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Pervasive transcription fine-tunes
replication origin activity
Tito Candelli™*, Julien Gros'™, Domenico Libri*

Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris
Cité, Paris, France

Abstract RNA polymerase (RNAPII) transcription occurs pervasively, raising the important
question of its functional impact on other DNA-associated processes, including replication. In
budding yeast, replication originates from Autonomously Replicating Sequences (ARSs), generally
located in intergenic regions. The influence of transcription on ARSs function has been studied for
decades, but these earlier studies have neglected the role of non-annotated transcription. We
studied the relationships between pervasive transcription and replication origin activity using high-
resolution transcription maps. We show that ARSs alter the pervasive transcription landscape by
pausing and terminating neighboring RNAPII transcription, thus limiting the occurrence of
pervasive transcription within origins. We propose that quasi-symmetrical binding of the ORC
complex to ARS borders and/or pre-RC formation are responsible for pausing and termination. We
show that low, physiological levels of pervasive transcription impact the function of replication
origins. Overall, our results have important implications for understanding the impact of genomic
location on origin function.

DOI: https://doi.org/10.7554/eLife.40802.001

Introduction

The annotation of transcription units has traditionally heavily relied on the detection of RNA mole-
cules. However, in the last decade, many genome-wide studies based on the direct detection of
RNA polymerase Il (RNAPII) have clearly established that transcription extends largely beyond the
limits of regions annotated for coding functional RNA or protein products (Jacquier, 2009;
Porrua and Libri, 2015). The generalized presence of transcribing RNA polymerases, not necessarily
associated to the production of stable RNAs, defines pervasive or hidden transcription, which is a
conserved feature of both eukaryotic and prokaryotic transcriptomes.

In S. cerevisiae, pervasive transcription accounts for the production of a multitude of transcripts
generally non-coding, many of which undergo degradation in the nucleus or the cytoplasm (Jacqu-
ier, 2009; Porrua and Libri, 2015). Transcription termination limits the extension of many non-cod-
ing transcription events, compensating, to some extent, the promiscuity of initiation (for recent
reviews see: Jensen et al., 2013; Porrua and Libri, 2015). In Saccharomyces cerevisiae cells, two
main pathways are known for terminating normal and pervasive RNAPII transcription events
(Porrua et al., 2016). The first is employed for termination of MRNA coding genes and depends on
the CPF-CF (cleavage and polyadenylation factor-cleavage factor) complex. Besides participating in
the production of mRNAs, this pathway is also important for transcription termination of several clas-
ses of non-coding RNAs, namely SUTs (stable unannotated transcripts) and XUTs (Xrn1-dependent
unstable transcripts) (Marquardt et al., 2011). Transcription terminated by this pathway produces
RNAs that are exported to the cytoplasm and enter translation. If they contain premature stop
codons, they are subject to the nonsense mediated decay and might not be detected in wild-type
cells (van Dijk et al., 2011; Malabat et al., 2015).
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The second pathway depends on the NNS (Nrd1-Nab3-Sen1) complex and is responsible for ter-
minating transcription of genes that do not code for proteins. Small nucleolar RNAs (snoRNAs) and
cryptic unstable transcripts (CUTs), a prominent class of RNAPII pervasive transcripts, are typical tar-
gets of NNS-dependent termination. One important feature of this pathway is its association with
proteins involved in nuclear RNA degradation such as the exosome and its cofactor, the Trf4-Mtr4-
Air (TRAMP) complex. The released RNA is not exported to the cytoplasm but polyadenylated by
TRAMP and nucleolytically attacked by the exosome that trims snoRNAs to their mature length and
fully degrades CUTs.

Recent studies in yeast and other eukaryotes have shown that constitutive and regulated read-
through at terminators provides a very significant contribution to pervasive transcription
(Vilborg et al., 2015; Grosso et al., 2015; Rutkowski et al., 2015, Candelli et al., 2018). Fail-safe
mechanisms are in place to back up termination and restrict transcription leakage at terminators.
One of these mechanisms terminates ‘stray’ transcription by harnessing the capability of DNA-bound
proteins to roadblock RNAPII. Roadblocked polymerases are then released from the DNA via their
ubiquitination and likely degradation (Colin et al., 2014).

The ubiquitous average coverage of the genome by transcription, coupled to the remarkable sta-
bility of the transcription elongation complex, raises the important question of the efficient coordina-
tion of machineries that must read, replicate, repair and maintain the same genomic sequences. The
crosstalks between transcription and replication are paradigmatic in this respect.

Eukaryotic cells faithfully duplicate each of their chromosomes by initiating their replication from
many origin sites (Bell and Labib, 2016). To ensure once-and-only-once DNA replication per cell
cycle, coordination of initiation from these different sites is guaranteed by a two-step mechanism:
replication origins have to be licensed before getting activated (Diffley, 2004). Licensing occurs
from late mitosis to the end of G1 and consists in the deposition of pre-RCs (pre-replication com-
plexes) around origin sites. To do so, ORC (origin recognition complex) recognizes and binds specifi-
cally origin DNA where it recruits Cdcé and Cdt1 to coordinate the deposition of the replicative
helicase engine, the hexameric Mcm2-7 complex. At each licensed origin is deposited a pair of
Mcm2-7 hexamers assembled head-to-head as a still inactive double-hexamer (DH) encircling DNA.
At the G1/S transition and throughout S-phase, the orderly recruitment of firing factors onto the
Mcm2-7 DH activates it, ultimately triggering the building of two replisomes synthesizing DNA from
the origin (Parker et al., 2017).

S. cerevisiae origins are specified in cis by the presence of Autonomously Replicating Sequences
(ARSs). Within each ARS, ORC recognizes and binds specifically a bipartite DNA sequence com-
posed of the ACS (ARS Consensus Sequence, 5'-WTTTATRTTTW-3’; Palzkill and Newlon, 1988;
Diffley and Cocker, 1992; Bell and Stillman, 1992) and the B1 element (Rao and Stillman, 1995;
Li et al., 2018). The ACS oriented by its T-rich strand is generally found at the 5' ends of ARS
sequences (Eaton et al., 2010). A-rich stretches are often present at the opposite end of ARSs and
have been proposed to function as additional ACSs oriented opposite to the main ACS
(Breier et al., 2004; Yardimci and Walter, 2014). Such secondary ACSs have been shown to
strengthen pre-RC assembly at ARS in vitro and proposed to ensure ARS function in vivo by driving
the cooperative recruitment of a second ORC (Coster and Diffley, 2017; see also Warner et al.,
2017). This contrasts with earlier in vitro reconstitutions of pre-RC assembly on single DNA mole-
cules, supporting the recruitment of only one ORC per DNA (Ticau et al., 2015; Duzdevich et al.,
2015). Whether one or two ORC molecules are recruited at ARSs in vivo for efficient pre-RC assem-
bly is still not fully understood.

ACS presence is necessary but not sufficient for ARS function in vivo, as only a small fraction of all
ACSs found in the S. cerevisiae genome corresponds to active ARSs (Tuduri et al., 2010). Other
DNA sequence elements and factors, including the structure of chromatin, participate to origin spec-
ification and usage. On the one hand, ORC binding at the ACS shapes NFR formation, nucleosome
positioning and nucleosome occupancy, which all together maximize pre-RC formation (Lipford and
Bell, 2001; Eaton et al., 2010; Belsky et al., 2015; Rodriguez et al., 2017). On the other hand,
specific histone modifications mark replication initiation sites (Unnikrishnan et al., 2010) and chro-
matin-coupled activities ensure replication forks progression and origin efficiency (Kurat et al.,
2017; Devbhandari et al., 2017; Azmi et al., 2017). The transcription machinery could participate
to the establishment of a specific chromatin landscape and/or play a more direct role in the
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specification and function of origins. However, to what extent annotated and non-annotated tran-
scription at and around origins can influence replication remains unclear.

The binding of general transcription factors such as Abf1 and Rap1, or even the tethering of tran-
scription activation domains, TBP or Mediator components was shown to be required for efficient fir-
ing of a model ARS (Marahrens and Stillman, 1992; Stagljar et al., 1999, see also Knott et al.,
2012). However, whether this implies the activation of transcription within origins has not been
shown.

Strong transcription through ARSs has been demonstrated to be detrimental for their function
(Snyder et al., 1988; Tanaka et al., 1994, Chen et al., 1996; Mori and Shirahige, 2007,
Léoke et al., 2010), and intragenic origins have been shown to be inactivated by meiotic-specific
transcription (Mori and Shirahige, 2007; Blitzblau et al., 2012). Inactivation of origins by transcrip-
tion has been correlated to the impairment of ORC binding and pre-RC assembly, possibly because
of steric conflicts with transcribing RNAPII (Mori and Shirahige, 2007, Léoke et al., 2010). Strong
transcription through origins was found to terminate, at least to some extent, within ARS sequences
at cryptic termination sites, generating stable and polyadenylated transcripts (Chen et al., 1996;
Magrath et al., 1998). However, it was concluded that transcription termination within ARSs and ori-
gin function are not functionally linked, as mutationally impairing either one would not affect the
other. In particular, it was found that transcription termination was not due to ORC roadblocking
RNAPII and, conversely, that origin activity was not dependent on termination taking place within
the ARS (Chen et al., 1996; Magrath et al., 1998).

Even if unrestricted transcription inactivates intragenic origins (Mori and Shirahige, 2007,
Blitzblau et al., 2012), these cases hardly represent the chromosomal context of most mitotically
active origins, which are intergenic (Donato et al., 2006; MacAlpine and Bell, 2005;
Nieduszynski et al., 2005) and are generally not exposed to the levels of transcription found within
genes. Most importantly, these earlier studies could not take into account the potential impact of
annotated and non-annotated levels of pervasive transcription, which is not easily detected, due to
the general instability of the RNA produced and to the poor resolution of many techniques for
detecting RNAPII occupancy. Such generally low levels of transcription have been recently found to
significantly impact the expression of canonical genes and to be limited by fail safe and redundant
transcription termination pathways (Candelli et al., 2018; Roy et al., 2016).

