data sets, we observe 

randomization p values associated with this quantity around 0.05 (p = 0.06 in Add Health; p 
= 0.04 in the WLS).

We also examine variation in associations between our two outcomes related to academic 

thresholds—any postsecondary education and college completion—and the educational 

attainment PGS. For Add Health, there is more variation in the association between the 

educational attainment PGS and college completion than in the randomization data sets (p = 

0.02 in the mean-centered analysis). In contrast, for the WLS, there is more variation in the 

slopes for the any-postsecondary analysis (p = 0.02 in the mean-centered analysis).

Job status.—The educational attainment PGS is robustly associated with job status in both 

data sets (see Table 1). Note that the distributions of job status (see Figure S1 in the online 

supplement) are more approximately normal than the distributions for educational 

attainment. In comparison to the educational attainment results in Add Health (where all the 
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lines in Figure 3 are relatively parallel), there is potentially more variation in the association 

between the educational attainment PGS and job status. However, focusing on the mean-

centered analyses, there is no evidence for a substantial difference in association between the 

PGS and job status across schools in either the Add Health (p = 0.16) or the WLS (p = 0.10).

Alternative predictors.—To better contextualize our findings related to the educational 

attainment PGS, we also consider results based on replacing the educational attainment PGS 

with either a measure of cognition or childhood socioeconomic status. As expected, these 

quantities are strong predictors of both attainment measures: educational achievement and 

job status (see Table S1 in the online supplement; note that the educational attainment PGS 

correlates with educational attainment at 0.26–0.36, whereas the other predictors show 

correlations with educational attainment above 0.37). In contrast to the results based on the 

educational attainment PGS, there is strong evidence for school-level moderation of both the 

SES and cognition link to educational attainment in both data sets (Table 1). There is also 

evidence of school-level moderation of the association between household SES and 

occupational returns. Note both the strength and consistency of these findings. In 

comparison to these findings, the previously discussed evidence for the moderation of 

genetic effects is relatively weak.

Variation in returns.—An obvious implication of the results described in Table 1 pertains 

to the substantial variation in returns to a given genotype as a function of school assignment 

(i.e., the variation in intercepts, σμ). There is far more variation in the intercepts in our 

empirical data than in the data sets in which the school is randomly assigned. Figure 4 

illustrates this fact by showing the distribution of predicted years of educational attainment 

across schools for three different values of the PGS. Consider the results in Add Health. For 

the mean PGS (the green distribution), there is more than two years of variation in the 

expected educational attainment of genetically similar respondents as a function of attending 

different schools. Students with the mean educational attainment PGS would be expected to 

get around 13 years of schooling if they attend some schools and 15 or more years of 

schooling if they attend other schools. The difference is pronounced and consistent with 

previous reports of substantial differences in school quality and educational opportunity 

(Card and Krueger 1992). Irrespective of students’ genotypes, the school environment is 

strongly associated with how far a student will go in school. Results in the WLS are slightly 

different. At the low end of the PGS distribution, we see relatively tight clustering around 12 

to 13 years of schooling. At the high end, however, there is increased variation in the 

potential outcomes.

Direct Analyses

Evidence is mixed regarding the school-level environmental moderation of the association 

between the PGS and educational attainment by school status and stratification (Table 2). In 

Add Health, the gradient between years of schooling and the educational attainment PGS is 

steeper in more stratified schools. In contrast, in the WLS, this gradient is steeper in higher-

status schools (Figure 5; note that results in these figures are not based on a standardized 

outcome so as to aid interpretation). We interpret these results as weak signals of school 

moderation for several reasons. First, findings do not replicate across data sets. This may be 

Trejo et al. Page 9

Sociol Sci. Author manuscript; available in PMC 2019 January 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



due to structural changes (i.e., period-related differences in schools) that exist between the 

educational systems encountered by the WLS respondents as compared to the Add Health 

respondents (we also explore the role of the inclusion of graduate and sibling respondents in 

the WLS; see Section D of the online supplement). Furthermore, findings regarding the 

moderation of associations between the educational attainment PGS and educational 

attainment do not translate into moderations of associations between the educational 

attainment PGS and downstream occupational attainments. Finally, these results are not 

robustly foreshadowed by the indirect analyses in the section of the same title.