We investigated here the impact of physiological levels of pervasive transcription on the function
of replication origins in S. cerevisiae. Using nucleotide-resolution transcription maps, we studied the
transcriptional landscape around and within origins, regardless of annotations. Origins generate a
characteristic footprint in the ubiquitous transcriptional landscape due to the pausing of RNAPII at
origin borders. On the one hand, transcription terminates at the border of the primary ACS, in an
ORC and pre-RC-dependent manner, by a mechanism that has roadblock features. On the other
hand, RNAPII pauses upstream of the secondary ACS but terminates within the ARS. The low levels
of pervasive transcription that enter ARSs negatively affect the efficiency of licensing and firing, with
pervasive transcription incoming from the secondary ACS affecting origin function to a higher
extent.

These results have important implications for understanding the impact of genomic location on
origin specification, efficiency and timing of activation. Because pervasive transcription is conserved
and generally increases with increased genome complexity, they are also susceptible to be relevant
for the mechanism of replication initiation in other eukaryotes, particularly in metazoans.

Results

RNAPII pausing and transcription termination occur at ARS borders

Although considerable efforts have been made to annotate transcription units independently from
the production of stable RNAs, many transcribed regions still remain imprecisely or poorly annotated
in the S. cerevisiae genome. Addressing the potential impact of transcription on the function of rep-
lication origins therefore requires taking into account the actual physiological levels of transcription,
regardless of annotation. For these reasons, we relied on high-resolution transcription maps derived
from the direct detection of RNAPII by the sequencing of the nascent transcript (RNAPII PAR-CLIP,
photo-activable ribonucleoside-enhanced UV-crosslink and immunoprecipitation)
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(Schaughency et al., 2014). We also generated additional datasets using the analogous RNAPII
CRAC, (crosslinking analysis of cDNAs, Granneman et al., 2009; Candelli et al., 2018). Both meth-
ods detect significant levels of transcription in many regions that lack annotations (data not shown;
Candelli et al., 2018).

We retrieved a total of 228 origins that we oriented according to the direction of the T-rich strand
of their proposed ACS (Nieduszynski et al., 2006). Origins were then anchored at the 5' ends of
their ACS and the median distribution of RNAPII occupancy was plotted in a 1 kb window around
the anchoring site (Figure 1A). Strikingly, RNAPII signal accumulates over the 200nt preceding the
T-rich strand of the ACS and sharply decreases within the 25nt immediately preceding it (Figure 1A,
blue trace; see also Figure 1—figure supplement 2A-B for the statistical significance of the signal
loss over the primary ACSs). The RNAPII signal build-up suggests that pausing occurs before the
ACS, while its abrupt reduction might indicate that transcription termination occurs immediately
upstream of the site. This behavior is reminiscent of roadblock termination whereby transcription
elongation is impeded by factors or complexes binding the DNA, and RNA polymerase is released
following its ubiquitylation (Colin et al., 2014; Roy et al., 2016; Candelli et al., 2018). RNAPII signal
also builds up from antisense transcription, although in a more articulated manner (Figure 1A, red
trace) and starts declining on average 120nt upstream of the 5’ border of the ACS.

Although the sharp decrease of RNAPII signal immediately preceding the ACS is suggestive of
transcription termination, it is possible that RNAPII occupancy downstream of the ACS decreases
because of a shorter persistency of the elongation complex in these regions, for instance because of
higher transcription speed. We thus sought independent evidence of transcription termination
before the ACS. Transcription termination is accompanied by release of the transcript and generally
by its polyadenylation. Therefore, we mapped the distribution of polyadenylated RNA 3'-ends
around origins as a proxy for transcription termination (Figure 1B, blue). Because roadblock termina-
tion produces RNAs that are mainly degraded in the nucleus, we also profiled the distribution of
RNA 3'-ends in cells depleted for the two catalytic subunits of the exosome, Rrpé6 and Dis3
(Roy et al., 2016) (Figure 1B, transparent red). At each position around the ACS, we scored the
number of genomic sites containing at least one RNA 3’-end without taking into consideration the
read count at each site. This conservative strategy determines whether termination occurs at each
position, and prevents high read count values from dominating the aggregate value. The distribution
of RNA 3'-ends — and therefore of transcription termination events — closely mirrors the distribution
of RNAPII on the T-rich strand of the ACS and peaks immediately upstream of the ACS. Note that
because the whole read is taken into account to map RNAPII distribution, while only the terminal
nucleotide is used to map the 3'-ends, the distribution of RNA 3'-ends is shifted downstream relative
to the distribution of RNAPII. Importantly, and consistent with a roadblock mechanism, the 3'-end
count upstream of the ACS is higher in the absence of the exosome (Figure 1B, transparent red),
strongly suggesting that these termination events produce, at least to some extent, RNAs that are
degraded in the nucleus. These peaks of RNA 3'-ends are significant, as demonstrated by the p-val-
ues associated to the frequencies of termination events observed around the ACS, which are signifi-
cantly smaller than the ones detected in the flanking region (corrected p-value<10~%°, Figure 1—
figure supplement 2D and Material and methods).

These observations strongly suggest that the landscape of pervasive transcription is significantly
altered by the presence of replication origins. Incoming RNAPIIs are paused with an asymmetric pat-
tern around ARSs and termination occurs upstream of the primary ACS.

To assess the origin of the asymmetry in RNAPII distribution, we considered the possibility that
RNAPIIs transcribing in the antisense direction relative to the ACS might be paused at the level of
putative secondary ACSs located downstream within the ARS. Such secondary ACSs, proposed to
be positioned 70-400nt downstream and in the opposite orientation of the main ACS, have been
shown to be required in vitro for efficient pre-RC assembly and suggested to play an important role
for origin function in vivo (Coster and Diffley, 2017). The variable position of these secondary ACS
sequences could explain why the antisense RNAPII meta-signal spreads over a larger region when
ARSs are aligned to the 5’ ends of their primary ACSs (Figure 1C). We therefore mapped such puta-
tive secondary ACSs using a consensus matrix derived from the set of known primary ACSs
(Coster and Diffley, 2017) (Table 2). As shown on Figure 1—figure supplement 1A, distances
between the primary and the predicted secondary ACS distribute widely and preferentially cluster
around =100nt (median 113.5), consistent with functional data obtained using artificial constructs
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Figure 1. Metasite analysis of RNAPII occupancy and transcription termination at replication origins. (A) RNAPII PAR-CLIP metaprofile at replication
origins. 228 confirmed ARSs were oriented according to the direction of the T-rich strand of their proposed ACSs (blue arrow) (Nieduszynski et al.,
2006) and aligned at the 5' ends of the oriented ACSs (red dashed line). The median number of RNAPII reads (Schaughency et al., 2014) calculated
for each position is plotted. Transcription proceeding along the T-rich strand of the ACS is represented in blue and considered to be sense, while
Figure 1 continued on next page
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Figure 1 continued

transcription on the opposite strand is plotted in red and considered to be antisense. (B). Distribution of poly(A)+RNA 3'-ends at genomic regions
surrounding replication origins. Origins were oriented and anchored as in A). 3'-ends reads (Roy et al., 2016) of RNAs extracted from wild-type cells
(WT, blue) or cells in which both Rrpé and Dis3 were depleted from the nucleus (RRP6-DIS3-AA, transparent red) were plotted. At each position around
the anchor, the presence or absence of an RNA 3’-end was scored independently of the read count. (C). Scheme of replication origins anchored at
different ACS sequences. Left: sense polymerases transcribing upstream of primary ACSs (blue arrows) are colored in blue, while antisense polymerases
transcribing upstream of secondary ACSs (orange arrows) are colored in red. Right: ARSs oriented according to antisense transcription were aligned at
the 5’ ends of the primary ACSs (top, corresponds to red trace in D) or at the 5" ends of the secondary ACSs (bottom, corresponds to black trace in D).
(D). RNAPII PAR-CLIP metaprofile of antisense transcription aligned either to the 5" ends of the primary (red) or the secondary (black) ACSs, as shown in
(C). As in (A), the median number of RNAPII reads calculated for each position is plotted. (E). Distributions of RNA 3'-ends and RNAPII at genomic
regions aligned at secondary ACSs. Origins were oriented and aligned as in (D). At each position around the anchor, presence or absence of an RNA
3'-end was scored independently of the read count (left y-axis). The distribution of RNAPII already shown in (C) is reported here for comparison (right
y-axis).

DOI: https://doi.org/10.7554/eLife.40802.002

The following figure supplements are available for figure 1:

Figure supplement 1. Measures on mapped secondary ACSs.

DOI: https://doi.org/10.7554/eLife.40802.003

Figure supplement 2. Statistical analysis of pausing and termination signals.

DOI: https://doi.org/10.7554/eLife.40802.004

(Coster and Diffley, 2017). As possibly expected, the calculated similarity scores for these pre-
dicted ACSs are generally lower than the ones calculated for the main ACSs (see the distribution in
Figure 1—figure supplement 1B). When we aligned origins to the first position of their predicted
secondary ACSs (Figure 1C and Figure 1D, black trace) we observed a significant sharpening of the
RNAPII occupancy peak compared to the alignment on their primary ACSs (Figure 1D, compare red
to black traces; Figure 1C; Figure 1—figure supplement 2c for the statistical significance of the sig-
nal loss over the secondary ACSs). This suggests that RNAPII is indeed pausing immediately
upstream of the secondary ACS. Interestingly, when we aligned polyadenylated RNA 3’-ends using
the first position of the predicted secondary ACSs, we observed that transcription termination dis-
tributed preferentially =50nt after the anchor (Figure 1E, blue trace, compare to RNAPII distribu-
tion, black trace; see also Figure 1—figure supplement 2E) indicating that in most instances
antisense transcription terminates downstream of the site of RNAPII pausing.

To better highlight the presence and the role of a roadblock (RB) at these origins, we examined
local transcription by RNAPII CRAC under conditions in which an essential component of either the
CPF-CF or the NNS termination pathways is affected, that is in an rna15-2 mutant at the non-permis-
sive temperature, or by depleting Nrd1 by the auxin-degron method (Candelli et al., 2018). We rea-
soned that defects in CPF-CF or the NNS pathways would affect the levels of neighboring
readthrough transcription directed toward these origins and consequently increase the transcrip-
tional loads challenging the roadblocks. Representative examples are shown in Figure 2.

In the case of ARS305 (Figure 2A), low levels of readthrough transcription are found at the termi-
nators of the adjacent transcription units (YCL049C or CUT040) and are subjected to roadblock ter-
mination at both the main (blue) or the putative secondary ACSs (red, overlaps with the previously
mapped B4 element (Huang and Kowalski, 1996)), respectively. Increase in readthrough transcrip-
tion at the YCL049C gene in rna15-2 cells (sense transcription, light green track) or at CUT040 upon
Nrd1 depletion (antisense transcription, light pink track), leads to increased accumulation of RNAPII
at both ACSs and to transcription invading the ARS.

Two ACSs were previously proposed for ARS413 (Figure 2B): sense ACS1 (Eaton et al., 2010)
and antisense ACS2 (Nieduszynski et al., 2006). Transcription on the plus strand is strongly road-
blocked at ACS1, while transcription on the minus strand is roadblocked at both ACS2 and ACS1. In
both cases, transcription derives only from the upstream genes (YDLO73W and YDLO72C, respec-
tively) because no additional initiation sites could be detected, even in cytoplasmic and nuclear RNA
degradation mutants (data not shown). When the transcription load was increased by affecting the
termination of YDLO73W and YDLO72C in rna15-2 cells at the non-permissive temperature (light
green tracks), RNAPII occupancy at the RBs increases and some readthrough within the ARS occurs.
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Figure 2. RNAPII occupancy at individual ARS detected by CRAC analysis. RNAPII occupancy at sites of roadblock detected upstream ARS305 (A),
ARS413 (B), ARS431 (C) and ARS432.5 (or ARS453, (D) by CRAC (Candelli et al., 2018). The pervasive transcriptional landscape at these ARSs is
observed in wild-type cells (WT, blue) or cells bearing a mutant allele for an essential component of the CPF-CF transcription termination pathway
(rna15-2, green) at permissive (25°C, dark colors) or non-permissive temperature (37°C, light colors). In the case of ARS305 (A), RNAPII occupancy is also
shown in cells rapidly depleted for an essential component of the NNS transcription termination pathway through the use of an auxin-inducible degron
tag (Nrd1-AID; (—) Auxin: no depletion, dark pink; (+) Auxin: depletion, light pink).

DOI: https://doi.org/10.7554/eLife.40802.005

This example suggests that both ACSs are occupied by the ORC complex, although it is not clear
whether they function in conjunction or alternatively in different cells.

Two additional examples are shown in Figure 2. In the case or ARS431 (Figure 2C), the RB is
more prominent on the site of the primary ACS and increases when the transcriptional load is higher
due to readthrough from the upstream gene, YDR297W, in rna15-2 cells. On the contrary, a promi-
nent site of RB at the secondary ACS is observed at ARS453 (or ARS432.5; Figure 2D), while the RB
at primary ACS cannot be observed because transcription of CUT523 appears to terminate effi-
ciently upstream.

Taken together, these results suggest that primary and secondary ACSs, both presumably bound
by ORC, can induce RNAPII pausing at the borders of replication origins. However, while RNAPII
generally pauses and terminates upstream of primary ACS sequences, RNAPI| often pauses at sec-
ondary ACS but terminates downstream. Importantly, such ARS footprint in the pervasive transcrip-
tion landscape (Figure 2) provides independent in vivo evidence of the role of secondary ACS
sequences (Coster and Diffley, 2017), while our meta-analyses (Figure 1) strongly suggest a gen-
eral functional difference between primary and secondary ACSs with regards to incoming
transcription.
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Termination of transcription at ARSs is mediated by ORC binding to the
DNA

Transcription termination around origins might depend on many termination factors. The main tran-
scription termination pathways in S. cerevisiae, NNS- and CPF-dependent, rely on the recognition of
termination signals on the nascent RNA. Release of the polymerase occurs therefore after the termi-
nation signals that have been transcribed and recognized. Transcription termination by roadblock,
on the other hand, ensues from a collision of the transcription elongation complex with a DNA
bound protein, and therefore occurs upstream of the termination signal. Another characteristic fea-
ture of roadblock termination is that the released RNA is subject to exosome-dependent degrada-
tion. Both features, termination upstream of the termination signal and nuclear degradation of the
released transcripts, are compatible with the notion that roadblock termination occurs at origins.
Still, it remains possible that termination at the immediate borders of origins depends on conserved
external signals allowing the recruitment of CPF- or NNS- components. According to the position of
RNAPII pausing, the most likely roadblocking factor would be the ORC complex bound to the ACS.

We therefore first verified that termination depends on the ACS sequence and to this end we
cloned a 500 bp DNA fragment containing ARS305 in a reporter system allowing the detection of
transcription termination (Porrua et al., 2012) (Figure 3). This fragment conferred ACS-dependent
mitotic maintenance to a centromeric version of the reporter construct, indicating that it is a func-
tional ARS (Figure 3—figure supplement 1). In this system, a test terminator sequence is cloned
between two promoters, the downstream of which allows the expression of a reporter gene, CUP1,
which is required for yeast growth in the presence of copper ions (Figure 3A). Transcription from
the upstream promoter interferes with and thus inactivates the promoter driving expression of CUP1
unless the test sequence contains a terminator. Copper resistant is therefore a reliable, positive read
out of the presence of a transcription terminator in the cloned sequence. Consistent with the notion
that termination occurs at replication origins, insertion of ARS305 in the orientation dictated by the
T-rich strand of the ACS conferred robust copper-resistant growth to yeast cells (Figure 3B), Impor-
tantly, copper resistance was abolished when the ACS was mutated, strongly suggesting that termi-
nation is strictly dependent on the integrity of the ORC binding site.

This notion was further supported by Northern blot analysis of the transcripts produced when a
shorter ARS305 fragment containing the ACS and the downstream 154nt were introduced in the
same reporter construct (Figure 3C). A short transcript witnessing the occurrence of termination was
readily detected in the presence of ARS305 (lane 3). Consistent with the notion that roadblock termi-
nation occurs at ARS305, the transcript released was subject to exosomal degradation and was sta-
bilized by deletion of Rrpé (lane 4). This short RNA disappeared when the ACS sequence was
mutated, to the profit of a longer species resulting from termination downstream of ARS305, con-
firming the ACS-dependency of termination (lane 5). ARS305 contains, in addition to the ACS, two
motifs, B1 and B4, required for full origin function (Huang and Kowalski, 1996). Interestingly, B4 is
located roughly 100nt downstream of the ACS, and coincides with a predicted secondary ACS
required for efficient symmetrical loading of the pre-RC (Figure 2 and Table 2) (Coster and Diffley,
2017). To assess whether the primary ACS is sufficient to induce transcription termination, we
mutated both B1 and B4, alone or in combination, and assessed the level of termination by Northern
blot. As shown in lanes 6 and 7, mutation of B4 had the strongest effect on termination, which was
very similar to the effect observed when the main ACS was mutated. Mutation of B1 had a minor
but significant effect. From these experiments, we conclude that the high-affinity ORC-binding site
alone is necessary but not sufficient for inducing transcription termination at ARS305, and that the
secondary ACS (B4) and the B1 motif are additionally required.

To provide independent evidence that ORC bound to the ARS triggers transcription termination
by a roadblock mechanism, we took advantage of the finding that many sequences with a perfect
match to the ACS consensus do not bind ORC. We used published coordinates of ACSs bound
(ORC-ACSs) or not recognized (nr-ACSs) by the ORC complex in ORC-ChIP-seq experiments
(Eaton et al., 2010), and mapped transcripts 3'-ends (Roy et al., 2016) as a proxy for the occur-
rence of transcription termination (Figure 4A and B). As previously, we oriented each ARS according
to the direction of the T-rich ORC-ACS or nr-ACS. As expected, the distribution of transcription ter-
mination events around the set of ORC-bound ACSs is very similar to the one observed around repli-
cation origins mapped by Nieduszynski et al. (2006) (compare Figure 4A and Figure 1B). As in the
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Figure 3. Analysis of transcription termination at ARS305. (A) Scheme of the reporter system (Porrua et al., 2012)
used to assess termination at ARS305. Prerorr: doxycycline-repressible promoter; Pga: GALT promoter.
Termination of transcription at a candidate sequence (blue) allows growth on copper containing plates while
readthrough transcription inhibits the GALT promoter and leads to copper sensitivity, as indicated. (B) Growth
Figure 3 continued on next page
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Figure 3 continued

assay of yeasts bearing reporters containing a Reb1-dependent terminator, (Colin et al., 2014, used as a positive
control), or ARS305 (lanes 1 and 3, respectively). Variants containing mutations in the Reb1 binding site (Reb1 BS
‘—") or the ACS sequence are spotted for comparison (lanes 2 and 4, respectively). (C) Northern blot analysis of
Prer transcripts produced in wild-type and rrpéA cells from reporters containing either a Reb1-binding site (Reb1
BS, lanes 1-2) or wild-type or mutant ARS305 sequences, as indicated (lanes 3-8). Transcripts terminated within
ARS305 or at the CUP1 terminator are highlighted.

DOI: https://doi.org/10.7554/eLife.40802.006

The following figure supplement is available for figure 3:

Figure supplement 1. ARS305 sequence confers mitotic maintenance to a centromeric plasmid when transcription

is shut down.
DOI: https://doi.org/10.7554/eLife.40802.007

previous analysis, many unstable transcripts are produced by termination around origins as wit-
nessed by the overall higher level of 3'-ends mapped in an exosome-deficient strain (Figure 4A).
The distribution of RNA 3'-ends around the set of nr-ACSs is however radically different, with tran-
scription events presumably crossing the nr-ACS in both directions and terminating downstream
(Figure 4B). Interestingly, at nr-ACSs, the amounts of 3’-ends detected are very similar in wild-type
conditions or upon depletion of both Rrp6 and Dis3 subunits of the nuclear exosome, indicating that
termination downstream of nr-ACSs does not produce unstable transcripts and is presumably
dependent on the CPF pathway (Figure 4B).