Results based on crossing educational thresholds are more intriguing. We focus on any 

postsecondary education (more than 12 years of schooling) and the acquisition of a college 

degree (16 or more years of schooling). As anticipated by Table 1, Table 2 suggests that 

genetic associations with both postsecondary enrollment and college completion may be 

moderated by school status. We focus on these results in Figure 6. To enhance the results 

from linear probability models, we also include panels emphasizing descriptive analysis. In 

these panels, we show distributions of polygenic scores for those students in the top and 

bottom quartiles of schools in the respective distributions (for consideration of rGE; note 

that PGS distributions in high- and low-status schools are more comparable in the WLS than 

Add Health) as well as a locally weighted scatterplot smoothing (LOESS)-fitted line 

describing associations between the polygenic score and the probability of either outcome 

for students in the different schools. These nonlinear trends can then be compared to the 

linear fits.

School status clearly moderates the probability of postsecondary schooling or college 

completion in both data sets. Consider first enrollment in postsecondary schooling. In the 

WLS, the interaction is positive. That is, students from higher-status schools were 

increasingly more likely to enroll in postsecondary education as their PGSs increased. In 

contrast, the interaction coefficient in Add Health is negative. This is due to the fact that 

most students in high-status schools from that cohort are already attending some 

postsecondary school; there is a limited role for genetics to play For both the WLS and Add 

Health study members, the association between one’s genetics and completing college were 

more pronounced for students who attended higher-status schools.

Turning to the other predictors (social origin and cognitive functioning), the association of 

social origin with educational attainment appears to be consistent across these two 

environments. In contrast, the effect of cognitive functioning on educational attainment 

seems to be moderated by school status in both data sets. However, this moderation is of an 

inconsistent sign; further work is perhaps needed to identify whether certain measurable 

school-level environments are reliable moderators of these individual-level variables.

Discussion

Findings from two longitudinal studies of those born in the United States roughly a half-

century apart suggest that school-level moderation of genetic influences on educational 

attainment—as captured by a PGS constructed using the third-generation GWAS of this 

outcome (Lee et al. forthcoming)—are likely to be, in general, small. The PGS is a robust 
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predictor of educational and occupational attainments whose predictive power may vary 

slightly across schools but does not seem to do so as a function of the measured 

environments we consider here. In contrast, we observe evidence for the school-level 

moderation of the relationship between individual cognitive functioning or SES and the 

related set of life course attainments (although it is sometimes unclear which specific 

school-level environments may lead to such moderation).

A key exception to the results described above is the moderation of the probability of the 

two binary outcomes related to postsecondary education for a given PGS. Our analyses for 

both any postsecondary education and college completion showed evidence of moderation 

by school SES. We observe (Figure 6) that at a time when higher education was less 

common (Bailey and Dynarski 2011)—that is, when the WLS respondents were young—

higher educational attainment PGS–students from higher-status schools were much more 

likely to attend any postsecondary schooling. In contrast, for those who attended school 

more recently (i.e., the Add Health respondents), enrollment in any postsecondary schooling 

was more common and even low-PGS students at high-status schools are likely to be in 

higher education, resulting in a relatively flat slope for these schools. The inconsistency of 

sign for the GxE coefficient estimates for postsecondary enrollment is interpretable in light 

of Figure 4. The amount of education predicted by an individual’s educational attainment 

PGS varies substantially across the two study periods (an Add Health respondent with a 

mean PGS would expect to get 14–15 years of schooling, whereas a WLS respondent with a 

mean PGS would expect closer to 13 years of schooling; see Figure 4). The changing 

baseline rate of college attendance mechanically alters the relationship between genes and 

the environment.