Because the ACS sequence is nearly identical in the two datasets, it is unlikely that it alone could
be responsible for the termination pattern observed at ORC-ACSs. These observations are consis-
tent with the notion that the presence of ORC bound to the ACS is necessary to roadblock transcrib-
ing RNAPII, which releases a fraction of unstable RNAs. To substantiate these findings we set up to
assess directly the impact of ORC depletion on transcribing RNAPII at two model origins, ARS404
and ARS1004, located downstream of the YDL227C and YJL217W genes, respectively. In both cases,
RNAPII signals are present immediately upstream of the T-rich strand of the ACS, presumably
because of transcription events reading through the upstream terminator that are roadblocked at
the site of ORC binding (Figure 4C). To assess the efficiency of the roadblock we measured RNA
levels immediately upstream and downstream of the T-rich strand of each ACS in a strand-specific
manner by RT-quantitative PCR (Figure 4C and D). Because no transcription initiation can be
detected at either one of the two ACSs (data not shown), RNA signals detected downstream of the
ACS are most likely due to molecules that initiate upstream and cross the ACS. We therefore
expressed the efficiency of the roadblock as the ratio between the signals downstream and
upstream of the ACS. Release of the roadblock is expected to increase this ratio because more RNA-
PIl molecule would traverse the ACS. To affect binding of ORC to the ACS, we used two thermosen-
sitive mutants of two ORC subunits, Orc2-1 and Orc5-1, which affect the binding of ORC to the
DNA (Santocanale and Diffley, 1996; Loo et al., 1995; Yuan et al., 2017; Shimada et al., 2002).
As shown in Figure 4D, ORC roadblock at ARS404 and ARS1004 is efficient, allowing only between
1-10% of the incoming transcription to cross the ACS in wild-type cells or under permissive tempera-
ture for all mutants (Figure 4D, 23°C). When the binding of ORC to the ACS was affected in orc2-1
and orc5-1 cells at 37°C, a marked increase in the fraction of RNAPII going through the roadblock is
observed, indicating that binding of the ORC complex to the ACS is necessary to terminate
upstream incoming transcription.

Cdcé binds DNA cooperatively with ORC and contributes to origin specification by participating
to pre-RC assembly (Speck et al., 2005; Speck and Stillman, 2007; Yuan et al., 2017) and referen-
ces therein). The thermosensitive mutant Cdc6-1 (Hartwell et al., 1973) which is affected in pre-RC
assembly at the restrictive temperature (Cocker et al., 1996), still does not preclude ORC to foot-
print at candidate ARSs (Santocanale and Diffley, 1996). Remarkably, the transcriptional roadblock
was markedly reduced in a cdcé-1 mutant at the non-permissive temperature, to a similar extent as
for the orc2-1 and orc5-1 mutants. This indicates that the assembly of an ORCeCdcé complex, or the
full complement of the pre-RC at the candidate ARS, is essential for efficiently roadblocking RNAPII.
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Figure 4. Role of ORC in the roadblock of RNAPII at origins. (A) Distribution of RNA 3'-ends at genomic regions aligned at ACS sequences recognized
by ORC (ORC-ACYS) as defined by Eaton et al. (2010) (i.e. defined based on the best match to the consensus associated to each ORC-ChIP peak).
Each origin was oriented according to the direction of the T-rich strand of its ORC-ACS and regions were aligned at the 5’ ends of the ORC-ACSs. As in
1B, RNA 3'-ends (Roy et al., 2016) were from transcripts expressed in wild-type cells (blue) or from cells depleted for exosome components

Figure 4 continued on next page
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Figure 4 continued

(transparent red). At each position around the anchor, presence or absence of an RNA 3'-end was scored independently of the read count.
Distributions of RNA 3'-ends both on the sense (top) and the antisense (bottom) strands relative to the ORC-ACSs are plotted. (B). Same as in (A)
except that genomic regions were aligned at ACS sequences not recognized by ORC (nr-ACS) as defined by Eaton et al. (2010) (i.e. defined as ACS
motifs for which no ORC ChlP signal could be detected). (C). Quantification of the roadblock at individual ARSs. For each ARS, the snapshot includes
the upstream gene representing the incoming transcription. The distribution of RNA polymerase Il (dark blue) detected by CRAC (Candelli et al., 2018)
at ARS404 (left) and ARS1004 (right) oriented according to the direction of their T-rich ACS strands is shown. The positions of the gPCR amplicons used
for the RT-gPCR analyses in (D) are indicated. (D). RT-gPCR analysis of transcriptional readthrough at ARS404 and ARS1004. Wild-type, orc2-1, orc5-1
and cdcé-1 cells were cultured at permissive temperature and maintained at permissive (23°C, blue) or non-permissive (37°C, red) temperature for 3 hr.
The level of readthrough transcription at ARS404 (left) or ARS1004 ACS (right) was estimated by the ratio of RT-qPCR signals after and before the ACS,
as indicated. Data were corrected by measuring the efficiency of gPCR for each couple of primers in each reaction. Values represent the average of at
least three independent experiments. Error bars represent standard deviation.

DOI: https://doi.org/10.7554/eLife.40802.010

From these results, we conclude that the stable binding of the ORC complex to the ACS is neces-
sary but not sufficient to efficiently terminate incoming transcription at ARS by a roadblock
mechanism.

Impact of local pervasive transcription on ARS function

In spite of the presence of bordering roadblocks, low levels of pervasive transcription, which presum-
ably originates in neighboring regions and cross the sites of ORC occupancy, were detected within
replication origins (Figures 1-3). To assess the impact of local physiological levels of transcription
within ARS, we sought correlations between total RNAPII occupancy on both ARS strands in a win-
dow of 100nt starting at the first base of the primary ACS, and licensing efficiency or origin activa-
tion (Hawkins et al., 2013) We ordered the origins described by Nieduszynski et al. (2006)
according to the levels of transcription at and immediately downstream of the T-rich ACS and com-
pared the licensing efficiency of the 30 origins having the highest transcription levels to the rest of
the population (160 origins) for which replication metrics were available (total of 190 origins)
(Supplementary file 1 Table 1). We found that the efficiency of licensing was significantly lower for
the origins having the highest levels of transcription (Figure 5A; p = 0.003). We also found that ori-
gins having the highest levels of transcription display a lower probability of firing compared to the
rest of the population (Figure 5B; p = 0.012).

The effect observed on origin firing might be a consequence of the impact of transcription on
licensing. However, it is also possible that local levels of pervasive transcription impact origin activa-
tion after licensing. To address this possibility, we focused on the 30 origins that have the highest
levels of incoming transcription as defined by the levels of RNAPII occupancy preceding (Figure 6A;
‘A’) and following (Figure 6A; 'C') a 200nt window aligned at the 5' end of the ACS (Figure 6A; 'B')
(Supplementary file 1 Table 2, Supplementary file 1 Table 3). Consistent with the previous analyses
performed on all origins, transcription over ‘B’ strongly anticorrelated with origin competence
(p = 2*1074; Figure 6B) and efficiency (p = 5%10°; Figure 6C). When we plotted the probability of
licensing (P.) against the probability of firing (Pg), we identified two classes of origins: the first that
aligns almost perfectly on the diagonal (R? = 0.99; Figure 6D, red) contains origins that fire with
high probability once licensed. The second contains on the contrary origins firing with a lower proba-
bility, even when efficiently licensed (Figure 6D, black). As the probability of firing (Pf) is the product
of the probability of licensing (P) by the probability of firing once licensing has occurred (Pg), the
latter is defined by the ratio Pr/P_. We then sought correlations between the total level of transcrip-
tion over each ARS and the efficiency with which it is activated at the post-licensing step (Pg). Strik-
ingly, origins that have a high Pg_ are generally insensitive to transcription (Figure 6E, red); on the
contrary, origins that have a low Pg are markedly sensitive to the levels of overlapping transcription
(R? = 0.55; p = 0.002; Figure 6E, black). This generally holds true when the median time of firing
(Hawkins et al., 2013) is considered: origins with a high Pg_ are generally firing earlier and in a man-
ner that is independent from transcription levels over B (Figure 6F, red), while, conversely, origins
that have a low Pg tends to fire later when transcription over B increases (R? = 0.44; p = 0.009;
Figure 6F, black).
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Figure 5. Local pervasive transcription impacts origin competence and efficiency. Transcription levels were
assessed in the first 100 nt of each ARS, starting at the 5’ end of the ACS, by adding RNAPII read counts
(Schaughency et al., 2014) on both strands of the region. Origins were ranked based on transcription levels and
the origins having the highest transcription levels (30/192, grey boxplots) were compared to the rest of the
population (162/192, white boxplots). Origin metrics (licensing, 5A, and firing efficiency, 5B) for the two classes of
origins were retrieved from Hawkins et al. (2013). Boxplots were generated with BoxPlotR (http://shiny.chemgrid.
org/boxplotr/); center lines show the medians; box limits indicate the 25th and 75th percentiles; whiskers extend
1.5 times the interquartile range (IQR) from the 25th and 75th percentiles. Notches are 1.58*IQR/n'’2.

DOI: https://doi.org/10.7554/eLife.40802.011
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Figure 6. Correlations between transcription and origin function. (A) Origins were first selected based on the levels of pervasive transcription to which
they are exposed, calculated by adding RNAPII reads (Schaughency et al., 2014) over the ‘A’ (sense direction) or the 'C’ (antisense direction) regions.
For the selected ARSs, levels of pervasive transcription were then calculated over the ‘B’ region by summing RNAPII reads over the ‘B’ (sense direction)
and the ‘B’ (antisense direction) regions, as indicated in the scheme. (B) Correlation between transcription over the ARS and origin competence. (C)
Correlation between transcription over the ARS and origin efficiency. (D) Identification of two classes of origins, one that fires with high probability
when licensing has occurred (high P, red dots) and the other that fires less efficiently once licensed (low Pg, black dots). (E) Correlation between Pg.
and transcription. The efficiency of firing at the post-licensing step correlates with the levels of pervasive transcription only for origins with low P
(black dots). Origins that fire very efficiently once licensing occurred (Pg_= 1) are generally not sensitive to pervasive transcription (red dots). (F) Origins
with a low Pg (black dots) have a firing time that correlates with pervasive transcription, while origins with high Pg (red dots) fire early independently
of pervasive transcription levels.

DOI: https://doi.org/10.7554/elife.40802.012

We conclude that the efficiency of origin licensing generally negatively correlates with the levels
of pervasive transcription within the ARS. Interestingly, a class of origins exists for which the local
levels of transcription also impact origin activation after licensing.
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Asymmetry of origin sensitivity to transcription

It has been suggested that the ORC complex binds the secondary ACS with lower affinity relative to
the primary ACS (Coster and Diffley, 2017). If the affinity of ORC binding to DNA reflected its effi-
ciency at roadblocking RNA polymerases, the existence of both primary and secondary ACSs might
imply that incoming transcription upstream of the primary ACS (defined as ‘sense’ transcription)
might be roadblocked more efficiently than incoming transcription upstream of the secondary ACS
(defined as ‘antisense’ transcription). As a consequence, antisense transcription would be more sus-
ceptible to affect origin function. To assess the functional impact of this asymmetry, we turned to a
natural model case, ARS1206, which immediately follows HSP104, a gene activated during heat
shock (Figure 7A).

We cloned the HSP104 coding sequence and the following ARS1206 under the control of a doxy-
cyclin-repressible promoter (Pretors), similar in strength and characteristics to the HSP104 promoter
(Mouaikel et al., 2013) (Figure 7A). We verified that the HSP104 gene is transcribed and produces
a transcript similar in size to the endogenous HSP104 RNA (data not shown), implicating that tran-
scription termination occurs efficiently in this construct. This is expected to allow origin function,
even under conditions of the strong transcription levels induced by the TET promoter. Indeed, after
deletion of the ARS present in the plasmid backbone (ARS1), the plasmid could still be maintained
in yeast cells, showing that it can rely on ARS1206 for replication (data not shown; Figure 7D).

We recently showed that transcription readthrough at canonical terminators is widespread in
yeast and is one important component of pervasive transcription (Candelli et al., 2018). Although
ARS1206 is active, we predicted that the low levels of transcription reading through the HSP104 ter-
minator might impact its efficiency in an orientation-dependent manner. To test this hypothesis, we
inverted the orientation of ARS1206 on the plasmid, so that transcription from HSP104 would
approach the origin from its secondary ACS side (Figure 7A). We observed equivalent levels of
HSP104 expression from plasmids containing ARS1206 in the sense (pS) or the antisense (pAS) orien-
tation (Figure 7B) and concluded that transcription termination, which would have created unstable
RNAs when impaired (Libri et al., 2002), occured still efficiently upon ARS1206 inversion. Consis-
tently, high resolution Northern blot analysis of the 3'-ends of the HSP104 RNA produced by pS and
pAS confirmed that the site of polyadenylation was not altered by inversion of ARS1206 and no
readthrough RNAs could be detected (Figure 7C). Strikingly, when pS or pAS were transformed into
wild-type cells, and yeasts were grown in a medium non-selective for plasmid maintenance for the
same number of generations, ARS1206 supported plasmid maintenance more efficiently when pres-
ent on the sense (pS) relative to the antisense (pAS) orientation (Figure 7D).

This result is consistent with the notion that constitutive readthrough transcription from the
HSP104 gene affects origin function more markedly when approaching ARS1206 from the side of
the secondary ACS. This result is also consistent with the notion that incoming transcription is road-
blocked more efficiently by ORC binding to the primary ACS as opposed to the secondary ACS, in
line with the expected lower affinity of the latter interaction. To consolidate this result, we took
advantage of previous work demonstrating that the orc2-1 mutation has a stronger impact on the
binding of ORC to ACSs having a poor match to the consensus, even at permissive temperature
(Hoggard et al., 2013). If binding of ORC to the ACS is the limiting factor for the functional asym-
metry we observe, then affecting binding of ORC to the secondary, lower affinity site by the orc2-1
mutation should exacerbate the instability of the pAS plasmid. Indeed, while pS could be as effi-
ciently maintained in wild-type and orc2-1 cells, pAS raised only sick uracil auxotroph transformants
in the orc2-1 background, indicating that it could not be efficiently propagated (Figure 7E).

We conclude that, while presence of primary and secondary ACSs at origin borders participates
to the shielding of origins from pervasive transcription, this protection occurs asymmetrically.

Discussion

Transcription by RNA polymerase Il occurs largely beyond annotated regions and produces a wealth
of non-coding RNAs. Such non-coding transcription events have the potential to alter the chromatin
landscape and affect in many ways the dynamics of other chromatin-associated processes. They orig-
inate from non-canonical transcription start site usage or from transcription termination leakage, as
recently shown in the yeast and mammalian systems (Vilborg et al., 2015; Grosso et al., 2015;
Rutkowski et al., 2015; Candelli et al., 2018). Although the frequency of these events is generally
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Figure 7. Asymmetry of origin sensitivity to pervasive transcription. (A) Top: pervasive transcriptional landscape detected by RNAPII CRAC

(Candelli et al., 2018) at YLLO26W (HSP104) and ARS1206 i

n wild-type cells, both on Watson (blue) and Crick (red) strands, at 25°C (dark colors) and

37°C (light colors). The 5" ends and the sequences of the proposed primary ACS and the predicted secondary ACS for ARS1206 are shown. Bottom:

schemes of the reporters containing the HSP104 gene and
Figure 7 continued on next page

ARS1206 placed under the control of a doxycycline-repressible promoter (Prerors). The
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Figure 7 continued

position of the amplicon used for the gPCR in (B) is shown. pS and pAS differ for the orientation of ARS1206, with the primary (pS) or the secondary
ACS (pAS) exposed to constitutive readthrough transcription from HSP104. The sequence and the organization of the relevant region are indicated on
the right for each plasmid. The positions of the oligonucleotides used for RNaseH cleavage (black arrows) and of the probe used in (C) are also
indicated. The sequences of the oligonucleotides is reported in Table 1, with the following correspondence: cleaving oligo ‘a’=DL163; Northern

probe = DL164; cleaving oligo ‘b’ = DL473; cleaving oligo ‘c’ = DL3991; cleaving oligo 'd" = DL39%94. (B). Quantification by RT-gPCR of the HSP104
mRNA levels expressed from pS or pAS in the presence or absence of 5 pg/mL doxycycline. The position of the gPCR amplicon is reported in (A). (C).
Northern blot analysis of HSP104 transcripts extracted from wild-type cells and subjected to RNAse H treatment before electrophoresis using
oligonucleotides 'a-d’ (positions shown in A). All RNAs were cleaved with oligonucleotide ‘a’ to decrease the size of the fragments analyzed and detect
small differences in size. Cleavage with oligonucleotide ‘b’ (oligo-dT) (lanes 3, 4) allowed erasing length heterogeneity due to poly(A) tails.
Oligonucleotides ‘c’ and 'd’ were added in reactions run in lanes 1 and 6, respectively, to detect possible longer products that might originate from
significant levels of transcription readthrough from HSP104, if the inversion of ARS1206 were to alter the transcription termination efficiency. Products of
RNAse H degradation were run on a denaturing agarose gel and analyzed by Northern blot using a radiolabeled HSP104 probe (position shown in A).
(D). Stability of plasmids depending on ARS1206 for replication as a function of ARS orientation. pS or pAS was transformed in wild-type cells and
single transformants were grown and maintained in logarythmic phase in YPD for several generations. To assess the loss of the transformed plasmid,
cells were retrieved at the indicated number of generations and serial dilutions spotted on YPD (left) or minimal media lacking uracile (right) for 2 or 3
days, respectively, at 30°C. (E). Mutation of ORC2 affects more severely the stability of pAS compared to pS. Transformation of pS and pAS in wild-type
(ORC2, '—") or mutant (orc2-1, '+') cells. Pictures were taken after 5 days of incubation at permissive temperature (23°C).

DOI: https://doi.org/10.7554/eLife.40802.013

low, the persistence of RNA polymerases is dependent on the speed of elongation and the occur-
rence of pausing and termination, potentially leading to significant occupancy at specific genomic
locations where they could have a function. The crosstalks between transcription and replication
have been traditionally analyzed in the context of strong levels of transcription, which, aside from a
few specific cases, do not represent the natural exclusion of replication origins from regions of
robust and generally constitutive transcription (MacAlpine and Bell, 2005; Nieduszynski et al.,
2005; Donato et al., 2006). We studied here the impact of pervasive transcription on the specifica-
tion and the function of replication origins. We demonstrate that origins have asymmetric properties
in terms of the resistance to incoming transcription. The inherent protection of replication origins by
transcription roadblocks limits the extent of transcription events within these regions. Nevertheless,
polymerases that cross the roadblock borders impact both the efficiency of licensing and origin fir-
ing, demonstrating that physiological levels of pervasive transcription can shape the replication pro-
gram of the cell. Importantly, since the global transcriptional landscape is sensitive to changes
dictated by different physiological or stress conditions, pervasive transcription is susceptible to regu-
late the replication program according to cellular needs.

Replication initiates in regions of active transcription

Based on the presence and relative orientation of stable annotated transcripts, early studies have
concluded that replication origins are excluded from regions of active transcription (Donato et al.,
2006; Nieduszynski et al., 2005). To the light of our results it is clear that this notion needs to be
revisited: if origins are generally excluded from regions of genic transcription, they dwell in a tran-
scriptionally active environment populated by RNA polymerases that generate pervasive transcrip-
tion events. These events have multiple origins and are generally of lower intensity relative to bona
fide genic transcription. When ARSs are located in between divergent genes or more generally
upstream of a gene, they might be exposed to natural levels of divergent transcription due to the
intrinsic bidirectionality of promoters. When they are located downstream of a gene, they are poten-
tially exposed to transcription naturally reading through termination signals (Candelli et al., 2018),
which, depending on the level of expression of the gene and the robustness of termination signals,
can be consequential.