This finding emphasizes important differences between these two studies that make 

generalization challenging. The WLS is a more homogeneous cohort from an earlier 

historical period wherein students tended to be in school for fewer years overall; more 

students dropped out of high school, and fewer received postsecondary education (Heckman 

and LaFontaine 2010). Moreover, WLS respondents were genotyped later in life, so 

mortality selection may also complicate these findings (Domingue et al. 2017). Finally, 

respondents in the WLS have a truncated distribution of educational attainment (see Figure 

S1 in the online supplement), as participants of the WLS had to graduate high school to be 

eligible to be empaneled (or be a sibling of such a graduate).

There is also the potential for endogeneity that complicates the interpretation of our findings. 

For example, the mean status of the school that a student attends is correlated with the 

school’s mean polygenic score (see Figure 1). Similarly, endogeneity also exists with respect 

to the results focusing on SES and cognitive functioning as these are also associated with 

school choice and potentially associated with individual genotype. With respect to SES, the 

childhood socioeconomic environment is associated with both an individual’s genetics 

(Belsky et al. 2016) as well as the genetics of the parents (Belsky et al. 2018; Conley et al. 

2015). Indeed, recent results suggest that parental genetics may have implications for 

offspring even when not directly transmitted (Kong et al. 2018). Cognitive functioning as 

measured in either study is almost surely related to the educational environments to which 

the respondent was exposed up until that point in the life course. In general, genotypes are 
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also not randomly distributed across environments (Domingue et al. 2018a; Domingue et al. 

2018b; Haworth et al. 2018), making the interpretation of GxE research challenging.

Despite these limitations, our findings demonstrate several important points. The difference 

in the distribution of educational attainment across the two data sets highlights an important 

fact about the interpretation of results from GxE studies. The identification of GxE offers 

crucial guidance for the interpretation of genetic effects but is not necessarily informative 

about the underlying cause of the observed GxE. For example, the observed moderation 

might be due to environmental constraints placed on the variation in phenotype (Tropf et al. 

2017) along the lines observed here. On the other hand, we might observe moderation due to 

the fact that a genetic variant has effects in opposite “directions” across contexts (this issue 

relates to the distinction between stress-diathesis versus differential susceptibility models; 

Ellis et al. 2011).

When a genetic variant does, in fact, have effects in opposite directions across contexts, the 

notion of “genetic risk” is environmentally contingent. However, as we discuss below, 

results based on polygenic scores are unlikely to capture this type of environmental 

contingency. Instead, more attention should be paid to how an environment constricts or 

expands the distribution of the phenotype in question. For example, a constant PGS 

computed based on a GWAS for body mass index (BMI) predicts a larger BMI for someone 

born now rather than in the past (Conley et al. 2016; Liu and Guo 2015; Walter et al. 2016). 

An increase in the PGS for BMI consistently predicts increased BMI; it is just that the BMI 

distribution has changed over these birth cohorts (Kuczmarski et al. 1994). In rank-order 

terms, it is certainly not the case that the same genetic profile predicted a relatively slender 

person (as compared to peers from his or her birth cohort) born in 1950 and a relatively 

heavy person born in 1990. Such a finding would have profound implications; indeed, it 

would raise questions about the validity of the results obtained via GWAS.

Rather, our most interesting findings seem to hinge on observable changes in the distribution 

of the phenotype. Figures 3 and 4 show that there is effectively a floor in educational 

attainment for WLS participants; nearly all students get at least 12 years of education 

irrespective of their educational attainment PGS. In contrast, in some schools, the students 

with a higher educational attainment PGS go on to college, whereas in other schools, they do 

not. This mechanical constriction of variation at the low end of the attainment ladder may 

lead to the observed GxE in Table 1 for the PGS’s changing influence on attainment. We 

favor this structural interpretation given that the variation in association observed with 

respect to educational attainment does not translate into any such variation in the association 

with occupational attainment (see also Section D of online supplement). This finding in the 