Transcription termination occurs around and within origins

Nonetheless, origins are not porous to surrounding transcription and the presence of one ARS gen-
erates a characteristic footprint in the local RNAPII occupancy signal. When origins are oriented
according to the main ORC binding site, the ACS, RNAPII signal is found to accumulate to some
extent, depending on the levels of incoming transcription (Figures 1A and 2), and sharply decrease
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in correspondence of the ACS. We provide several lines of evidence supporting the notion that
RNAPII is paused at the site of ORC binding and that transcription termination occurs by a roadblock
mechanism. First, we observed a relative enrichment of RNA 3’-ends coinciding with the descending
RNAPII signal, indicating that termination occurs at or before transcription has proceeded through
the termination signal (the ACS). Second, a fraction of the RNAs produced are sensitive to exosomal
degradation (Colin et al., 2014; Candelli et al., 2018). Third, mutation of the ORC-binding site pre-
vents efficient termination in our reporter system. Finally, mutational inactivation of ORC and Cdcé
erases the roadblock and allows transcription to cross the ACS at two natural model origins.

These findings are seemingly in contrast with earlier reports showing that inserting model ARSs in
a context of strong transcription leads to transcription termination within ARSs independently of the
ORC-binding site or other sequence signals required for origin function in replication (Chen et al.,
1996, Magrath et al., 1998). One possibility is that the cloned fragments in these early studies acci-
dentally contain transcription termination signals, some of which were not annotated when these
experiments were performed. This is likely the case for ARS305 and ARS209 that both contain a CUT
directed antisense to the T-rich strand-oriented ACS. ARS416 (ARS1) and ARS209, also used in these
studies, might also contain termination signals from the contiguous TRP1 and HHF1 genes, respec-
tively. Another possibility is that transcription termination occurred both at the roadblock site (the
ACS) and internally, but the former was missed because of the poor stability of the RNA produced.
As discussed below, we also found evidence of internal termination, but preferentially when examin-
ing the fate of antisense transcription (i.e. entering the ARS from the opposite side of the main ACS
oriented by its T-rich strand).

The transcriptional footprint observed for antisense transcription shows a large peak when origins
are aligned on the main ACS but condenses into a well-defined peak when the alignment is done on
the presumed secondary ORC-binding sites (Coster and Diffley, 2017) (Figure 1D), suggesting that
RNAPII indeed pauses at these sites. However, transcription termination, inferred from the distribu-
tion of RNA 3'-ends, occurs downstream of the putative secondary ACS, within the ARS body
(Figure 1E). Because these RNAs are stable, we suggest that they are generated by CPF-dependent
termination, possibly because RNAPII encounters cryptic termination signals, or because the ARS
chromatin environment prompts termination. Whether the occurrence of internal termination has
functional implications for origin function is unclear; nevertheless, our analyses suggest that the pres-
ence of antisense RNAPIIs within the origin is important for modulating its function (see below).

Topological organization of replication origin factors detected by
transcriptional footprinting

We propose that the asymmetrical distribution of RNAPII at ARS borders relates to the ‘quasi-sym-
metrical’ model for pre-RC assembly on chromatin, as proposed by Coster and Diffley (Coster and
Diffley, 2017). Earlier data suggested that binding of a single ORC molecule at a primary ACS is
necessary and sufficient to drive the deposition of one Mcm2-7 double-hexamer (DH) around one
DNA molecule (Ticau et al., 2015). However, given the topology of ORC binding to DNA (Lee and
Bell, 1997, Li et al., 2018) and the mode of Mcm2-7 deposition around DNA (Frigola et al., 2013),
a drastic conformational change would be required to assemble one Mcm2-7 DH with only one ORC
(Zhai et al., 2017, Bleichert et al., 2018). The quasi-symmetrical model, in contrast, postulates that
two distinct ORC molecules bind cooperatively each ARS at two distinct ACS sequences. One ORC
binds the ‘primary’ ACS to load one half of the pre-RC, while the second ORC binds a ‘secondary’,
degenerate ACS, to load the other half of the pre-RC in opposite orientation (Yardimci and Walter,
2014; Coster and Diffley, 2017). Each Mcm2-7 hexamer translocating towards the other would
then form the Mcm2-7 DH.

The transcriptional footprinting profile around origins shows an antisense RNAPII signal peaking
at aligned potential secondary ACSs identified by their match to the consensus (Coster and Diffley,
2017), which testifies to the general functional significance of secondary ACSs prediction. The distri-
bution of distances between the two 5’ ends of the two ACSs has a mode of 110nt, which is consis-
tent with the expected physical occupancy of at least one Mcm2-7 DH (Remus et al., 2009). This
distance is also consistent with the optimal distance between the two ACSs for a functional coopera-
tion in pre-RC complex formation in vitro (Coster and Diffley, 2017). We show that, presumably
because of the average lower affinity of ORC binding to the secondary ACS, transcription termina-
tion does not occur upstream of the latter but within the ARS, where RNAPII could favor the
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translocation of one Mcm2-7 hexamer towards the other, or ‘push’ a pre-RC intermediate
(Warner et al., 2017) or the DH away or against the high affinity ORC binding site. On a case-by-
case basis, it can be envisioned that antisense transcription might participate to the specification of
the position of licensing factors (Belsky et al., 2015).

Functional implications for pervasive transcription at ARS

As highlighted above, early studies examined the impact of transcription on origin function by driv-
ing strong transcription through candidate ARSs (Murray and Cesareni, 1986; Snyder et al., 1988;
Chen et al., 1996; Kipling and Kearsey, 1989), or estimated the transcriptional output at ARSs
based on the relative orientation of stable annotated transcripts (Nieduszynski et al., 2005;
Donato et al., 2006). To the light of the recent, more extensive appreciation of the transcriptional
landscape, these studies did not address the impact of local, physiological levels of transcription on
origin function. Our results demonstrate that the predominant presence of replication origins at the
3'-ends of annotated genes or upstream of promoters in the S. cerevisiae genome (MacAlpine and
Bell, 2005; Nieduszynski et al., 2005; Donato et al., 2006) does not preclude ARS from being chal-
lenged by transcription. Rather, pervasive transcription is likely to play an important role in fine-tun-
ing origin function and influence their efficiency and the timing of activation. Similar conclusions
have been recently reported in an independent study by Soudet et al. (2018).

The licensing of origin is predominantly sensitive to transcription within the ARS, which might
have been expected. The presence of transcribing polymerases might prevent pre-RC assembly or
ORC binding to the ACS (Mori and Shirahige, 2007; Léoke et al., 2010). Transcription through pro-
moters has been shown to inhibit de novo transcription initiation by increasing nucleosome occu-
pancy in these regions and lead to the establishment of chromatin marks characteristic of elongating
transcription. We propose that transcription though origins might induce similar changes that are
susceptible to outcompete binding of ORC and/or pre-RC formation.

Once licensing has occurred, firing ensues a series of steps leading to Mcm2-7 DH activation. It
was surprising to observe that firing once licensing has occurred is also sensitive to the levels of local
pervasive transcription, possibly implying that post-licensing activation steps are also somehow sen-
sitive to the presence of transcribing RNAPII. An alternative, interesting possibility is that transcrip-
tion complexes might push the Mcm2-7 DH away from the main site of initiation (Gros et al., 2015).
As a consequence, the actual position of replication initiation would be altered with a given fre-
quency: replication might still initiate but in a more dispersed manner around the origin and would
not be taken into consideration in the computation of initiation events. A final possibility is that pre-
RC formation is to some extent reversible, and transcription might alter the equilibrium by occupying
ARS sequences at a post-licensing but pre-activation step. The subset of origins that we found to be
insensitive to transcription might be less prone to sliding or have a slower rate of pre-RC disassem-
bly, which would make them less likely to be influenced by transcription.

The topological organization of replication origins and transcription units has been studied in
many organisms, with the general consensus that the replication program is relatively flexible and
adapts to the changing transcriptional environment during development or cellular differentiation in
multicellular organisms (Powell et al., 2015; Petryk et al., 2016; Pourkarimi et al., 2016). The rap-
idly dividing S.cerevisiae has maintained some of this adaptation of replication to the needs of tran-
scription, for example during meiotic differentiation (Blitzblau et al., 2012). Origin specification,
nonetheless, relies on a relatively strict requirement for defined ARS sequences, which is possibly
more efficient, but also less flexible for adapting to alterations in the transcription program and
more sensitive to pervasive transcription. Transcription termination and RNAPII pausing at origin
borders are some of the strategies that shape the local pervasive transcription landscape to the
profit of origin function, and mute disruptive interferences into fine tuning of origin efficiency and
activity.

Materials and methods

Yeast strains - oligonucleotides - plasmids
Yeast strains, oligonucleotides and plasmids used in this study are reported in Table 1.
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Metagene analyses
RNAPII occupancy

For each feature included in the analysis, we extracted the polymerase occupancy values at every
position around the feature and plotted the median over all the values for that position in the final
aggregate plot.

Transcription termination around origins

To estimate the extent of transcription termination around replication origins, we considered the
detection of 3’-ends of polyadenylated transcripts as a proxy for termination events. We counted,
for each position, the number of origins for which at least one 3'-end could be mapped at that posi-
tion. We then plotted the final score per-position in the aggregate plot. This allowed considering
the occurrence of at least one termination event at a given position while minimizing the impact of
the steady state level of the transcripts produced by termination. To assess the statistical significance
of the peak observed upstream of the primary ACS, we adopted the HO hypothesis that termination
occurs with the same frequency in the whole region of alignment around the origin. We estimated
the expected value based on the frequency of termination events (i.e. presence of at least one 3'-
end) in a 100nt window located at position —500 from the primary ACS across all available sites.
Using this estimate, we calculated the probability of detecting the number of termination events
actually observed at every position using the binomial distribution and correcting for the multiple
testing factor (Benjamini and Hochberg, 1995).

Analysis of termination at ORC-ACS and nr-ACS

ORC-ACSs are defined as the best match to the consensus under ORC ChIP peaks (Eaton et al.,
2010). nr-ACSs are defined as sequences containing a nearly identical motif that are not occupied
by ORC as defined by ChIP analysis (Eaton et al., 2010).

Correlation between transcription and replication metrics

For the boxplot analyses shown in Figure 5, we selected 190 origins out of the 228 described in
Nieduszynski et al. (2006) for which replication metrics were available (Hawkins et al., 2013) and
considered the RNAPII read counts in the 100nt following the 5’ end of the ACS, in the sense and
antisense direction (Supplementary file 1 Table 1). Origins were ranked based on the transcription
levels to establish two groups, one of high and one of low transcription, which were compared in
terms of licensing and firing efficiencies. A Student t-test (two tailed, same variance, unpaired sam-
ples) was used to estimate the statistical significance of the differences between the two distribu-
tions of values.

For the correlation analyses shown in Figure 6, we selected origins with the highest levels of
incoming transcription by considering a total coverage higher than 10 read counts in an area of 200
bp upstream of the area of origin activity, both on the T-rich and A-rich strand of the ACS consensus
sequence (regions ‘A" and ‘C’, Figure 5) (Supplementary file 1 Table 2). Then we summed the total
read coverage over the area of origin activity (region ‘B’, Figure 5) on both sense and antisense
strand (Supplementary file 1 Table 3). This value was then correlated with different measures of rep-
lication activity.

Secondary ACS mapping

The coordinates of the predicted secondary ACSs are reported in Table 2. To map putative second-
ary ACS sequences, we considered a nucleotide frequency matrix for the ACS consensus sequence
(Coster and Diffley, 2017) and produced a PWM (Position Weight Matrix) using the function PWM
from the R Bioconductor package ‘biostrings’ using default options. We used the ‘matchPWM’ func-
tion from ‘biostrings’ to look for the best match for putative secondary ACSs in the range between
the position +10 to+400 relative to the main ACS. We then calculated the distribution of distances
between the main and the putative secondary ACSs and the distribution of matching scores (Fig-
ure 1—figure supplement 1). For the meta-analyses shown in Figure 1D-E, we restricted this analy-
sis to a shorter range, considering that secondary ACSs located less than 70nt or more than 200nt
might not be biologically significant. The position and scores of all putative sense and antisense
ACSs used for the metaanalyses are shown in Table 2.
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Plasmid constructions

Oligonucleotides used for cloning and plasmids raised are reported in Table 1. Prgrope-HSP104::
ARS305::HSP104 Pgar1-CUPT (2u, URA3) plasmids were constructed by inserting a 548 bp fragment
containing the wild-type ARS305, as defined in OriDB v2.1.0 (http://cerevisiae.oridb.org;
chrlll:39,158-39,706) in vector pDL454 (Porrua et al., 2012) by homologous recombination in yeast
cells. ARS305 was PCR amplified from genomic DNA using primers DL3370 and DL3371 (Figure 3B)
or DL3581 and DL3583 (Figure 3C). Mutations in ARS305 were obtained by inserting linkers by
stitching PCR and homologous recombination in yeast in regions A, B1 and B4 corresponding to
Lin4, Lin22 and Lin102, respectively (Huang and Kowalski, 1996).

Prerorr-HSP104-ARS1206 (pDL214) plasmid was constructed by inserting the HSP104 gene and
the downstream genomic region containing the HSP104 terminator and ARS1206 into pCM188
(ARS1, CEN4, URA3) by homologous recombination in yeast. ARS1 was removed from pDL214 by
cleavage with Nhel and repaired by homologous recombination using a fragment lacking ARS1 to
obtain ‘pS’. Pretorr-HSP104-6021sra (or ‘pAS’) was constructed by reversing ARS1206 orientation in
‘pS’ using homologous recombination in yeast.

RNA analyses

RNAs were prepared by the hot phenol method as previously described (Libri et al., 2002). North-
ern blot analyses were performed with current protocols and membranes were hybridized to the
indicated radiolabeled probe (5'-end labelled oligonucleotide probes or PCR fragments labeled by
random-priming in ULTRAhyb-Oligo or ULTRAhyb ultrasensitive hybridization buffers (Ambion)) at
42°C overnight. Oligonucleotides used for generating labeled probes are reported in Table 1. RNase
H cleavage was performed by annealing 50pmoles of each oligonucleotide to 20 ug of total RNAs in
1X RNase H buffer (NEB) followed by addition of 2U of RNase H (NEB) and incubation at 30°C for 45
min. Reaction was stopped by addition of 200 mM sodium-acetate pH 5.5 and cleavage products
were phenol extracted and ethanol precipitated. Pellets were resuspended in one volume of North-
ern sample loading buffer and the equivalent of 10 pug of total RNAs were analyzed by Northern blot
on a 2% TBE1X agarose gel. Oligonucleotides used for RNase H cleavage assay are reported in
Table 1.

For RT-gPCR analyses, RNAs were reverse transcribed with 200U of M-MLYV reverse transcriptase
(ThermoFisher) and strand specific primers for 45 min at 37°C. Reactions were diluted 10 times
before gPCR analyses. Quantitative PCRs were performed on a LightCycler 480 (Roche) in 384-Multi-
well plates (Roche) in 10 pL reactions that contained 1% of the reverse transcription mix and
0.25 pmoles of each priming oligonucleotides. Quantification was performed using the AACt
method. ‘No RT’ controls were systematically analyzed in parallel. Each transcription level reported
represents the mean of three independent RNA extractions each assayed in duplicate gPCRs. Error
bars represent standard deviations. Oligonucleotides used for RT-qPCR are reported in Table 1.
Unless indicated otherwise, transcription levels were normalized to ACTT mRNA levels.

Plasmid-loss assay

Cells were transformed with the indicated ARS1206-borne (CEN4, URA3) plasmid and plated on
complete synthetic medium lacking uracile. Single transformants were used to inoculate liquid cul-
tures of CSM —URA that were grown to saturation. Saturated cultures were back diluted into rich
medium and maintained in logarythmic phase (i.e. below 0.8 ODgq) for the indicated number of
generations. Aliquots were pelleted, rinsed with water and seven-fold serial dilutions were spotted
on YPD and CSM —URA, starting at 0.3 ODggo. Growth on YPD plates was used to infer that the
same numbers of cells were spotted, while reduced numbers of cells growing on CSM—URA
reflected plasmid loss over the indicated number of generations.

Datasets
Datasets used in this study are available from GEO with accession numbers GSE56435
(Schaughency et al., 2014), GSE75586 (Roy et al., 2016) and GSE97913 (Candelli et al., 2018).

Tables
Table 1 and Table 2.
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Yeast strains Name Genotype Origin

DLY671 W303-1a trp1A Libri laboratory (BMA44)

DLY2923 W303-1a ORC2 ORC5 CDC6 Gift from the Pasero laboratory (PP2583)

DLY2685 As W303-1a, ORC2 ORC5 cdcé6-1 Gift from the Schwob laboratory (E589)

DLY2687 As W303-1a, orc2-1 ORC5 CDCé Gift from the Schwob laboratory (E1507)

DLY2688 As W303-1a, ORC2 orc5-1 CDCé Gift from the Schwob laboratory (E4649)

Oligonucleotides Name Sequence Purpose

DL3370 CATCCACAATTACAACCT Amplification of ARS
ATACATATTCTAGCTGCCTTCA 305 from genomic DNA.
TTGAAACGGCGACGCCC Fw primer bearing 48 bp of homology with DL1702.
GACGCCGTAATAAC

DL3371 gaatctttcttcgaaatc Amplification of ARS305 from genomic DNA.
acctttgtatttagcacctgcggtt Rev primer bearing 50 bp of homology with DL1666.
aatgcggATATATCAGAAACAT
ACATATG

DL3446 CATCCACAATTACAACCT Insertion of ARS305 in reverse orientation
ATACATATTCTAGCTGCCTTCA (compare with primer pair DL3370/DL3371).
TTGAAACGATATATCAGAAA Rev primer bearing homology with DL1702.
CATACATATG

DL3447 gaatctttcttcgaaatcaccttt Insertion of ARS305 in reverse orientation
gtatttagcacctgcggttaatgcggGCG (compare with primer pair DL3370/DL3371).
ACGCCCGACGCCGTAATAAC Fwd primer bearing homology with DL1666.

DL3581 gaatctttcttcgaaatcacct Insertion of shortened ARS305,
ttgtatttagcacctgcggttaatgcggGTTTCA fwd (cf. DL3447). Primes 32 bp downstream
TGTACTGTCCGGTGTGATT B4 element, removing 291 bp of ARS305 “full-length

“3" end.

DL3583 CATCCACAATTACAAC Insertion of shortened ARS305,
CTATACATATTCTAGC rev (cf. DL3446). Primes 34 bp upstream
TGCCTTCATTGAAAC ARS305 ACS, removing 83 bp of ARS305
GGAGTATTTGATCCTTTTTTTTATTGTG “full-length "5" end.

DL3376 TTATTCCTCGAGGAC Insertion of linker substitution Lin102 (B4-)
TTTGTAGTTCTTAAAGC in ARS305 by two stages overlapping PCRs.

Fw primer,
pair with DL3371.

DL3377 CTACAAAGTCCTCGA Insertion of linker substitution Lin102

GGAATAATAAATCACACCGGAC (B4-) in ARS305 by two stages overlapping PCRs.
Rev primer, pair with DL3370.

DL3378 GGGACCTCGAGGAATA Insertion of linker substitution

CATAACAAAACATATAAAAACC Lin22 (B1-) in ARS305 by two stages overlapping PCRs
. Fw primer, pair with DL3371.

DL3379 GTTATGTATTCCTCGAG Insertion of linker substitution Lin22 (B1-)

GTCCCTTTAATTTTAGGATATG in ARS305 by two stages overlapping PCRs.
Rev primer, pair with DL3370.