WLS is similar to the recent observation that a similar polygenic score predicts additional 

variance in outcomes in Estonia in the post-Soviet period (Rimfeld et al. 2018) or to the 

reduction in health disparities linked to genotype after the introduction of a compulsory 

schooling law (Barcellos, Carvalho, and Turley 2018). These findings all tie reductions in 

phenotypic variance associated with specific contextual paradigms to reductions in 

associations with the relevant genetic predictor. Future work of GxE inquiry and 

interpretation may benefit from careful considerations of how the relevant phenotypic 

distributions vary across environments before genetic analyses are scrutinized.
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Our findings are also worth interpreting in light of recent work discussing differences in 

academic achievement across school types and the potential role of genetics (Smith-Woolley 

et al. 2018). They show that differences in the distributions of polygenic scores between 

nonselective, grammar, and private schools explain some of the difference in academic 

achievement across the school types. This leads them to the conclusion that differences in 

the mean academic achievement of the three different school types are due in part to the 

differences in the underlying genetic composition of their students. However, the extent to 

which the returns to an individual’s polygenic score vary based on the environmental context 

is an important consideration in deciding whether findings entail this conclusion. In the data 

utilized here, there is some segregation of educational attainment PGS across schools, but an 

alternative hypothesis is available given the difference in expected returns, in the form of 

educational and occupational attainments, for a fixed educational attainment PGS across 

schools.

Our finding of a limited role for GxE in this context is perhaps unsurprising when one 

considers the methodology employed for the identification of the relevant genetic loci. 

GWAS is built to be a tool for the identification of single nucleotide polymorphisms (SNPs), 

whose variation is consistently associated with phenotypic variation. That is, polygenic 

scores are constructed based on SNPs that show the most reliable main effects and are thus 

less likely to be those loci that are particularly environmentally sensitive. If, for example, 

most GxE associations are those with effects whose signs vary as a function of 

environmental context—similar to a differential susceptibility model (Belsky and Pluess 

2009) —then these SNPs are unlikely to be detected in a GWAS; simply differentiating loci 

that are true crossover SNPs from random variation is challenging (Boardman et al. 2014). 

Meta-analytic GWASs that combine data from a broad spectrum of places and time periods, 

as with the educational attainment GWAS, will identify only the genetic variants whose 

effects are robust to these environmental differences. Finally, because moderating 

environments may operate on a specific biological pathway, the act of summarizing 

thousands of different SNPs (that likely work through numerous biological pathways) into a 

single PGS complicates the detection of GxE.

We cannot rule out the moderation of all genetic effects on educational attainment, merely 

the ones emphasized in the educational attainment PGS studied here. Indeed, alternative 

methods based on genetic loci associated with variation in outcome (Conley et al. 2018) may 

provide different information about the consistency of genetic prediction across 

environments. Given the relevance of schools for life course attainments, this null finding 

provides important contextual information for the interpretation of current and forthcoming 

GWAS findings relating to educational attainment. Although we remain skeptical of the 

existence of substantial school-level moderation of the linear association between 

continuously measured attainments and the educational attainment PGS, our findings 

emphasize the importance of social context in the interpretation of genetic predictions. 

School context is crucial in connecting an individual’s genotype to his or her likelihood of 

crossing meaningful educational thresholds. Given our findings related to credentialing 

processes, conceptions of interplay between genes and environments should be expanded to 

include changes in levels associated with environmental context rather than simply changes 

in slopes.
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Finally, it is important to recall that our results only apply to individuals with European 

ancestry in the two studies. We restricted our sample because differences in linkage 

disequilibrium and allele frequencies that exist across ancestral groups complicate the 

interpretation of PGS-phenotype associations (Martin et al. 2017). Although we recognize 

the importance of research in more diverse samples, our analysis is a first step in considering 

the role of the school environment in moderating the relationship between the educational 

attainment PGS and life course attainments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Mean PGS for the respondent as a function of school status (percent of parents with a high 

school diploma) in each data set. PGS, polygenic score; WLS, Wisconsin Longitudinal 

Study.
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Figure 2: 
Power analysis based on 10,000 random GxE coefficients (b3; x axis) and specified main 

effect values (b1 = genetic main effect; b2 = environment main effect). WLS, Wisconsin 