DL3380 CATAACCCTCGAGG Insertion of linker substitution Lin4 (A-) i
TAAAAACCAACACAATAAAAAAAAGG n ARS305 by two stages overlapping PCRs. Fw

primer, pair with DL3371.

DL3381 GGTTTTTACCTCGAG Insertion of linker substitution
GGTTATGTATTGTTTATTTTCC Lin4 (A-) in ARS305 by two stages overlapping

PCRs. Rev primer, pair with DL3370.
DL1359 CCTTATACATTAGGTCCTTT HSP104 Northern PCR probe, fwd.
Primes about 100nt upstream HSP104 ATG in PTE
TOFF-HSP104 plasmid serie
DL1360 ATCCCCCGAATTGATCCGG HSP104 Northern
PCR probe, rev. Primes
upstream BamHI site in
PTETOFF-HSP104 plasmid serie
DL377 ATGTTCCCAGGTATTGCCGA ACT1 Northern PCR probe/RT gPCR amplicon, fwd.

Table 1 continued on next page
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Oligonucleotides DL378 acacttgtggtgaacgatag ACT1 Northern PCR probe/RT gPCR amplicon, rev.
DL2627 ATTCAAAAGCGAACACCGA snR14 Northern oligo probe
ATTGACCATGAGG
AGACGGTCTGGTTTAT
DL3763 CTGGTTGAAACA ARS404 gRT-PCR,
AATCAGTGCCGGTAAC amplicon downstream

ARS404 ACS. 5" primes 202 bp
after SSB1 STOP, pair with DL3764.

DL3764 GACTTTTTCTTAACTA ARS404 gRT-PCR, amplico
GAATGCTGGAGTAGAAATACGC n downstream ARS404 ACS. 5'
primes 288 bp after SSB1
STOP, pair with DL3763.

DL3767 CTTTTTAAACTAATATA ARS404 gRT-PCR,
CACATTTTAGCAGATGCG amplicon upstream
ARS404 ACS. 5’ primes 23 bp
after HO STOP, pair with DL3768.

DL3768 GATGCTGTCCG ARS404 gRT-PCR,
CGGGCCTCATAAG amplicon upstream
ARS404 ACS. 5" primes
60 bp before HO STOP,
pair with DL3767.

DL3823 GGCACTATGCTTTTT ARS1004 gRT-PCR,
AAAATTTTGTTTATACTCAATTTCG amplicon upstream
ARS1004 ACS. 5" anneals
80 bp after REET STOP

DL3824 GCCCAGTATTTTGTT ARS1004 gRT-PCR,
AACTGTATGGATTGTACTAG amplicon upstream
ARS1004 ACS. 5' anneals
170 bp after REE1 STOP

DL3827 GTGTTTTAAGATA ARS1004 gRT-PCR,
AAGTGACGAAAGTTAGGGTG amplicon downstream
ARS1004 ACS. 5’ anneals
228 bp after REE1 STOP

DL3828 CATCATAAGTACTAATTA ARS1004 gRT-PCR,
CCACGAATTCAATAATTAGTAAATAC amplicon downstream
ARS1004 ACS. 5
anneals 318 bp after

REE1 STOP

DL187 ACACActaaattaccggatc Cloning of HSP104
aattcgggggatccAT in pCM188, fwd.
GAACGACCAAACGCAATT

DL189 catgatgcggcecctectgcaggge Cloning of HSP104 in pCM188, rev.
cctagcggecgc TTAATCTAGGTCATCATCAA

DL1124 taatgaggacagtatggaaatt Cloning of HSP104 3'
gatgatgacctagattaa UTR in pCM188-HSP104,
TTTAATATAGTGTGA fwd.

DL1125 ATTACATGATGCGGCCCTC Cloning of HSP104 3'
CTGCAGGGCCCTAGCGGCCGCTT UTR in pCM188-HSP104, fwd.
TAACATGATTTGGTAGTC

DL4026 CGTTTATTCCCTT ARS1 KO in pDL214 by
GTTTGATTCAGAAGCAG overlapping PCRs, Fwd.

Anneals 236 bp after pDL214's
URA3 STOP. To be

used for both 1 st and

2nd step of the reaction.

During 1 st step, use

it in combination

with DL4027. During 2nd step,
use it in combination with DL4030.

Table 1 continued on next page
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ARS1 KO in pDL214

by overlapping

PCRs, Rev. Anneals 334 bp
after pDL214's URA3 STOP.
To be used during 1 st step
in combination with DL4026.

DL4029

CAAGAGAGCCCCGAGC
CGATTCTTGCTAGCCTTTTCTC

ARS1 KO in pDL214 by

overlapping PCRs, Fwd.

Anneals 746 bp after pDL214’s URA3 STOP. To
be used

during 1 st step in

combination with DL4030.

DL4030

DL4032

GATTACGAGG
ATACGGAGAGAGG

GTGAAGGAGCAT
GTTCGGCACAC

ARS1 KO in pDL214 by

overlapping PCRs, Rev. Anneal

s 843 bp after pDL214's

URA3 STOP. To be used

for both 1 st and 2nd step of the reaction.
During 1 st step, use it

in combination with DL

4029. During 2nd step,

use it in combination

with DL4026.

ARS1 KO in pDL214 by o
verlapping PCRs,

Rev sequencing

primer. Anneals 1157 bp after
pDL214's URA3 STOP.

DL4000

TTCAAATGTACAGTAACTAT
CAAAACCATT
ATTGTAGTACCCGTA
TTCTAATAATGAGCAAAAGAG
CTCACATTTTAACG

Reverse ARS1206 orientation i

n pDL214, Fwd.

Bears 55 bp of homology

with ARS1206 3" end (+320 to+375 after HSP104 STOP
) followed by 25 bp of homology

to 5’ of T-rich

predicted ACS (+102 to+127 after

HSP104 STOP). Pair with DL4001.

DL4001

DL4061

TATATATAATTAATAAAACTAA
TGGAATTTGTT
TAATTGAACTTGACAC
CCGAGCGGACC
AATCCGCGTGTG

TTTTATAC

ATTATTAGAATACGGGTACTAC

Reverse ARS1206 orientation

in pDL214, Rev. Bears 55 bp

of homology with ARS1206 5'

end (+51 to+106 after HSP104 STOP)
followed by 25 bp of

homology with 3" end

of ARS1206 (+295 to+320 after HSP104 STOP).
Pair with DL4000.

Reverse ARS1206 orientation

in pDL214, extension of homology

region downstream ARS1206,

Fwd. Primes 134 bp upstream CYCT terminator.
Pair with M13 reverse (DL2163).

DL2163

caggaaacagctatgac

Reverse ARS1206 orientation
in pDL214, extension

of homology region
downstream ARS1206, Rev.

DL4066

GCTCGGGTGTCA
AGTTCAATTAAAC

Reverse ARS1206
orientation

in pDL214, extension

of homology region
upstream ARS1206,

Rev. Primes 106 bp
downstream HSP104 STOP.
Pair with DL530.

DL530

GTTGAATTTA
ACTCAAGAGGC

Reverse ARS1206
orientation

in pDL214, extension

of homology region
upstream ARS1206,

Fwd. Anneals 2409-2429 in
HSP104.

Table 1 continued on next page
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Oligonucleotides DL3986 gctgaagaatg Reverse ARS1206 orientation
tctggaagttctacc in pDL214, Fwd sequencing primer
annealing 108 bp before HSP104 STOP.
DL163 acattttcatcacgagatttaccc RNase H cleavage assay. HSP104,
antisense, position 2606-2583
from HSP104 ATG.
DL164 ttatcgtcatcacct RNase H cleavage assay.
aacgtgtcagceeccta HSP104 Northern oligonucleotide
tagtagcttcgtg probe, antisense, position 2718-2631
atttggtagaacttcc from HSP104 ATG.
DL473 TTTT RNase H cleavage assay.
T Poly(dT) oligonucleotide
DL3991 GATTTGACGTCCAG RNase H cleavage assay, test
TGGACTTTTTTGTCC HSP104 readthrough on pDL905,
antisense, position 2923-2895 from
HSP104 ATG
DL39%94 GGAAGTAATAAGTGAA RNase H cleavage assay, t
GGTTAAATCTGGACC est HSP104 readthrough on pDL%07,
antisense, position 2909-2879 from
HSP104 ATG
Plasmids Name Features Reference
pDL454 PTETOFF-HSP104::Reb1BS: Colin et al. Colin et al., 2014
:HSP104, PGAL1-
CUP1, 2u, URA3
pDL551 PTETOFF-HSP104::
Reb1BS
(=)::HSP104, PGAL1-
CUP1, 2u, URA3
pDL790 PTETOFF-HSP104::ARS305 This study
_548 bp::HSP104
, PGAL1-CUP1, 2u, URA3
pDL793 PTETOFF-HSP104::ARS305(A—)
_548 bp::HSP104,
PGAL1-CUP1, 2u, URA3
pDL909 PTETOFF-HSP104::
ARS305_175 bp::HSP104,
PGAL1-CUP1, 2u, URA3
pDL910 PTETOFF-HSP104::
ARS305(A-)
_175 bp::HSP104,
PGAL1-CUP1, 2u, URA3
pDL911 PTETOFF-HSP104::ARS305(B1-)
_175 bp::HSP104, PGAL1-CUP1, 2u, URA3
pDL912 PTETOFF-HSP104
::ARS305(B4—)
_175 bp::HSP104
, PGAL1-CUP1, 2u, URA3
pDL913 PTETOFF-HSP104
:ARS305(B1—-B4-)
_175 bp::HSP104,
PGAL1-CUP1, 2u, URA3
pDL30 PTETOFF-HSP104, Libri laboratory
ARS1, CEN4, URA3
pDL214 PTETOFF-HSP104,
ARS1206, ARS1, CEN4, URA3
pDL905 PTETOFF-HSP104 This study
, ARS1206, Aars1, CEN4, URA3
pDL907 PTETOFF-HSP104

, 6021sra, Aars1, CEN4, URA3

DOI: https://doi.org/10.7554/eLife.40802.008
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