Longitudinal Study.
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Figure 3: 
Prototypical plots for outcomes as a function of educational attainment PGS (for those 

schools with at least 10 respondents). Each line represents a school-level association 

between the PGS and the relevant outcome. Thick, red lines show the schools with slopes in 

the top and/or bottom 5 percent of the distribution of slopes in each panel. PGS, polygenic 

score; WLS, Wisconsin Longitudinal Study.
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Figure 4: 
Distribution of predicted years of education across schools for fixed values of the 

educational attainment polygenic score (PGS). WLS, Wisconsin Longitudinal Study.
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Figure 5: 
Prototypical plots for direct tests of GxE with candidate environments. Environments are at 

the 25th and 75th percentiles of the school-level distribution. Results are for females of 

mean age (in the WLS, they are also assumed to be graduate respondents). The right-hand 

side of each panel shows the distribution of the variable on the y axis. est, estimate; PGS, 

polygenic score; WLS, Wisconsin Longitudinal Study.

Trejo et al. Page 25

Sociol Sci. Author manuscript; available in PMC 2019 January 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6: 
Prototypical plots for direct tests of GxE with candidate environments. Environments are at 

the 25th and 75th percentiles of the school-level distribution. Results are for females of a 

mean age (in the WLS, they are also assumed to be graduate respondents). Descriptive 

panels show distributions (shaded) for students in schools below the 25th percentile and 

above the 75th percentile (red and blue, respectively). LOESS curves plot fitted probabilities 

as a function of the PGS for all respondents (black) and those in schools captured in the 

density plot of same color. est, estimate; PGS, polygenic score; WLS, Wisconsin 

Longitudinal Study.
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Table 2:

Estimated GxE coefficients from equation 2 (direct approach) based on candidate environments (outcome and 

key predictors are standardized in all analyses).

Add Health WLS

Outcome Individual Environment β3 SE PV β3 SE PV

Education PGS Status −0.008 0.013 0.523 0.041 0.011 0.000

Education PGS Stratification 0.030 0.013 0.019 −0.009 0.011 0.407

Any Postsecondary PGS Status −0.056 0.014 0.000 0.034 0.011 0.002

Any Postsecondary PGS Stratification 0.043 0.014 0.001 −0.006 0.011 0.590

College Completion PGS Status 0.031 0.013 0.019 0.040 0.011 0.000

College Completion PGS Stratification 0.002 0.013 0.867 −0.008 0.011 0.468

Occupation PGS Status −0.004 0.014 0.753 0.017 0.012 0.141

Occupation PGS Stratification 0.005 0.013 0.684 −0.003 0.012 0.801

Education SES Status 0.023 0.014 0.111 0.016 0.010 0.103

Education SES Stratification −0.006 0.015 0.665 −0.002 0.011 0.861

Any Postsecondary SES Status −0.042 0.015 0.004 0.004 0.010 0.701

Any Postsecondary SES Stratification 0.023 0.015 0.122 0.005 0.011 0.643

College Completion SES Status 0.070 0.015 0.000 0.021 0.010 0.044

College Completion SES Stratification −0.039 0.015 0.007 −0.008 0.011 0.495

Occupation SES Status 0.025 0.015 0.089 −0.021 0.011 0.054

Occupation SES Stratification −0.020 0.015 0.188 0.013 0.012 0.268

Education Cognition Status −0.044 0.014 0.002 0.037 0.010 0.000

Education Cognition Stratification 0.031 0.014 0.030 −0.002 0.010 0.807

Any Postsecondary Cognition Status −0.087 0.014 0.000 0.017 0.010 0.090

Any Postsecondary Cognition Stratification 0.030 0.015 0.042 0.009 0.010 0.366

College Completion Cognition Status 0.006 0.014 0.682 0.036 0.010 0.000

College Completion Cognition Stratification 0.011 0.015 0.440 0.000 0.010 0.982

Occupation Cognition Status −0.023 0.015 0.111 −0.008 0.011 0.467

Occupation Cognition Stratification 0.031 0.015 0.039 0.016 0.011 0.151

Note: PGS, polygenic score; PV, p value; SES, socioeconomic status; WLS, Wisconsin Longitudinal Study.
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